Properties

Label 285.10.a.h.1.3
Level $285$
Weight $10$
Character 285.1
Self dual yes
Analytic conductor $146.785$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.785213307\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 2 x^{14} - 6356 x^{13} + 18436 x^{12} + 15858707 x^{11} - 49616078 x^{10} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{6}\cdot 5^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(32.1152\) of defining polynomial
Character \(\chi\) \(=\) 285.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-33.1152 q^{2} -81.0000 q^{3} +584.616 q^{4} +625.000 q^{5} +2682.33 q^{6} +17.0326 q^{7} -2404.69 q^{8} +6561.00 q^{9} +O(q^{10})\) \(q-33.1152 q^{2} -81.0000 q^{3} +584.616 q^{4} +625.000 q^{5} +2682.33 q^{6} +17.0326 q^{7} -2404.69 q^{8} +6561.00 q^{9} -20697.0 q^{10} -38406.0 q^{11} -47353.9 q^{12} -79992.4 q^{13} -564.039 q^{14} -50625.0 q^{15} -219692. q^{16} -184712. q^{17} -217269. q^{18} -130321. q^{19} +365385. q^{20} -1379.64 q^{21} +1.27182e6 q^{22} -2.31309e6 q^{23} +194780. q^{24} +390625. q^{25} +2.64896e6 q^{26} -531441. q^{27} +9957.55 q^{28} -371893. q^{29} +1.67646e6 q^{30} -3.51549e6 q^{31} +8.50633e6 q^{32} +3.11089e6 q^{33} +6.11676e6 q^{34} +10645.4 q^{35} +3.83566e6 q^{36} +9.21730e6 q^{37} +4.31560e6 q^{38} +6.47939e6 q^{39} -1.50293e6 q^{40} -1.02338e6 q^{41} +45687.2 q^{42} -1.88994e7 q^{43} -2.24528e7 q^{44} +4.10062e6 q^{45} +7.65984e7 q^{46} +3.23513e7 q^{47} +1.77950e7 q^{48} -4.03533e7 q^{49} -1.29356e7 q^{50} +1.49616e7 q^{51} -4.67648e7 q^{52} -4.32331e7 q^{53} +1.75988e7 q^{54} -2.40038e7 q^{55} -40958.2 q^{56} +1.05560e7 q^{57} +1.23153e7 q^{58} +1.39320e8 q^{59} -2.95962e7 q^{60} +5.46274e7 q^{61} +1.16416e8 q^{62} +111751. q^{63} -1.69207e8 q^{64} -4.99953e7 q^{65} -1.03018e8 q^{66} -2.64972e8 q^{67} -1.07985e8 q^{68} +1.87360e8 q^{69} -352524. q^{70} -1.12609e8 q^{71} -1.57771e7 q^{72} -3.59484e7 q^{73} -3.05233e8 q^{74} -3.16406e7 q^{75} -7.61877e7 q^{76} -654156. q^{77} -2.14566e8 q^{78} +4.20019e8 q^{79} -1.37307e8 q^{80} +4.30467e7 q^{81} +3.38893e7 q^{82} -2.94218e8 q^{83} -806561. q^{84} -1.15445e8 q^{85} +6.25857e8 q^{86} +3.01234e7 q^{87} +9.23545e7 q^{88} -1.16836e9 q^{89} -1.35793e8 q^{90} -1.36248e6 q^{91} -1.35227e9 q^{92} +2.84755e8 q^{93} -1.07132e9 q^{94} -8.14506e7 q^{95} -6.89013e8 q^{96} -2.51454e8 q^{97} +1.33631e9 q^{98} -2.51982e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9} - 10625 q^{10} + 138230 q^{11} - 409455 q^{12} - 176712 q^{13} - 555994 q^{14} - 759375 q^{15} + 1695731 q^{16} - 274992 q^{17} - 111537 q^{18} - 1954815 q^{19} + 3159375 q^{20} - 109512 q^{21} - 1031106 q^{22} + 1714212 q^{23} + 291357 q^{24} + 5859375 q^{25} + 9500004 q^{26} - 7971615 q^{27} + 14545598 q^{28} + 1754340 q^{29} + 860625 q^{30} + 8442914 q^{31} + 35638859 q^{32} - 11196630 q^{33} + 47218266 q^{34} + 845000 q^{35} + 33165855 q^{36} + 2956096 q^{37} + 2215457 q^{38} + 14313672 q^{39} - 2248125 q^{40} - 38550502 q^{41} + 45035514 q^{42} + 50753570 q^{43} + 212125630 q^{44} + 61509375 q^{45} - 117130008 q^{46} - 40252876 q^{47} - 137354211 q^{48} + 110123035 q^{49} - 6640625 q^{50} + 22274352 q^{51} - 87136648 q^{52} + 65532542 q^{53} + 9034497 q^{54} + 86393750 q^{55} - 377288898 q^{56} + 158340015 q^{57} + 211630876 q^{58} + 175407418 q^{59} - 255909375 q^{60} + 151231854 q^{61} - 30983940 q^{62} + 8870472 q^{63} + 836879575 q^{64} - 110445000 q^{65} + 83519586 q^{66} + 40009476 q^{67} - 124850430 q^{68} - 138851172 q^{69} - 347496250 q^{70} + 87578500 q^{71} - 23599917 q^{72} - 360657638 q^{73} + 1373397084 q^{74} - 474609375 q^{75} - 658772655 q^{76} - 304618172 q^{77} - 769500324 q^{78} + 205798286 q^{79} + 1059831875 q^{80} + 645700815 q^{81} - 2327138772 q^{82} - 63321462 q^{83} - 1178193438 q^{84} - 171870000 q^{85} - 848405762 q^{86} - 142101540 q^{87} - 3211126502 q^{88} - 381069174 q^{89} - 69710625 q^{90} + 1476892872 q^{91} - 2382818588 q^{92} - 683876034 q^{93} - 5137318040 q^{94} - 1221759375 q^{95} - 2886747579 q^{96} - 3915268828 q^{97} - 8273557437 q^{98} + 906927030 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −33.1152 −1.46350 −0.731749 0.681574i \(-0.761296\pi\)
−0.731749 + 0.681574i \(0.761296\pi\)
\(3\) −81.0000 −0.577350
\(4\) 584.616 1.14183
\(5\) 625.000 0.447214
\(6\) 2682.33 0.844951
\(7\) 17.0326 0.00268127 0.00134064 0.999999i \(-0.499573\pi\)
0.00134064 + 0.999999i \(0.499573\pi\)
\(8\) −2404.69 −0.207565
\(9\) 6561.00 0.333333
\(10\) −20697.0 −0.654496
\(11\) −38406.0 −0.790920 −0.395460 0.918483i \(-0.629415\pi\)
−0.395460 + 0.918483i \(0.629415\pi\)
\(12\) −47353.9 −0.659235
\(13\) −79992.4 −0.776790 −0.388395 0.921493i \(-0.626970\pi\)
−0.388395 + 0.921493i \(0.626970\pi\)
\(14\) −564.039 −0.00392404
\(15\) −50625.0 −0.258199
\(16\) −219692. −0.838057
\(17\) −184712. −0.536382 −0.268191 0.963366i \(-0.586426\pi\)
−0.268191 + 0.963366i \(0.586426\pi\)
\(18\) −217269. −0.487833
\(19\) −130321. −0.229416
\(20\) 365385. 0.510641
\(21\) −1379.64 −0.00154803
\(22\) 1.27182e6 1.15751
\(23\) −2.31309e6 −1.72352 −0.861761 0.507314i \(-0.830638\pi\)
−0.861761 + 0.507314i \(0.830638\pi\)
\(24\) 194780. 0.119838
\(25\) 390625. 0.200000
\(26\) 2.64896e6 1.13683
\(27\) −531441. −0.192450
\(28\) 9957.55 0.00306155
\(29\) −371893. −0.0976399 −0.0488200 0.998808i \(-0.515546\pi\)
−0.0488200 + 0.998808i \(0.515546\pi\)
\(30\) 1.67646e6 0.377874
\(31\) −3.51549e6 −0.683689 −0.341845 0.939756i \(-0.611052\pi\)
−0.341845 + 0.939756i \(0.611052\pi\)
\(32\) 8.50633e6 1.43406
\(33\) 3.11089e6 0.456638
\(34\) 6.11676e6 0.784994
\(35\) 10645.4 0.00119910
\(36\) 3.83566e6 0.380609
\(37\) 9.21730e6 0.808530 0.404265 0.914642i \(-0.367527\pi\)
0.404265 + 0.914642i \(0.367527\pi\)
\(38\) 4.31560e6 0.335750
\(39\) 6.47939e6 0.448480
\(40\) −1.50293e6 −0.0928258
\(41\) −1.02338e6 −0.0565598 −0.0282799 0.999600i \(-0.509003\pi\)
−0.0282799 + 0.999600i \(0.509003\pi\)
\(42\) 45687.2 0.00226554
\(43\) −1.88994e7 −0.843023 −0.421512 0.906823i \(-0.638500\pi\)
−0.421512 + 0.906823i \(0.638500\pi\)
\(44\) −2.24528e7 −0.903094
\(45\) 4.10062e6 0.149071
\(46\) 7.65984e7 2.52237
\(47\) 3.23513e7 0.967057 0.483528 0.875329i \(-0.339355\pi\)
0.483528 + 0.875329i \(0.339355\pi\)
\(48\) 1.77950e7 0.483853
\(49\) −4.03533e7 −0.999993
\(50\) −1.29356e7 −0.292700
\(51\) 1.49616e7 0.309680
\(52\) −4.67648e7 −0.886961
\(53\) −4.32331e7 −0.752618 −0.376309 0.926494i \(-0.622807\pi\)
−0.376309 + 0.926494i \(0.622807\pi\)
\(54\) 1.75988e7 0.281650
\(55\) −2.40038e7 −0.353710
\(56\) −40958.2 −0.000556537 0
\(57\) 1.05560e7 0.132453
\(58\) 1.23153e7 0.142896
\(59\) 1.39320e8 1.49686 0.748429 0.663215i \(-0.230808\pi\)
0.748429 + 0.663215i \(0.230808\pi\)
\(60\) −2.95962e7 −0.294819
\(61\) 5.46274e7 0.505157 0.252579 0.967576i \(-0.418721\pi\)
0.252579 + 0.967576i \(0.418721\pi\)
\(62\) 1.16416e8 1.00058
\(63\) 111751. 0.000893757 0
\(64\) −1.69207e8 −1.26069
\(65\) −4.99953e7 −0.347391
\(66\) −1.03018e8 −0.668289
\(67\) −2.64972e8 −1.60644 −0.803219 0.595684i \(-0.796881\pi\)
−0.803219 + 0.595684i \(0.796881\pi\)
\(68\) −1.07985e8 −0.612456
\(69\) 1.87360e8 0.995076
\(70\) −352524. −0.00175488
\(71\) −1.12609e8 −0.525910 −0.262955 0.964808i \(-0.584697\pi\)
−0.262955 + 0.964808i \(0.584697\pi\)
\(72\) −1.57771e7 −0.0691882
\(73\) −3.59484e7 −0.148159 −0.0740793 0.997252i \(-0.523602\pi\)
−0.0740793 + 0.997252i \(0.523602\pi\)
\(74\) −3.05233e8 −1.18328
\(75\) −3.16406e7 −0.115470
\(76\) −7.61877e7 −0.261953
\(77\) −654156. −0.00212067
\(78\) −2.14566e8 −0.656350
\(79\) 4.20019e8 1.21324 0.606620 0.794992i \(-0.292525\pi\)
0.606620 + 0.794992i \(0.292525\pi\)
\(80\) −1.37307e8 −0.374791
\(81\) 4.30467e7 0.111111
\(82\) 3.38893e7 0.0827752
\(83\) −2.94218e8 −0.680485 −0.340242 0.940338i \(-0.610509\pi\)
−0.340242 + 0.940338i \(0.610509\pi\)
\(84\) −806561. −0.00176759
\(85\) −1.15445e8 −0.239877
\(86\) 6.25857e8 1.23376
\(87\) 3.01234e7 0.0563724
\(88\) 9.23545e7 0.164167
\(89\) −1.16836e9 −1.97388 −0.986939 0.161092i \(-0.948498\pi\)
−0.986939 + 0.161092i \(0.948498\pi\)
\(90\) −1.35793e8 −0.218165
\(91\) −1.36248e6 −0.00208279
\(92\) −1.35227e9 −1.96797
\(93\) 2.84755e8 0.394728
\(94\) −1.07132e9 −1.41529
\(95\) −8.14506e7 −0.102598
\(96\) −6.89013e8 −0.827955
\(97\) −2.51454e8 −0.288394 −0.144197 0.989549i \(-0.546060\pi\)
−0.144197 + 0.989549i \(0.546060\pi\)
\(98\) 1.33631e9 1.46349
\(99\) −2.51982e8 −0.263640
\(100\) 2.28366e8 0.228366
\(101\) −9.55295e8 −0.913464 −0.456732 0.889604i \(-0.650980\pi\)
−0.456732 + 0.889604i \(0.650980\pi\)
\(102\) −4.95458e8 −0.453216
\(103\) 6.25032e8 0.547186 0.273593 0.961846i \(-0.411788\pi\)
0.273593 + 0.961846i \(0.411788\pi\)
\(104\) 1.92357e8 0.161234
\(105\) −862277. −0.000692301 0
\(106\) 1.43167e9 1.10146
\(107\) −1.51392e9 −1.11654 −0.558271 0.829658i \(-0.688535\pi\)
−0.558271 + 0.829658i \(0.688535\pi\)
\(108\) −3.10689e8 −0.219745
\(109\) −3.99743e8 −0.271245 −0.135622 0.990761i \(-0.543303\pi\)
−0.135622 + 0.990761i \(0.543303\pi\)
\(110\) 7.94889e8 0.517654
\(111\) −7.46601e8 −0.466805
\(112\) −3.74193e6 −0.00224706
\(113\) −1.50113e9 −0.866095 −0.433047 0.901371i \(-0.642562\pi\)
−0.433047 + 0.901371i \(0.642562\pi\)
\(114\) −3.49564e8 −0.193845
\(115\) −1.44568e9 −0.770783
\(116\) −2.17415e8 −0.111488
\(117\) −5.24830e8 −0.258930
\(118\) −4.61362e9 −2.19065
\(119\) −3.14613e6 −0.00143818
\(120\) 1.21737e8 0.0535930
\(121\) −8.82924e8 −0.374446
\(122\) −1.80900e9 −0.739297
\(123\) 8.28935e7 0.0326548
\(124\) −2.05521e9 −0.780656
\(125\) 2.44141e8 0.0894427
\(126\) −3.70066e6 −0.00130801
\(127\) 3.83546e9 1.30828 0.654140 0.756374i \(-0.273031\pi\)
0.654140 + 0.756374i \(0.273031\pi\)
\(128\) 1.24807e9 0.410954
\(129\) 1.53085e9 0.486720
\(130\) 1.65560e9 0.508406
\(131\) 2.92086e9 0.866544 0.433272 0.901263i \(-0.357359\pi\)
0.433272 + 0.901263i \(0.357359\pi\)
\(132\) 1.81867e9 0.521402
\(133\) −2.21971e6 −0.000615126 0
\(134\) 8.77461e9 2.35102
\(135\) −3.32151e8 −0.0860663
\(136\) 4.44173e8 0.111334
\(137\) −7.74194e9 −1.87762 −0.938809 0.344439i \(-0.888069\pi\)
−0.938809 + 0.344439i \(0.888069\pi\)
\(138\) −6.20447e9 −1.45629
\(139\) 2.18908e9 0.497388 0.248694 0.968582i \(-0.419999\pi\)
0.248694 + 0.968582i \(0.419999\pi\)
\(140\) 6.22347e6 0.00136917
\(141\) −2.62046e9 −0.558330
\(142\) 3.72907e9 0.769668
\(143\) 3.07219e9 0.614379
\(144\) −1.44140e9 −0.279352
\(145\) −2.32433e8 −0.0436659
\(146\) 1.19044e9 0.216830
\(147\) 3.26862e9 0.577346
\(148\) 5.38858e9 0.923202
\(149\) 1.66949e9 0.277490 0.138745 0.990328i \(-0.455693\pi\)
0.138745 + 0.990328i \(0.455693\pi\)
\(150\) 1.04779e9 0.168990
\(151\) −5.64582e8 −0.0883753 −0.0441877 0.999023i \(-0.514070\pi\)
−0.0441877 + 0.999023i \(0.514070\pi\)
\(152\) 3.13381e8 0.0476186
\(153\) −1.21189e9 −0.178794
\(154\) 2.16625e7 0.00310360
\(155\) −2.19718e9 −0.305755
\(156\) 3.78795e9 0.512087
\(157\) 7.97287e9 1.04729 0.523644 0.851937i \(-0.324572\pi\)
0.523644 + 0.851937i \(0.324572\pi\)
\(158\) −1.39090e10 −1.77557
\(159\) 3.50188e9 0.434524
\(160\) 5.31646e9 0.641331
\(161\) −3.93980e7 −0.00462123
\(162\) −1.42550e9 −0.162611
\(163\) −2.19215e9 −0.243234 −0.121617 0.992577i \(-0.538808\pi\)
−0.121617 + 0.992577i \(0.538808\pi\)
\(164\) −5.98282e8 −0.0645816
\(165\) 1.94431e9 0.204215
\(166\) 9.74310e9 0.995888
\(167\) 7.36481e9 0.732719 0.366359 0.930473i \(-0.380604\pi\)
0.366359 + 0.930473i \(0.380604\pi\)
\(168\) 3.31761e6 0.000321317 0
\(169\) −4.20571e9 −0.396597
\(170\) 3.82297e9 0.351060
\(171\) −8.55036e8 −0.0764719
\(172\) −1.10489e10 −0.962588
\(173\) −2.04155e10 −1.73281 −0.866407 0.499339i \(-0.833576\pi\)
−0.866407 + 0.499339i \(0.833576\pi\)
\(174\) −9.97541e8 −0.0825010
\(175\) 6.65337e6 0.000536254 0
\(176\) 8.43748e9 0.662836
\(177\) −1.12850e10 −0.864212
\(178\) 3.86904e10 2.88877
\(179\) −2.77278e9 −0.201872 −0.100936 0.994893i \(-0.532184\pi\)
−0.100936 + 0.994893i \(0.532184\pi\)
\(180\) 2.39729e9 0.170214
\(181\) 2.15283e10 1.49092 0.745462 0.666548i \(-0.232229\pi\)
0.745462 + 0.666548i \(0.232229\pi\)
\(182\) 4.51189e7 0.00304815
\(183\) −4.42482e9 −0.291653
\(184\) 5.56225e9 0.357742
\(185\) 5.76081e9 0.361585
\(186\) −9.42972e9 −0.577684
\(187\) 7.09404e9 0.424235
\(188\) 1.89131e10 1.10421
\(189\) −9.05184e6 −0.000516011 0
\(190\) 2.69725e9 0.150152
\(191\) 2.92849e10 1.59218 0.796092 0.605176i \(-0.206897\pi\)
0.796092 + 0.605176i \(0.206897\pi\)
\(192\) 1.37057e10 0.727858
\(193\) 6.10880e9 0.316919 0.158460 0.987365i \(-0.449347\pi\)
0.158460 + 0.987365i \(0.449347\pi\)
\(194\) 8.32696e9 0.422064
\(195\) 4.04962e9 0.200566
\(196\) −2.35912e10 −1.14182
\(197\) 6.69784e9 0.316838 0.158419 0.987372i \(-0.449360\pi\)
0.158419 + 0.987372i \(0.449360\pi\)
\(198\) 8.34443e9 0.385837
\(199\) 2.71119e10 1.22552 0.612761 0.790268i \(-0.290059\pi\)
0.612761 + 0.790268i \(0.290059\pi\)
\(200\) −9.39331e8 −0.0415129
\(201\) 2.14628e10 0.927477
\(202\) 3.16348e10 1.33685
\(203\) −6.33432e6 −0.000261799 0
\(204\) 8.74681e9 0.353601
\(205\) −6.39610e8 −0.0252943
\(206\) −2.06981e10 −0.800806
\(207\) −1.51762e10 −0.574507
\(208\) 1.75737e10 0.650995
\(209\) 5.00511e9 0.181449
\(210\) 2.85545e7 0.00101318
\(211\) −3.43404e10 −1.19271 −0.596354 0.802722i \(-0.703384\pi\)
−0.596354 + 0.802722i \(0.703384\pi\)
\(212\) −2.52747e10 −0.859360
\(213\) 9.12134e9 0.303634
\(214\) 5.01337e10 1.63406
\(215\) −1.18121e10 −0.377012
\(216\) 1.27795e9 0.0399458
\(217\) −5.98781e7 −0.00183316
\(218\) 1.32376e10 0.396966
\(219\) 2.91182e9 0.0855394
\(220\) −1.40330e10 −0.403876
\(221\) 1.47755e10 0.416656
\(222\) 2.47238e10 0.683168
\(223\) −6.20859e10 −1.68121 −0.840603 0.541652i \(-0.817799\pi\)
−0.840603 + 0.541652i \(0.817799\pi\)
\(224\) 1.44885e8 0.00384510
\(225\) 2.56289e9 0.0666667
\(226\) 4.97102e10 1.26753
\(227\) −1.96434e10 −0.491021 −0.245510 0.969394i \(-0.578956\pi\)
−0.245510 + 0.969394i \(0.578956\pi\)
\(228\) 6.17121e9 0.151239
\(229\) 5.49131e10 1.31952 0.659761 0.751475i \(-0.270657\pi\)
0.659761 + 0.751475i \(0.270657\pi\)
\(230\) 4.78740e10 1.12804
\(231\) 5.29866e7 0.00122437
\(232\) 8.94287e8 0.0202666
\(233\) −3.46346e10 −0.769855 −0.384928 0.922947i \(-0.625774\pi\)
−0.384928 + 0.922947i \(0.625774\pi\)
\(234\) 1.73799e10 0.378944
\(235\) 2.02196e10 0.432481
\(236\) 8.14489e10 1.70915
\(237\) −3.40215e10 −0.700464
\(238\) 1.04185e8 0.00210478
\(239\) −8.52413e9 −0.168990 −0.0844948 0.996424i \(-0.526928\pi\)
−0.0844948 + 0.996424i \(0.526928\pi\)
\(240\) 1.11219e10 0.216385
\(241\) 1.04020e11 1.98629 0.993144 0.116899i \(-0.0372955\pi\)
0.993144 + 0.116899i \(0.0372955\pi\)
\(242\) 2.92382e10 0.548001
\(243\) −3.48678e9 −0.0641500
\(244\) 3.19361e10 0.576802
\(245\) −2.52208e10 −0.447210
\(246\) −2.74503e9 −0.0477903
\(247\) 1.04247e10 0.178208
\(248\) 8.45366e9 0.141910
\(249\) 2.38317e10 0.392878
\(250\) −8.08476e9 −0.130899
\(251\) −8.12749e10 −1.29248 −0.646242 0.763133i \(-0.723660\pi\)
−0.646242 + 0.763133i \(0.723660\pi\)
\(252\) 6.53315e7 0.00102052
\(253\) 8.88365e10 1.36317
\(254\) −1.27012e11 −1.91467
\(255\) 9.35102e9 0.138493
\(256\) 4.53038e10 0.659257
\(257\) −1.11919e11 −1.60032 −0.800158 0.599789i \(-0.795251\pi\)
−0.800158 + 0.599789i \(0.795251\pi\)
\(258\) −5.06944e10 −0.712314
\(259\) 1.56995e8 0.00216789
\(260\) −2.92280e10 −0.396661
\(261\) −2.43999e9 −0.0325466
\(262\) −9.67250e10 −1.26819
\(263\) 9.30128e10 1.19879 0.599393 0.800455i \(-0.295409\pi\)
0.599393 + 0.800455i \(0.295409\pi\)
\(264\) −7.48071e9 −0.0947819
\(265\) −2.70207e10 −0.336581
\(266\) 7.35061e7 0.000900236 0
\(267\) 9.46369e10 1.13962
\(268\) −1.54907e11 −1.83428
\(269\) 1.52235e10 0.177268 0.0886341 0.996064i \(-0.471750\pi\)
0.0886341 + 0.996064i \(0.471750\pi\)
\(270\) 1.09992e10 0.125958
\(271\) 1.23934e11 1.39582 0.697911 0.716184i \(-0.254113\pi\)
0.697911 + 0.716184i \(0.254113\pi\)
\(272\) 4.05796e10 0.449519
\(273\) 1.10361e8 0.00120250
\(274\) 2.56376e11 2.74789
\(275\) −1.50024e10 −0.158184
\(276\) 1.09534e11 1.13621
\(277\) −7.06725e10 −0.721259 −0.360630 0.932709i \(-0.617438\pi\)
−0.360630 + 0.932709i \(0.617438\pi\)
\(278\) −7.24918e10 −0.727926
\(279\) −2.30652e10 −0.227896
\(280\) −2.55988e7 −0.000248891 0
\(281\) 1.31055e11 1.25393 0.626966 0.779046i \(-0.284296\pi\)
0.626966 + 0.779046i \(0.284296\pi\)
\(282\) 8.67770e10 0.817116
\(283\) 2.10919e10 0.195468 0.0977341 0.995213i \(-0.468841\pi\)
0.0977341 + 0.995213i \(0.468841\pi\)
\(284\) −6.58331e10 −0.600498
\(285\) 6.59750e9 0.0592349
\(286\) −1.01736e11 −0.899142
\(287\) −1.74308e7 −0.000151652 0
\(288\) 5.58100e10 0.478020
\(289\) −8.44695e10 −0.712295
\(290\) 7.69707e9 0.0639050
\(291\) 2.03678e10 0.166504
\(292\) −2.10160e10 −0.169172
\(293\) −5.49153e10 −0.435300 −0.217650 0.976027i \(-0.569839\pi\)
−0.217650 + 0.976027i \(0.569839\pi\)
\(294\) −1.08241e11 −0.844945
\(295\) 8.70753e10 0.669416
\(296\) −2.21647e10 −0.167822
\(297\) 2.04105e10 0.152213
\(298\) −5.52856e10 −0.406106
\(299\) 1.85030e11 1.33882
\(300\) −1.84976e10 −0.131847
\(301\) −3.21906e8 −0.00226037
\(302\) 1.86963e10 0.129337
\(303\) 7.73789e10 0.527388
\(304\) 2.86304e10 0.192263
\(305\) 3.41421e10 0.225913
\(306\) 4.01321e10 0.261665
\(307\) 7.62919e10 0.490180 0.245090 0.969500i \(-0.421182\pi\)
0.245090 + 0.969500i \(0.421182\pi\)
\(308\) −3.82430e8 −0.00242144
\(309\) −5.06276e10 −0.315918
\(310\) 7.27602e10 0.447472
\(311\) −3.89402e10 −0.236035 −0.118018 0.993012i \(-0.537654\pi\)
−0.118018 + 0.993012i \(0.537654\pi\)
\(312\) −1.55809e10 −0.0930886
\(313\) 2.49070e11 1.46680 0.733402 0.679795i \(-0.237931\pi\)
0.733402 + 0.679795i \(0.237931\pi\)
\(314\) −2.64023e11 −1.53271
\(315\) 6.98445e7 0.000399700 0
\(316\) 2.45550e11 1.38531
\(317\) −4.97240e10 −0.276567 −0.138283 0.990393i \(-0.544158\pi\)
−0.138283 + 0.990393i \(0.544158\pi\)
\(318\) −1.15965e11 −0.635926
\(319\) 1.42829e10 0.0772253
\(320\) −1.05754e11 −0.563797
\(321\) 1.22627e11 0.644636
\(322\) 1.30467e9 0.00676316
\(323\) 2.40718e10 0.123054
\(324\) 2.51658e10 0.126870
\(325\) −3.12470e10 −0.155358
\(326\) 7.25933e10 0.355973
\(327\) 3.23792e10 0.156603
\(328\) 2.46090e9 0.0117398
\(329\) 5.51029e8 0.00259294
\(330\) −6.43860e10 −0.298868
\(331\) −2.77449e11 −1.27045 −0.635225 0.772327i \(-0.719093\pi\)
−0.635225 + 0.772327i \(0.719093\pi\)
\(332\) −1.72005e11 −0.776996
\(333\) 6.04747e10 0.269510
\(334\) −2.43887e11 −1.07233
\(335\) −1.65608e11 −0.718421
\(336\) 3.03096e8 0.00129734
\(337\) −2.64627e11 −1.11763 −0.558817 0.829291i \(-0.688744\pi\)
−0.558817 + 0.829291i \(0.688744\pi\)
\(338\) 1.39273e11 0.580419
\(339\) 1.21592e11 0.500040
\(340\) −6.74908e10 −0.273898
\(341\) 1.35016e11 0.540743
\(342\) 2.83147e10 0.111917
\(343\) −1.37465e9 −0.00536252
\(344\) 4.54471e10 0.174982
\(345\) 1.17100e11 0.445012
\(346\) 6.76062e11 2.53597
\(347\) −3.73130e11 −1.38159 −0.690793 0.723053i \(-0.742738\pi\)
−0.690793 + 0.723053i \(0.742738\pi\)
\(348\) 1.76106e10 0.0643676
\(349\) −2.59676e10 −0.0936952 −0.0468476 0.998902i \(-0.514918\pi\)
−0.0468476 + 0.998902i \(0.514918\pi\)
\(350\) −2.20328e8 −0.000784807 0
\(351\) 4.25113e10 0.149493
\(352\) −3.26694e11 −1.13423
\(353\) −2.07044e11 −0.709704 −0.354852 0.934922i \(-0.615469\pi\)
−0.354852 + 0.934922i \(0.615469\pi\)
\(354\) 3.73703e11 1.26477
\(355\) −7.03807e10 −0.235194
\(356\) −6.83040e11 −2.25383
\(357\) 2.54836e8 0.000830336 0
\(358\) 9.18212e10 0.295440
\(359\) −8.82044e10 −0.280263 −0.140131 0.990133i \(-0.544752\pi\)
−0.140131 + 0.990133i \(0.544752\pi\)
\(360\) −9.86072e9 −0.0309419
\(361\) 1.69836e10 0.0526316
\(362\) −7.12912e11 −2.18196
\(363\) 7.15169e10 0.216187
\(364\) −7.96529e8 −0.00237818
\(365\) −2.24678e10 −0.0662585
\(366\) 1.46529e11 0.426833
\(367\) 3.16481e10 0.0910648 0.0455324 0.998963i \(-0.485502\pi\)
0.0455324 + 0.998963i \(0.485502\pi\)
\(368\) 5.08166e11 1.44441
\(369\) −6.71437e9 −0.0188533
\(370\) −1.90770e11 −0.529180
\(371\) −7.36373e8 −0.00201797
\(372\) 1.66472e11 0.450712
\(373\) −2.33909e11 −0.625686 −0.312843 0.949805i \(-0.601281\pi\)
−0.312843 + 0.949805i \(0.601281\pi\)
\(374\) −2.34920e11 −0.620867
\(375\) −1.97754e10 −0.0516398
\(376\) −7.77948e10 −0.200727
\(377\) 2.97486e10 0.0758457
\(378\) 2.99753e8 0.000755181 0
\(379\) −8.71780e10 −0.217035 −0.108518 0.994095i \(-0.534610\pi\)
−0.108518 + 0.994095i \(0.534610\pi\)
\(380\) −4.76173e10 −0.117149
\(381\) −3.10672e11 −0.755336
\(382\) −9.69774e11 −2.33016
\(383\) −6.02315e11 −1.43031 −0.715154 0.698967i \(-0.753643\pi\)
−0.715154 + 0.698967i \(0.753643\pi\)
\(384\) −1.01094e11 −0.237265
\(385\) −4.08848e8 −0.000948392 0
\(386\) −2.02294e11 −0.463811
\(387\) −1.23999e11 −0.281008
\(388\) −1.47004e11 −0.329296
\(389\) −1.13185e11 −0.250619 −0.125310 0.992118i \(-0.539992\pi\)
−0.125310 + 0.992118i \(0.539992\pi\)
\(390\) −1.34104e11 −0.293529
\(391\) 4.27254e11 0.924466
\(392\) 9.70371e10 0.207563
\(393\) −2.36590e11 −0.500299
\(394\) −2.21800e11 −0.463691
\(395\) 2.62512e11 0.542577
\(396\) −1.47313e11 −0.301031
\(397\) 2.33057e11 0.470873 0.235437 0.971890i \(-0.424348\pi\)
0.235437 + 0.971890i \(0.424348\pi\)
\(398\) −8.97816e11 −1.79355
\(399\) 1.79797e8 0.000355143 0
\(400\) −8.58171e10 −0.167611
\(401\) −9.42560e10 −0.182037 −0.0910184 0.995849i \(-0.529012\pi\)
−0.0910184 + 0.995849i \(0.529012\pi\)
\(402\) −7.10743e11 −1.35736
\(403\) 2.81213e11 0.531083
\(404\) −5.58480e11 −1.04302
\(405\) 2.69042e10 0.0496904
\(406\) 2.09762e8 0.000383142 0
\(407\) −3.54000e11 −0.639482
\(408\) −3.59781e10 −0.0642787
\(409\) 4.22209e11 0.746059 0.373029 0.927820i \(-0.378319\pi\)
0.373029 + 0.927820i \(0.378319\pi\)
\(410\) 2.11808e10 0.0370182
\(411\) 6.27097e11 1.08404
\(412\) 3.65404e11 0.624792
\(413\) 2.37299e9 0.00401348
\(414\) 5.02562e11 0.840791
\(415\) −1.83886e11 −0.304322
\(416\) −6.80442e11 −1.11396
\(417\) −1.77316e11 −0.287167
\(418\) −1.65745e11 −0.265551
\(419\) 2.62907e11 0.416715 0.208358 0.978053i \(-0.433188\pi\)
0.208358 + 0.978053i \(0.433188\pi\)
\(420\) −5.04101e8 −0.000790489 0
\(421\) 2.42438e11 0.376124 0.188062 0.982157i \(-0.439779\pi\)
0.188062 + 0.982157i \(0.439779\pi\)
\(422\) 1.13719e12 1.74553
\(423\) 2.12257e11 0.322352
\(424\) 1.03962e11 0.156217
\(425\) −7.21530e10 −0.107276
\(426\) −3.02055e11 −0.444368
\(427\) 9.30449e8 0.00135446
\(428\) −8.85060e11 −1.27490
\(429\) −2.48848e11 −0.354712
\(430\) 3.91160e11 0.551756
\(431\) −7.41006e10 −0.103437 −0.0517183 0.998662i \(-0.516470\pi\)
−0.0517183 + 0.998662i \(0.516470\pi\)
\(432\) 1.16753e11 0.161284
\(433\) −3.50860e11 −0.479665 −0.239833 0.970814i \(-0.577093\pi\)
−0.239833 + 0.970814i \(0.577093\pi\)
\(434\) 1.98288e9 0.00268282
\(435\) 1.88271e10 0.0252105
\(436\) −2.33696e11 −0.309715
\(437\) 3.01444e11 0.395403
\(438\) −9.64255e10 −0.125187
\(439\) 4.53984e11 0.583378 0.291689 0.956513i \(-0.405783\pi\)
0.291689 + 0.956513i \(0.405783\pi\)
\(440\) 5.77215e10 0.0734177
\(441\) −2.64758e11 −0.333331
\(442\) −4.89294e11 −0.609776
\(443\) 9.28919e11 1.14594 0.572969 0.819577i \(-0.305792\pi\)
0.572969 + 0.819577i \(0.305792\pi\)
\(444\) −4.36475e11 −0.533011
\(445\) −7.30223e11 −0.882745
\(446\) 2.05598e12 2.46044
\(447\) −1.35229e11 −0.160209
\(448\) −2.88203e9 −0.00338024
\(449\) −2.07633e11 −0.241095 −0.120547 0.992708i \(-0.538465\pi\)
−0.120547 + 0.992708i \(0.538465\pi\)
\(450\) −8.48706e10 −0.0975666
\(451\) 3.93038e10 0.0447343
\(452\) −8.77585e11 −0.988931
\(453\) 4.57312e10 0.0510235
\(454\) 6.50494e11 0.718608
\(455\) −8.51551e8 −0.000931450 0
\(456\) −2.53839e10 −0.0274926
\(457\) 5.26835e11 0.565004 0.282502 0.959267i \(-0.408836\pi\)
0.282502 + 0.959267i \(0.408836\pi\)
\(458\) −1.81846e12 −1.93112
\(459\) 9.81633e10 0.103227
\(460\) −8.45167e11 −0.880101
\(461\) 9.30031e11 0.959055 0.479527 0.877527i \(-0.340808\pi\)
0.479527 + 0.877527i \(0.340808\pi\)
\(462\) −1.75466e9 −0.00179186
\(463\) 1.56207e12 1.57974 0.789871 0.613273i \(-0.210148\pi\)
0.789871 + 0.613273i \(0.210148\pi\)
\(464\) 8.17018e10 0.0818278
\(465\) 1.77972e11 0.176528
\(466\) 1.14693e12 1.12668
\(467\) 4.72113e11 0.459325 0.229662 0.973270i \(-0.426238\pi\)
0.229662 + 0.973270i \(0.426238\pi\)
\(468\) −3.06824e11 −0.295654
\(469\) −4.51318e9 −0.00430730
\(470\) −6.69575e11 −0.632935
\(471\) −6.45803e11 −0.604652
\(472\) −3.35022e11 −0.310695
\(473\) 7.25850e11 0.666764
\(474\) 1.12663e12 1.02513
\(475\) −5.09066e10 −0.0458831
\(476\) −1.83927e9 −0.00164216
\(477\) −2.83652e11 −0.250873
\(478\) 2.82278e11 0.247316
\(479\) 1.31456e12 1.14096 0.570478 0.821313i \(-0.306758\pi\)
0.570478 + 0.821313i \(0.306758\pi\)
\(480\) −4.30633e11 −0.370273
\(481\) −7.37314e11 −0.628058
\(482\) −3.44466e12 −2.90693
\(483\) 3.19124e9 0.00266807
\(484\) −5.16172e11 −0.427553
\(485\) −1.57159e11 −0.128974
\(486\) 1.15466e11 0.0938835
\(487\) 2.31114e12 1.86186 0.930928 0.365203i \(-0.119001\pi\)
0.930928 + 0.365203i \(0.119001\pi\)
\(488\) −1.31362e11 −0.104853
\(489\) 1.77564e11 0.140431
\(490\) 8.35192e11 0.654492
\(491\) −1.90175e12 −1.47668 −0.738342 0.674426i \(-0.764391\pi\)
−0.738342 + 0.674426i \(0.764391\pi\)
\(492\) 4.84609e10 0.0372862
\(493\) 6.86930e10 0.0523723
\(494\) −3.45216e11 −0.260807
\(495\) −1.57489e11 −0.117903
\(496\) 7.72325e11 0.572971
\(497\) −1.91803e9 −0.00141011
\(498\) −7.89191e11 −0.574976
\(499\) 2.26601e12 1.63610 0.818048 0.575150i \(-0.195056\pi\)
0.818048 + 0.575150i \(0.195056\pi\)
\(500\) 1.42728e11 0.102128
\(501\) −5.96549e11 −0.423035
\(502\) 2.69144e12 1.89155
\(503\) 7.91926e11 0.551605 0.275803 0.961214i \(-0.411056\pi\)
0.275803 + 0.961214i \(0.411056\pi\)
\(504\) −2.68726e8 −0.000185512 0
\(505\) −5.97059e11 −0.408513
\(506\) −2.94184e12 −1.99499
\(507\) 3.40663e11 0.228975
\(508\) 2.24227e12 1.49383
\(509\) 2.29459e12 1.51522 0.757610 0.652708i \(-0.226367\pi\)
0.757610 + 0.652708i \(0.226367\pi\)
\(510\) −3.09661e11 −0.202685
\(511\) −6.12296e8 −0.000397253 0
\(512\) −2.13925e12 −1.37578
\(513\) 6.92579e10 0.0441511
\(514\) 3.70623e12 2.34206
\(515\) 3.90645e11 0.244709
\(516\) 8.94959e11 0.555750
\(517\) −1.24249e12 −0.764864
\(518\) −5.19892e9 −0.00317270
\(519\) 1.65365e12 1.00044
\(520\) 1.20223e11 0.0721062
\(521\) −1.72956e12 −1.02841 −0.514205 0.857667i \(-0.671913\pi\)
−0.514205 + 0.857667i \(0.671913\pi\)
\(522\) 8.08008e10 0.0476319
\(523\) 9.73136e11 0.568743 0.284371 0.958714i \(-0.408215\pi\)
0.284371 + 0.958714i \(0.408215\pi\)
\(524\) 1.70758e12 0.989444
\(525\) −5.38923e8 −0.000309607 0
\(526\) −3.08014e12 −1.75442
\(527\) 6.49353e11 0.366719
\(528\) −6.83436e11 −0.382688
\(529\) 3.54922e12 1.97053
\(530\) 8.94794e11 0.492586
\(531\) 9.14081e11 0.498953
\(532\) −1.29768e9 −0.000702368 0
\(533\) 8.18624e10 0.0439351
\(534\) −3.13392e12 −1.66783
\(535\) −9.46199e11 −0.499333
\(536\) 6.37175e11 0.333440
\(537\) 2.24595e11 0.116551
\(538\) −5.04131e11 −0.259432
\(539\) 1.54981e12 0.790914
\(540\) −1.94181e11 −0.0982729
\(541\) 2.76529e12 1.38788 0.693941 0.720032i \(-0.255873\pi\)
0.693941 + 0.720032i \(0.255873\pi\)
\(542\) −4.10411e12 −2.04278
\(543\) −1.74379e12 −0.860785
\(544\) −1.57122e12 −0.769204
\(545\) −2.49839e11 −0.121304
\(546\) −3.65463e9 −0.00175985
\(547\) −1.66817e12 −0.796702 −0.398351 0.917233i \(-0.630417\pi\)
−0.398351 + 0.917233i \(0.630417\pi\)
\(548\) −4.52606e12 −2.14392
\(549\) 3.58410e11 0.168386
\(550\) 4.96806e11 0.231502
\(551\) 4.84655e10 0.0224001
\(552\) −4.50542e11 −0.206543
\(553\) 7.15403e9 0.00325303
\(554\) 2.34033e12 1.05556
\(555\) −4.66626e11 −0.208761
\(556\) 1.27977e12 0.567931
\(557\) −1.55962e12 −0.686547 −0.343273 0.939235i \(-0.611536\pi\)
−0.343273 + 0.939235i \(0.611536\pi\)
\(558\) 7.63807e11 0.333526
\(559\) 1.51181e12 0.654853
\(560\) −2.33871e9 −0.00100492
\(561\) −5.74617e11 −0.244932
\(562\) −4.33990e12 −1.83513
\(563\) 4.46009e12 1.87092 0.935461 0.353430i \(-0.114985\pi\)
0.935461 + 0.353430i \(0.114985\pi\)
\(564\) −1.53196e12 −0.637517
\(565\) −9.38207e11 −0.387329
\(566\) −6.98461e11 −0.286067
\(567\) 7.33199e8 0.000297919 0
\(568\) 2.70790e11 0.109160
\(569\) 3.73323e12 1.49307 0.746535 0.665346i \(-0.231716\pi\)
0.746535 + 0.665346i \(0.231716\pi\)
\(570\) −2.18477e11 −0.0866902
\(571\) −3.37208e12 −1.32750 −0.663752 0.747953i \(-0.731037\pi\)
−0.663752 + 0.747953i \(0.731037\pi\)
\(572\) 1.79605e12 0.701515
\(573\) −2.37207e12 −0.919248
\(574\) 5.77224e8 0.000221943 0
\(575\) −9.03550e11 −0.344704
\(576\) −1.11016e12 −0.420229
\(577\) 3.49209e12 1.31158 0.655790 0.754944i \(-0.272336\pi\)
0.655790 + 0.754944i \(0.272336\pi\)
\(578\) 2.79722e12 1.04244
\(579\) −4.94813e11 −0.182973
\(580\) −1.35884e11 −0.0498589
\(581\) −5.01131e9 −0.00182456
\(582\) −6.74484e11 −0.243679
\(583\) 1.66041e12 0.595260
\(584\) 8.64447e10 0.0307525
\(585\) −3.28019e11 −0.115797
\(586\) 1.81853e12 0.637062
\(587\) −2.58099e11 −0.0897253 −0.0448626 0.998993i \(-0.514285\pi\)
−0.0448626 + 0.998993i \(0.514285\pi\)
\(588\) 1.91089e12 0.659230
\(589\) 4.58143e11 0.156849
\(590\) −2.88351e12 −0.979689
\(591\) −5.42525e11 −0.182926
\(592\) −2.02496e12 −0.677594
\(593\) 5.00345e12 1.66159 0.830794 0.556580i \(-0.187887\pi\)
0.830794 + 0.556580i \(0.187887\pi\)
\(594\) −6.75899e11 −0.222763
\(595\) −1.96633e9 −0.000643176 0
\(596\) 9.76012e11 0.316845
\(597\) −2.19606e12 −0.707556
\(598\) −6.12729e12 −1.95935
\(599\) −1.59577e11 −0.0506467 −0.0253233 0.999679i \(-0.508062\pi\)
−0.0253233 + 0.999679i \(0.508062\pi\)
\(600\) 7.60858e10 0.0239675
\(601\) −1.39393e12 −0.435820 −0.217910 0.975969i \(-0.569924\pi\)
−0.217910 + 0.975969i \(0.569924\pi\)
\(602\) 1.06600e10 0.00330805
\(603\) −1.73848e12 −0.535479
\(604\) −3.30064e11 −0.100909
\(605\) −5.51828e11 −0.167457
\(606\) −2.56242e12 −0.771832
\(607\) −1.62643e12 −0.486279 −0.243140 0.969991i \(-0.578177\pi\)
−0.243140 + 0.969991i \(0.578177\pi\)
\(608\) −1.10855e12 −0.328996
\(609\) 5.13080e8 0.000151150 0
\(610\) −1.13062e12 −0.330623
\(611\) −2.58786e12 −0.751200
\(612\) −7.08492e11 −0.204152
\(613\) −4.76697e12 −1.36355 −0.681774 0.731563i \(-0.738791\pi\)
−0.681774 + 0.731563i \(0.738791\pi\)
\(614\) −2.52642e12 −0.717378
\(615\) 5.18084e10 0.0146037
\(616\) 1.57304e9 0.000440176 0
\(617\) 1.05135e12 0.292054 0.146027 0.989281i \(-0.453351\pi\)
0.146027 + 0.989281i \(0.453351\pi\)
\(618\) 1.67654e12 0.462346
\(619\) 3.48165e12 0.953184 0.476592 0.879125i \(-0.341872\pi\)
0.476592 + 0.879125i \(0.341872\pi\)
\(620\) −1.28451e12 −0.349120
\(621\) 1.22927e12 0.331692
\(622\) 1.28951e12 0.345437
\(623\) −1.99002e10 −0.00529250
\(624\) −1.42347e12 −0.375852
\(625\) 1.52588e11 0.0400000
\(626\) −8.24800e12 −2.14667
\(627\) −4.05414e11 −0.104760
\(628\) 4.66107e12 1.19582
\(629\) −1.70254e12 −0.433681
\(630\) −2.31291e9 −0.000584961 0
\(631\) 1.59019e12 0.399316 0.199658 0.979866i \(-0.436017\pi\)
0.199658 + 0.979866i \(0.436017\pi\)
\(632\) −1.01001e12 −0.251826
\(633\) 2.78157e12 0.688610
\(634\) 1.64662e12 0.404755
\(635\) 2.39716e12 0.585081
\(636\) 2.04725e12 0.496152
\(637\) 3.22796e12 0.776785
\(638\) −4.72982e11 −0.113019
\(639\) −7.38829e11 −0.175303
\(640\) 7.80043e11 0.183784
\(641\) 1.00116e12 0.234230 0.117115 0.993118i \(-0.462635\pi\)
0.117115 + 0.993118i \(0.462635\pi\)
\(642\) −4.06083e12 −0.943424
\(643\) 1.37759e12 0.317812 0.158906 0.987294i \(-0.449203\pi\)
0.158906 + 0.987294i \(0.449203\pi\)
\(644\) −2.30327e10 −0.00527665
\(645\) 9.56781e11 0.217668
\(646\) −7.97142e11 −0.180090
\(647\) −2.38096e12 −0.534175 −0.267087 0.963672i \(-0.586061\pi\)
−0.267087 + 0.963672i \(0.586061\pi\)
\(648\) −1.03514e11 −0.0230627
\(649\) −5.35075e12 −1.18389
\(650\) 1.03475e12 0.227366
\(651\) 4.85013e9 0.00105837
\(652\) −1.28156e12 −0.277732
\(653\) 1.79434e12 0.386185 0.193093 0.981181i \(-0.438148\pi\)
0.193093 + 0.981181i \(0.438148\pi\)
\(654\) −1.07224e12 −0.229189
\(655\) 1.82554e12 0.387530
\(656\) 2.24827e11 0.0474004
\(657\) −2.35858e11 −0.0493862
\(658\) −1.82474e10 −0.00379477
\(659\) 3.35077e12 0.692085 0.346043 0.938219i \(-0.387525\pi\)
0.346043 + 0.938219i \(0.387525\pi\)
\(660\) 1.13667e12 0.233178
\(661\) 1.87117e12 0.381247 0.190624 0.981663i \(-0.438949\pi\)
0.190624 + 0.981663i \(0.438949\pi\)
\(662\) 9.18779e12 1.85930
\(663\) −1.19682e12 −0.240557
\(664\) 7.07503e11 0.141245
\(665\) −1.38732e9 −0.000275093 0
\(666\) −2.00263e12 −0.394427
\(667\) 8.60222e11 0.168285
\(668\) 4.30558e12 0.836639
\(669\) 5.02895e12 0.970644
\(670\) 5.48413e12 1.05141
\(671\) −2.09802e12 −0.399539
\(672\) −1.17357e10 −0.00221997
\(673\) −5.21762e12 −0.980404 −0.490202 0.871609i \(-0.663077\pi\)
−0.490202 + 0.871609i \(0.663077\pi\)
\(674\) 8.76317e12 1.63565
\(675\) −2.07594e11 −0.0384900
\(676\) −2.45872e12 −0.452845
\(677\) −4.24827e12 −0.777255 −0.388627 0.921395i \(-0.627051\pi\)
−0.388627 + 0.921395i \(0.627051\pi\)
\(678\) −4.02653e12 −0.731808
\(679\) −4.28293e9 −0.000773263 0
\(680\) 2.77608e11 0.0497900
\(681\) 1.59111e12 0.283491
\(682\) −4.47109e12 −0.791377
\(683\) 4.48987e12 0.789479 0.394740 0.918793i \(-0.370835\pi\)
0.394740 + 0.918793i \(0.370835\pi\)
\(684\) −4.99868e11 −0.0873178
\(685\) −4.83871e12 −0.839696
\(686\) 4.55219e10 0.00784804
\(687\) −4.44796e12 −0.761826
\(688\) 4.15204e12 0.706502
\(689\) 3.45832e12 0.584626
\(690\) −3.87779e12 −0.651274
\(691\) −4.14341e12 −0.691364 −0.345682 0.938352i \(-0.612352\pi\)
−0.345682 + 0.938352i \(0.612352\pi\)
\(692\) −1.19352e13 −1.97857
\(693\) −4.29192e9 −0.000706890 0
\(694\) 1.23563e13 2.02195
\(695\) 1.36818e12 0.222439
\(696\) −7.24372e10 −0.0117009
\(697\) 1.89030e11 0.0303377
\(698\) 8.59922e11 0.137123
\(699\) 2.80541e12 0.444476
\(700\) 3.88967e9 0.000612310 0
\(701\) 6.06995e12 0.949410 0.474705 0.880145i \(-0.342555\pi\)
0.474705 + 0.880145i \(0.342555\pi\)
\(702\) −1.40777e12 −0.218783
\(703\) −1.20121e12 −0.185489
\(704\) 6.49855e12 0.997103
\(705\) −1.63779e12 −0.249693
\(706\) 6.85632e12 1.03865
\(707\) −1.62712e10 −0.00244924
\(708\) −6.59736e12 −0.986781
\(709\) 3.98033e12 0.591576 0.295788 0.955254i \(-0.404418\pi\)
0.295788 + 0.955254i \(0.404418\pi\)
\(710\) 2.33067e12 0.344206
\(711\) 2.75574e12 0.404413
\(712\) 2.80953e12 0.409708
\(713\) 8.13165e12 1.17835
\(714\) −8.43895e9 −0.00121520
\(715\) 1.92012e12 0.274759
\(716\) −1.62101e12 −0.230504
\(717\) 6.90455e11 0.0975661
\(718\) 2.92090e12 0.410164
\(719\) 1.28152e12 0.178832 0.0894158 0.995994i \(-0.471500\pi\)
0.0894158 + 0.995994i \(0.471500\pi\)
\(720\) −9.00873e11 −0.124930
\(721\) 1.06460e10 0.00146715
\(722\) −5.62414e11 −0.0770262
\(723\) −8.42566e12 −1.14678
\(724\) 1.25858e13 1.70238
\(725\) −1.45271e11 −0.0195280
\(726\) −2.36829e12 −0.316389
\(727\) 5.34292e12 0.709371 0.354686 0.934986i \(-0.384588\pi\)
0.354686 + 0.934986i \(0.384588\pi\)
\(728\) 3.27634e9 0.000432313 0
\(729\) 2.82430e11 0.0370370
\(730\) 7.44024e11 0.0969693
\(731\) 3.49094e12 0.452182
\(732\) −2.58682e12 −0.333017
\(733\) −9.41048e12 −1.20405 −0.602024 0.798478i \(-0.705639\pi\)
−0.602024 + 0.798478i \(0.705639\pi\)
\(734\) −1.04803e12 −0.133273
\(735\) 2.04289e12 0.258197
\(736\) −1.96759e13 −2.47163
\(737\) 1.01765e13 1.27056
\(738\) 2.22348e11 0.0275917
\(739\) −1.39316e12 −0.171831 −0.0859157 0.996302i \(-0.527382\pi\)
−0.0859157 + 0.996302i \(0.527382\pi\)
\(740\) 3.36786e12 0.412868
\(741\) −8.44400e11 −0.102888
\(742\) 2.43851e10 0.00295330
\(743\) 1.50796e13 1.81526 0.907630 0.419771i \(-0.137890\pi\)
0.907630 + 0.419771i \(0.137890\pi\)
\(744\) −6.84747e11 −0.0819317
\(745\) 1.04343e12 0.124097
\(746\) 7.74593e12 0.915691
\(747\) −1.93037e12 −0.226828
\(748\) 4.14729e12 0.484403
\(749\) −2.57860e10 −0.00299375
\(750\) 6.54866e11 0.0755747
\(751\) −3.73380e12 −0.428323 −0.214162 0.976798i \(-0.568702\pi\)
−0.214162 + 0.976798i \(0.568702\pi\)
\(752\) −7.10732e12 −0.810449
\(753\) 6.58327e12 0.746216
\(754\) −9.85132e11 −0.111000
\(755\) −3.52864e11 −0.0395226
\(756\) −5.29185e9 −0.000589196 0
\(757\) 3.93471e11 0.0435493 0.0217747 0.999763i \(-0.493068\pi\)
0.0217747 + 0.999763i \(0.493068\pi\)
\(758\) 2.88692e12 0.317631
\(759\) −7.19576e12 −0.787025
\(760\) 1.95863e11 0.0212957
\(761\) 7.63945e12 0.825717 0.412858 0.910795i \(-0.364530\pi\)
0.412858 + 0.910795i \(0.364530\pi\)
\(762\) 1.02880e13 1.10543
\(763\) −6.80867e9 −0.000727280 0
\(764\) 1.71204e13 1.81800
\(765\) −7.57433e11 −0.0799591
\(766\) 1.99458e13 2.09325
\(767\) −1.11446e13 −1.16275
\(768\) −3.66961e12 −0.380622
\(769\) 3.42360e12 0.353033 0.176516 0.984298i \(-0.443517\pi\)
0.176516 + 0.984298i \(0.443517\pi\)
\(770\) 1.35391e10 0.00138797
\(771\) 9.06546e12 0.923943
\(772\) 3.57130e12 0.361867
\(773\) −1.88667e12 −0.190059 −0.0950293 0.995474i \(-0.530294\pi\)
−0.0950293 + 0.995474i \(0.530294\pi\)
\(774\) 4.10625e12 0.411255
\(775\) −1.37324e12 −0.136738
\(776\) 6.04669e11 0.0598604
\(777\) −1.27166e10 −0.00125163
\(778\) 3.74813e12 0.366781
\(779\) 1.33367e11 0.0129757
\(780\) 2.36747e12 0.229012
\(781\) 4.32487e12 0.415952
\(782\) −1.41486e13 −1.35295
\(783\) 1.97639e11 0.0187908
\(784\) 8.86529e12 0.838051
\(785\) 4.98305e12 0.468362
\(786\) 7.83472e12 0.732187
\(787\) −1.12024e11 −0.0104094 −0.00520469 0.999986i \(-0.501657\pi\)
−0.00520469 + 0.999986i \(0.501657\pi\)
\(788\) 3.91566e12 0.361774
\(789\) −7.53404e12 −0.692120
\(790\) −8.69312e12 −0.794061
\(791\) −2.55682e10 −0.00232223
\(792\) 6.05938e11 0.0547223
\(793\) −4.36978e12 −0.392401
\(794\) −7.71771e12 −0.689122
\(795\) 2.18867e12 0.194325
\(796\) 1.58501e13 1.39934
\(797\) −1.56209e13 −1.37134 −0.685668 0.727914i \(-0.740490\pi\)
−0.685668 + 0.727914i \(0.740490\pi\)
\(798\) −5.95400e9 −0.000519751 0
\(799\) −5.97567e12 −0.518712
\(800\) 3.32279e12 0.286812
\(801\) −7.66559e12 −0.657960
\(802\) 3.12130e12 0.266411
\(803\) 1.38064e12 0.117182
\(804\) 1.25475e13 1.05902
\(805\) −2.46237e10 −0.00206668
\(806\) −9.31242e12 −0.777240
\(807\) −1.23311e12 −0.102346
\(808\) 2.29718e12 0.189603
\(809\) −1.10907e13 −0.910317 −0.455158 0.890411i \(-0.650417\pi\)
−0.455158 + 0.890411i \(0.650417\pi\)
\(810\) −8.90938e11 −0.0727218
\(811\) 1.33620e13 1.08462 0.542309 0.840179i \(-0.317550\pi\)
0.542309 + 0.840179i \(0.317550\pi\)
\(812\) −3.70315e9 −0.000298929 0
\(813\) −1.00387e13 −0.805878
\(814\) 1.17228e13 0.935881
\(815\) −1.37009e12 −0.108778
\(816\) −3.28695e12 −0.259530
\(817\) 2.46299e12 0.193403
\(818\) −1.39815e13 −1.09186
\(819\) −8.93925e9 −0.000694262 0
\(820\) −3.73926e11 −0.0288818
\(821\) 2.87412e12 0.220780 0.110390 0.993888i \(-0.464790\pi\)
0.110390 + 0.993888i \(0.464790\pi\)
\(822\) −2.07664e13 −1.58650
\(823\) 1.70469e13 1.29523 0.647613 0.761969i \(-0.275767\pi\)
0.647613 + 0.761969i \(0.275767\pi\)
\(824\) −1.50301e12 −0.113577
\(825\) 1.21519e12 0.0913275
\(826\) −7.85822e10 −0.00587373
\(827\) 1.64480e13 1.22275 0.611376 0.791341i \(-0.290616\pi\)
0.611376 + 0.791341i \(0.290616\pi\)
\(828\) −8.87223e12 −0.655989
\(829\) 7.33681e12 0.539526 0.269763 0.962927i \(-0.413055\pi\)
0.269763 + 0.962927i \(0.413055\pi\)
\(830\) 6.08944e12 0.445375
\(831\) 5.72447e12 0.416419
\(832\) 1.35352e13 0.979290
\(833\) 7.45373e12 0.536378
\(834\) 5.87184e12 0.420268
\(835\) 4.60301e12 0.327682
\(836\) 2.92607e12 0.207184
\(837\) 1.86828e12 0.131576
\(838\) −8.70623e12 −0.609862
\(839\) −4.79559e12 −0.334128 −0.167064 0.985946i \(-0.553429\pi\)
−0.167064 + 0.985946i \(0.553429\pi\)
\(840\) 2.07351e9 0.000143697 0
\(841\) −1.43688e13 −0.990466
\(842\) −8.02837e12 −0.550457
\(843\) −1.06154e13 −0.723958
\(844\) −2.00759e13 −1.36187
\(845\) −2.62857e12 −0.177363
\(846\) −7.02894e12 −0.471762
\(847\) −1.50385e10 −0.00100399
\(848\) 9.49794e12 0.630737
\(849\) −1.70844e12 −0.112854
\(850\) 2.38936e12 0.156999
\(851\) −2.13204e13 −1.39352
\(852\) 5.33248e12 0.346698
\(853\) 1.40453e13 0.908367 0.454183 0.890908i \(-0.349931\pi\)
0.454183 + 0.890908i \(0.349931\pi\)
\(854\) −3.08120e10 −0.00198225
\(855\) −5.34398e11 −0.0341993
\(856\) 3.64050e12 0.231755
\(857\) 2.65416e13 1.68079 0.840394 0.541976i \(-0.182324\pi\)
0.840394 + 0.541976i \(0.182324\pi\)
\(858\) 8.24063e12 0.519120
\(859\) 1.49667e13 0.937903 0.468951 0.883224i \(-0.344632\pi\)
0.468951 + 0.883224i \(0.344632\pi\)
\(860\) −6.90555e12 −0.430482
\(861\) 1.41189e9 8.75565e−5 0
\(862\) 2.45385e12 0.151379
\(863\) −1.24632e13 −0.764858 −0.382429 0.923985i \(-0.624912\pi\)
−0.382429 + 0.923985i \(0.624912\pi\)
\(864\) −4.52061e12 −0.275985
\(865\) −1.27597e13 −0.774938
\(866\) 1.16188e13 0.701989
\(867\) 6.84203e12 0.411243
\(868\) −3.50057e10 −0.00209315
\(869\) −1.61313e13 −0.959575
\(870\) −6.23463e11 −0.0368955
\(871\) 2.11958e13 1.24787
\(872\) 9.61256e11 0.0563008
\(873\) −1.64979e12 −0.0961314
\(874\) −9.98237e12 −0.578672
\(875\) 4.15836e9 0.000239820 0
\(876\) 1.70230e12 0.0976713
\(877\) −6.70365e12 −0.382660 −0.191330 0.981526i \(-0.561280\pi\)
−0.191330 + 0.981526i \(0.561280\pi\)
\(878\) −1.50337e13 −0.853772
\(879\) 4.44814e12 0.251321
\(880\) 5.27343e12 0.296429
\(881\) −2.22555e13 −1.24464 −0.622322 0.782761i \(-0.713811\pi\)
−0.622322 + 0.782761i \(0.713811\pi\)
\(882\) 8.76752e12 0.487829
\(883\) −3.00571e13 −1.66389 −0.831944 0.554859i \(-0.812772\pi\)
−0.831944 + 0.554859i \(0.812772\pi\)
\(884\) 8.63801e12 0.475750
\(885\) −7.05310e12 −0.386487
\(886\) −3.07613e13 −1.67708
\(887\) −2.69460e13 −1.46163 −0.730816 0.682574i \(-0.760860\pi\)
−0.730816 + 0.682574i \(0.760860\pi\)
\(888\) 1.79534e12 0.0968922
\(889\) 6.53280e10 0.00350785
\(890\) 2.41815e13 1.29190
\(891\) −1.65325e12 −0.0878800
\(892\) −3.62964e13 −1.91965
\(893\) −4.21606e12 −0.221858
\(894\) 4.47813e12 0.234465
\(895\) −1.73299e12 −0.0902801
\(896\) 2.12579e10 0.00110188
\(897\) −1.49874e13 −0.772966
\(898\) 6.87581e12 0.352842
\(899\) 1.30739e12 0.0667554
\(900\) 1.49831e12 0.0761219
\(901\) 7.98565e12 0.403691
\(902\) −1.30155e12 −0.0654686
\(903\) 2.60744e10 0.00130503
\(904\) 3.60975e12 0.179771
\(905\) 1.34552e13 0.666761
\(906\) −1.51440e12 −0.0746728
\(907\) −9.12004e12 −0.447470 −0.223735 0.974650i \(-0.571825\pi\)
−0.223735 + 0.974650i \(0.571825\pi\)
\(908\) −1.14838e13 −0.560661
\(909\) −6.26769e12 −0.304488
\(910\) 2.81993e10 0.00136318
\(911\) 1.96010e13 0.942855 0.471427 0.881905i \(-0.343739\pi\)
0.471427 + 0.881905i \(0.343739\pi\)
\(912\) −2.31907e12 −0.111003
\(913\) 1.12998e13 0.538209
\(914\) −1.74462e13 −0.826883
\(915\) −2.76551e12 −0.130431
\(916\) 3.21031e13 1.50667
\(917\) 4.97500e10 0.00232344
\(918\) −3.25070e12 −0.151072
\(919\) 6.11131e12 0.282628 0.141314 0.989965i \(-0.454867\pi\)
0.141314 + 0.989965i \(0.454867\pi\)
\(920\) 3.47641e12 0.159987
\(921\) −6.17964e12 −0.283006
\(922\) −3.07982e13 −1.40358
\(923\) 9.00788e12 0.408521
\(924\) 3.09768e10 0.00139802
\(925\) 3.60051e12 0.161706
\(926\) −5.17283e13 −2.31195
\(927\) 4.10084e12 0.182395
\(928\) −3.16345e12 −0.140021
\(929\) −3.35624e13 −1.47837 −0.739183 0.673504i \(-0.764788\pi\)
−0.739183 + 0.673504i \(0.764788\pi\)
\(930\) −5.89357e12 −0.258348
\(931\) 5.25888e12 0.229414
\(932\) −2.02480e13 −0.879042
\(933\) 3.15416e12 0.136275
\(934\) −1.56341e13 −0.672221
\(935\) 4.43377e12 0.189724
\(936\) 1.26205e12 0.0537448
\(937\) −1.78191e13 −0.755194 −0.377597 0.925970i \(-0.623249\pi\)
−0.377597 + 0.925970i \(0.623249\pi\)
\(938\) 1.49455e11 0.00630372
\(939\) −2.01747e13 −0.846860
\(940\) 1.18207e13 0.493819
\(941\) −3.04959e13 −1.26791 −0.633954 0.773370i \(-0.718569\pi\)
−0.633954 + 0.773370i \(0.718569\pi\)
\(942\) 2.13859e13 0.884908
\(943\) 2.36716e12 0.0974821
\(944\) −3.06075e13 −1.25445
\(945\) −5.65740e9 −0.000230767 0
\(946\) −2.40367e13 −0.975808
\(947\) 2.14194e13 0.865430 0.432715 0.901531i \(-0.357556\pi\)
0.432715 + 0.901531i \(0.357556\pi\)
\(948\) −1.98895e13 −0.799810
\(949\) 2.87560e12 0.115088
\(950\) 1.68578e12 0.0671499
\(951\) 4.02765e12 0.159676
\(952\) 7.56545e9 0.000298516 0
\(953\) −4.05601e13 −1.59287 −0.796435 0.604724i \(-0.793283\pi\)
−0.796435 + 0.604724i \(0.793283\pi\)
\(954\) 9.39319e12 0.367152
\(955\) 1.83030e13 0.712046
\(956\) −4.98334e12 −0.192957
\(957\) −1.15692e12 −0.0445861
\(958\) −4.35317e13 −1.66979
\(959\) −1.31866e11 −0.00503440
\(960\) 8.56608e12 0.325508
\(961\) −1.40809e13 −0.532569
\(962\) 2.44163e13 0.919162
\(963\) −9.93282e12 −0.372181
\(964\) 6.08120e13 2.26800
\(965\) 3.81800e12 0.141731
\(966\) −1.05678e11 −0.00390471
\(967\) 2.00201e12 0.0736288 0.0368144 0.999322i \(-0.488279\pi\)
0.0368144 + 0.999322i \(0.488279\pi\)
\(968\) 2.12316e12 0.0777218
\(969\) −1.94982e12 −0.0710455
\(970\) 5.20435e12 0.188753
\(971\) −5.10256e13 −1.84205 −0.921026 0.389502i \(-0.872647\pi\)
−0.921026 + 0.389502i \(0.872647\pi\)
\(972\) −2.03843e12 −0.0732483
\(973\) 3.72858e10 0.00133363
\(974\) −7.65339e13 −2.72482
\(975\) 2.53101e12 0.0896960
\(976\) −1.20012e13 −0.423350
\(977\) −5.47823e13 −1.92360 −0.961800 0.273753i \(-0.911735\pi\)
−0.961800 + 0.273753i \(0.911735\pi\)
\(978\) −5.88006e12 −0.205521
\(979\) 4.48720e13 1.56118
\(980\) −1.47445e13 −0.510637
\(981\) −2.62271e12 −0.0904149
\(982\) 6.29769e13 2.16112
\(983\) 3.88250e13 1.32624 0.663118 0.748515i \(-0.269233\pi\)
0.663118 + 0.748515i \(0.269233\pi\)
\(984\) −1.99333e11 −0.00677799
\(985\) 4.18615e12 0.141694
\(986\) −2.27478e12 −0.0766467
\(987\) −4.46333e10 −0.00149704
\(988\) 6.09444e12 0.203483
\(989\) 4.37160e13 1.45297
\(990\) 5.21527e12 0.172551
\(991\) −3.30103e13 −1.08722 −0.543610 0.839338i \(-0.682943\pi\)
−0.543610 + 0.839338i \(0.682943\pi\)
\(992\) −2.99040e13 −0.980452
\(993\) 2.24734e13 0.733495
\(994\) 6.35159e10 0.00206369
\(995\) 1.69449e13 0.548070
\(996\) 1.39324e13 0.448599
\(997\) 6.02031e13 1.92971 0.964853 0.262791i \(-0.0846431\pi\)
0.964853 + 0.262791i \(0.0846431\pi\)
\(998\) −7.50393e13 −2.39442
\(999\) −4.89845e12 −0.155602
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.10.a.h.1.3 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.10.a.h.1.3 15 1.1 even 1 trivial