Properties

Label 285.10.a.h.1.2
Level $285$
Weight $10$
Character 285.1
Self dual yes
Analytic conductor $146.785$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.785213307\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 2 x^{14} - 6356 x^{13} + 18436 x^{12} + 15858707 x^{11} - 49616078 x^{10} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{6}\cdot 5^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(35.4527\) of defining polynomial
Character \(\chi\) \(=\) 285.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-36.4527 q^{2} -81.0000 q^{3} +816.797 q^{4} +625.000 q^{5} +2952.67 q^{6} -11814.3 q^{7} -11110.7 q^{8} +6561.00 q^{9} +O(q^{10})\) \(q-36.4527 q^{2} -81.0000 q^{3} +816.797 q^{4} +625.000 q^{5} +2952.67 q^{6} -11814.3 q^{7} -11110.7 q^{8} +6561.00 q^{9} -22782.9 q^{10} +95589.9 q^{11} -66160.6 q^{12} -16869.7 q^{13} +430665. q^{14} -50625.0 q^{15} -13186.5 q^{16} +183092. q^{17} -239166. q^{18} -130321. q^{19} +510498. q^{20} +956962. q^{21} -3.48451e6 q^{22} +1.48749e6 q^{23} +899964. q^{24} +390625. q^{25} +614947. q^{26} -531441. q^{27} -9.64993e6 q^{28} -333392. q^{29} +1.84542e6 q^{30} +3.14101e6 q^{31} +6.16935e6 q^{32} -7.74278e6 q^{33} -6.67419e6 q^{34} -7.38397e6 q^{35} +5.35901e6 q^{36} -3.83858e6 q^{37} +4.75055e6 q^{38} +1.36645e6 q^{39} -6.94417e6 q^{40} +3.26699e7 q^{41} -3.48838e7 q^{42} -5.89049e6 q^{43} +7.80775e7 q^{44} +4.10062e6 q^{45} -5.42230e7 q^{46} +3.30808e7 q^{47} +1.06811e6 q^{48} +9.92252e7 q^{49} -1.42393e7 q^{50} -1.48305e7 q^{51} -1.37792e7 q^{52} +2.12523e7 q^{53} +1.93724e7 q^{54} +5.97437e7 q^{55} +1.31265e8 q^{56} +1.05560e7 q^{57} +1.21530e7 q^{58} +6.11382e7 q^{59} -4.13504e7 q^{60} +7.35751e7 q^{61} -1.14498e8 q^{62} -7.75139e7 q^{63} -2.18138e8 q^{64} -1.05436e7 q^{65} +2.82245e8 q^{66} -1.46320e8 q^{67} +1.49549e8 q^{68} -1.20487e8 q^{69} +2.69165e8 q^{70} -1.26674e7 q^{71} -7.28971e7 q^{72} -2.02563e8 q^{73} +1.39927e8 q^{74} -3.16406e7 q^{75} -1.06446e8 q^{76} -1.12933e9 q^{77} -4.98107e7 q^{78} -3.71959e7 q^{79} -8.24158e6 q^{80} +4.30467e7 q^{81} -1.19091e9 q^{82} +4.23153e8 q^{83} +7.81644e8 q^{84} +1.14433e8 q^{85} +2.14724e8 q^{86} +2.70047e7 q^{87} -1.06207e9 q^{88} -8.04541e8 q^{89} -1.49479e8 q^{90} +1.99305e8 q^{91} +1.21498e9 q^{92} -2.54422e8 q^{93} -1.20589e9 q^{94} -8.14506e7 q^{95} -4.99717e8 q^{96} -8.98574e8 q^{97} -3.61702e9 q^{98} +6.27165e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9} - 10625 q^{10} + 138230 q^{11} - 409455 q^{12} - 176712 q^{13} - 555994 q^{14} - 759375 q^{15} + 1695731 q^{16} - 274992 q^{17} - 111537 q^{18} - 1954815 q^{19} + 3159375 q^{20} - 109512 q^{21} - 1031106 q^{22} + 1714212 q^{23} + 291357 q^{24} + 5859375 q^{25} + 9500004 q^{26} - 7971615 q^{27} + 14545598 q^{28} + 1754340 q^{29} + 860625 q^{30} + 8442914 q^{31} + 35638859 q^{32} - 11196630 q^{33} + 47218266 q^{34} + 845000 q^{35} + 33165855 q^{36} + 2956096 q^{37} + 2215457 q^{38} + 14313672 q^{39} - 2248125 q^{40} - 38550502 q^{41} + 45035514 q^{42} + 50753570 q^{43} + 212125630 q^{44} + 61509375 q^{45} - 117130008 q^{46} - 40252876 q^{47} - 137354211 q^{48} + 110123035 q^{49} - 6640625 q^{50} + 22274352 q^{51} - 87136648 q^{52} + 65532542 q^{53} + 9034497 q^{54} + 86393750 q^{55} - 377288898 q^{56} + 158340015 q^{57} + 211630876 q^{58} + 175407418 q^{59} - 255909375 q^{60} + 151231854 q^{61} - 30983940 q^{62} + 8870472 q^{63} + 836879575 q^{64} - 110445000 q^{65} + 83519586 q^{66} + 40009476 q^{67} - 124850430 q^{68} - 138851172 q^{69} - 347496250 q^{70} + 87578500 q^{71} - 23599917 q^{72} - 360657638 q^{73} + 1373397084 q^{74} - 474609375 q^{75} - 658772655 q^{76} - 304618172 q^{77} - 769500324 q^{78} + 205798286 q^{79} + 1059831875 q^{80} + 645700815 q^{81} - 2327138772 q^{82} - 63321462 q^{83} - 1178193438 q^{84} - 171870000 q^{85} - 848405762 q^{86} - 142101540 q^{87} - 3211126502 q^{88} - 381069174 q^{89} - 69710625 q^{90} + 1476892872 q^{91} - 2382818588 q^{92} - 683876034 q^{93} - 5137318040 q^{94} - 1221759375 q^{95} - 2886747579 q^{96} - 3915268828 q^{97} - 8273557437 q^{98} + 906927030 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −36.4527 −1.61100 −0.805498 0.592599i \(-0.798102\pi\)
−0.805498 + 0.592599i \(0.798102\pi\)
\(3\) −81.0000 −0.577350
\(4\) 816.797 1.59531
\(5\) 625.000 0.447214
\(6\) 2952.67 0.930109
\(7\) −11814.3 −1.85981 −0.929905 0.367800i \(-0.880111\pi\)
−0.929905 + 0.367800i \(0.880111\pi\)
\(8\) −11110.7 −0.959037
\(9\) 6561.00 0.333333
\(10\) −22782.9 −0.720459
\(11\) 95589.9 1.96854 0.984271 0.176664i \(-0.0565306\pi\)
0.984271 + 0.176664i \(0.0565306\pi\)
\(12\) −66160.6 −0.921051
\(13\) −16869.7 −0.163819 −0.0819093 0.996640i \(-0.526102\pi\)
−0.0819093 + 0.996640i \(0.526102\pi\)
\(14\) 430665. 2.99615
\(15\) −50625.0 −0.258199
\(16\) −13186.5 −0.0503026
\(17\) 183092. 0.531679 0.265839 0.964017i \(-0.414351\pi\)
0.265839 + 0.964017i \(0.414351\pi\)
\(18\) −239166. −0.536999
\(19\) −130321. −0.229416
\(20\) 510498. 0.713443
\(21\) 956962. 1.07376
\(22\) −3.48451e6 −3.17131
\(23\) 1.48749e6 1.10835 0.554177 0.832399i \(-0.313033\pi\)
0.554177 + 0.832399i \(0.313033\pi\)
\(24\) 899964. 0.553700
\(25\) 390625. 0.200000
\(26\) 614947. 0.263911
\(27\) −531441. −0.192450
\(28\) −9.64993e6 −2.96697
\(29\) −333392. −0.0875314 −0.0437657 0.999042i \(-0.513936\pi\)
−0.0437657 + 0.999042i \(0.513936\pi\)
\(30\) 1.84542e6 0.415957
\(31\) 3.14101e6 0.610860 0.305430 0.952215i \(-0.401200\pi\)
0.305430 + 0.952215i \(0.401200\pi\)
\(32\) 6.16935e6 1.04007
\(33\) −7.74278e6 −1.13654
\(34\) −6.67419e6 −0.856532
\(35\) −7.38397e6 −0.831732
\(36\) 5.35901e6 0.531769
\(37\) −3.83858e6 −0.336716 −0.168358 0.985726i \(-0.553846\pi\)
−0.168358 + 0.985726i \(0.553846\pi\)
\(38\) 4.75055e6 0.369588
\(39\) 1.36645e6 0.0945808
\(40\) −6.94417e6 −0.428894
\(41\) 3.26699e7 1.80560 0.902798 0.430065i \(-0.141509\pi\)
0.902798 + 0.430065i \(0.141509\pi\)
\(42\) −3.48838e7 −1.72983
\(43\) −5.89049e6 −0.262751 −0.131375 0.991333i \(-0.541939\pi\)
−0.131375 + 0.991333i \(0.541939\pi\)
\(44\) 7.80775e7 3.14043
\(45\) 4.10062e6 0.149071
\(46\) −5.42230e7 −1.78555
\(47\) 3.30808e7 0.988863 0.494432 0.869217i \(-0.335376\pi\)
0.494432 + 0.869217i \(0.335376\pi\)
\(48\) 1.06811e6 0.0290422
\(49\) 9.92252e7 2.45889
\(50\) −1.42393e7 −0.322199
\(51\) −1.48305e7 −0.306965
\(52\) −1.37792e7 −0.261341
\(53\) 2.12523e7 0.369969 0.184984 0.982741i \(-0.440777\pi\)
0.184984 + 0.982741i \(0.440777\pi\)
\(54\) 1.93724e7 0.310036
\(55\) 5.97437e7 0.880359
\(56\) 1.31265e8 1.78363
\(57\) 1.05560e7 0.132453
\(58\) 1.21530e7 0.141013
\(59\) 6.11382e7 0.656869 0.328434 0.944527i \(-0.393479\pi\)
0.328434 + 0.944527i \(0.393479\pi\)
\(60\) −4.13504e7 −0.411906
\(61\) 7.35751e7 0.680372 0.340186 0.940358i \(-0.389510\pi\)
0.340186 + 0.940358i \(0.389510\pi\)
\(62\) −1.14498e8 −0.984093
\(63\) −7.75139e7 −0.619937
\(64\) −2.18138e8 −1.62525
\(65\) −1.05436e7 −0.0732619
\(66\) 2.82245e8 1.83096
\(67\) −1.46320e8 −0.887088 −0.443544 0.896253i \(-0.646279\pi\)
−0.443544 + 0.896253i \(0.646279\pi\)
\(68\) 1.49549e8 0.848191
\(69\) −1.20487e8 −0.639909
\(70\) 2.69165e8 1.33992
\(71\) −1.26674e7 −0.0591596 −0.0295798 0.999562i \(-0.509417\pi\)
−0.0295798 + 0.999562i \(0.509417\pi\)
\(72\) −7.28971e7 −0.319679
\(73\) −2.02563e8 −0.834848 −0.417424 0.908712i \(-0.637067\pi\)
−0.417424 + 0.908712i \(0.637067\pi\)
\(74\) 1.39927e8 0.542447
\(75\) −3.16406e7 −0.115470
\(76\) −1.06446e8 −0.365989
\(77\) −1.12933e9 −3.66111
\(78\) −4.98107e7 −0.152369
\(79\) −3.71959e7 −0.107442 −0.0537208 0.998556i \(-0.517108\pi\)
−0.0537208 + 0.998556i \(0.517108\pi\)
\(80\) −8.24158e6 −0.0224960
\(81\) 4.30467e7 0.111111
\(82\) −1.19091e9 −2.90881
\(83\) 4.23153e8 0.978691 0.489345 0.872090i \(-0.337236\pi\)
0.489345 + 0.872090i \(0.337236\pi\)
\(84\) 7.81644e8 1.71298
\(85\) 1.14433e8 0.237774
\(86\) 2.14724e8 0.423290
\(87\) 2.70047e7 0.0505363
\(88\) −1.06207e9 −1.88790
\(89\) −8.04541e8 −1.35923 −0.679615 0.733569i \(-0.737853\pi\)
−0.679615 + 0.733569i \(0.737853\pi\)
\(90\) −1.49479e8 −0.240153
\(91\) 1.99305e8 0.304672
\(92\) 1.21498e9 1.76817
\(93\) −2.54422e8 −0.352680
\(94\) −1.20589e9 −1.59305
\(95\) −8.14506e7 −0.102598
\(96\) −4.99717e8 −0.600487
\(97\) −8.98574e8 −1.03058 −0.515289 0.857016i \(-0.672315\pi\)
−0.515289 + 0.857016i \(0.672315\pi\)
\(98\) −3.61702e9 −3.96127
\(99\) 6.27165e8 0.656181
\(100\) 3.19061e8 0.319061
\(101\) −2.00161e9 −1.91397 −0.956983 0.290145i \(-0.906296\pi\)
−0.956983 + 0.290145i \(0.906296\pi\)
\(102\) 5.40610e8 0.494519
\(103\) −9.67875e8 −0.847329 −0.423664 0.905819i \(-0.639256\pi\)
−0.423664 + 0.905819i \(0.639256\pi\)
\(104\) 1.87434e8 0.157108
\(105\) 5.98101e8 0.480201
\(106\) −7.74703e8 −0.596018
\(107\) −2.09963e8 −0.154852 −0.0774259 0.996998i \(-0.524670\pi\)
−0.0774259 + 0.996998i \(0.524670\pi\)
\(108\) −4.34080e8 −0.307017
\(109\) 2.42438e9 1.64506 0.822530 0.568722i \(-0.192562\pi\)
0.822530 + 0.568722i \(0.192562\pi\)
\(110\) −2.17782e9 −1.41825
\(111\) 3.10925e8 0.194403
\(112\) 1.55790e8 0.0935533
\(113\) −7.93268e8 −0.457685 −0.228843 0.973463i \(-0.573494\pi\)
−0.228843 + 0.973463i \(0.573494\pi\)
\(114\) −3.84794e8 −0.213382
\(115\) 9.29681e8 0.495671
\(116\) −2.72314e8 −0.139640
\(117\) −1.10682e8 −0.0546062
\(118\) −2.22865e9 −1.05821
\(119\) −2.16311e9 −0.988821
\(120\) 5.62478e8 0.247622
\(121\) 6.77948e9 2.87516
\(122\) −2.68201e9 −1.09608
\(123\) −2.64626e9 −1.04246
\(124\) 2.56557e9 0.974509
\(125\) 2.44141e8 0.0894427
\(126\) 2.82559e9 0.998715
\(127\) −5.57932e9 −1.90311 −0.951557 0.307473i \(-0.900516\pi\)
−0.951557 + 0.307473i \(0.900516\pi\)
\(128\) 4.79300e9 1.57820
\(129\) 4.77130e8 0.151699
\(130\) 3.84342e8 0.118025
\(131\) 1.83158e9 0.543382 0.271691 0.962385i \(-0.412417\pi\)
0.271691 + 0.962385i \(0.412417\pi\)
\(132\) −6.32428e9 −1.81313
\(133\) 1.53966e9 0.426670
\(134\) 5.33375e9 1.42910
\(135\) −3.32151e8 −0.0860663
\(136\) −2.03428e9 −0.509900
\(137\) 6.06976e9 1.47207 0.736036 0.676942i \(-0.236695\pi\)
0.736036 + 0.676942i \(0.236695\pi\)
\(138\) 4.39206e9 1.03089
\(139\) 1.77154e9 0.402518 0.201259 0.979538i \(-0.435497\pi\)
0.201259 + 0.979538i \(0.435497\pi\)
\(140\) −6.03120e9 −1.32687
\(141\) −2.67955e9 −0.570920
\(142\) 4.61761e8 0.0953058
\(143\) −1.61258e9 −0.322484
\(144\) −8.65168e7 −0.0167675
\(145\) −2.08370e8 −0.0391452
\(146\) 7.38396e9 1.34494
\(147\) −8.03724e9 −1.41964
\(148\) −3.13534e9 −0.537165
\(149\) −5.52837e9 −0.918881 −0.459440 0.888209i \(-0.651950\pi\)
−0.459440 + 0.888209i \(0.651950\pi\)
\(150\) 1.15339e9 0.186022
\(151\) −3.54304e9 −0.554600 −0.277300 0.960783i \(-0.589440\pi\)
−0.277300 + 0.960783i \(0.589440\pi\)
\(152\) 1.44795e9 0.220018
\(153\) 1.20127e9 0.177226
\(154\) 4.11672e10 5.89804
\(155\) 1.96313e9 0.273185
\(156\) 1.11611e9 0.150885
\(157\) −9.11253e9 −1.19699 −0.598495 0.801127i \(-0.704234\pi\)
−0.598495 + 0.801127i \(0.704234\pi\)
\(158\) 1.35589e9 0.173088
\(159\) −1.72144e9 −0.213601
\(160\) 3.85584e9 0.465135
\(161\) −1.75737e10 −2.06133
\(162\) −1.56917e9 −0.179000
\(163\) 9.95252e9 1.10430 0.552152 0.833743i \(-0.313807\pi\)
0.552152 + 0.833743i \(0.313807\pi\)
\(164\) 2.66847e10 2.88048
\(165\) −4.83924e9 −0.508275
\(166\) −1.54250e10 −1.57667
\(167\) 3.44151e9 0.342393 0.171196 0.985237i \(-0.445237\pi\)
0.171196 + 0.985237i \(0.445237\pi\)
\(168\) −1.06325e10 −1.02978
\(169\) −1.03199e10 −0.973163
\(170\) −4.17137e9 −0.383053
\(171\) −8.55036e8 −0.0764719
\(172\) −4.81134e9 −0.419168
\(173\) −1.01528e10 −0.861740 −0.430870 0.902414i \(-0.641793\pi\)
−0.430870 + 0.902414i \(0.641793\pi\)
\(174\) −9.84395e8 −0.0814138
\(175\) −4.61498e9 −0.371962
\(176\) −1.26050e9 −0.0990228
\(177\) −4.95219e9 −0.379243
\(178\) 2.93277e10 2.18971
\(179\) −2.04080e9 −0.148580 −0.0742902 0.997237i \(-0.523669\pi\)
−0.0742902 + 0.997237i \(0.523669\pi\)
\(180\) 3.34938e9 0.237814
\(181\) 2.27691e10 1.57686 0.788429 0.615125i \(-0.210895\pi\)
0.788429 + 0.615125i \(0.210895\pi\)
\(182\) −7.26520e9 −0.490825
\(183\) −5.95958e9 −0.392813
\(184\) −1.65270e10 −1.06295
\(185\) −2.39911e9 −0.150584
\(186\) 9.27435e9 0.568166
\(187\) 1.75017e10 1.04663
\(188\) 2.70203e10 1.57754
\(189\) 6.27863e9 0.357921
\(190\) 2.96909e9 0.165285
\(191\) −8.58891e9 −0.466969 −0.233484 0.972361i \(-0.575013\pi\)
−0.233484 + 0.972361i \(0.575013\pi\)
\(192\) 1.76692e10 0.938340
\(193\) 8.46339e9 0.439073 0.219536 0.975604i \(-0.429546\pi\)
0.219536 + 0.975604i \(0.429546\pi\)
\(194\) 3.27554e10 1.66026
\(195\) 8.54031e8 0.0422978
\(196\) 8.10469e10 3.92269
\(197\) 2.39929e10 1.13497 0.567485 0.823384i \(-0.307917\pi\)
0.567485 + 0.823384i \(0.307917\pi\)
\(198\) −2.28618e10 −1.05710
\(199\) −2.64999e10 −1.19786 −0.598930 0.800802i \(-0.704407\pi\)
−0.598930 + 0.800802i \(0.704407\pi\)
\(200\) −4.34011e9 −0.191807
\(201\) 1.18519e10 0.512161
\(202\) 7.29642e10 3.08339
\(203\) 3.93881e9 0.162792
\(204\) −1.21135e10 −0.489703
\(205\) 2.04187e10 0.807487
\(206\) 3.52816e10 1.36504
\(207\) 9.75942e9 0.369452
\(208\) 2.22453e8 0.00824051
\(209\) −1.24574e10 −0.451615
\(210\) −2.18024e10 −0.773602
\(211\) 1.34998e10 0.468875 0.234438 0.972131i \(-0.424675\pi\)
0.234438 + 0.972131i \(0.424675\pi\)
\(212\) 1.73588e10 0.590213
\(213\) 1.02606e9 0.0341558
\(214\) 7.65372e9 0.249465
\(215\) −3.68156e9 −0.117506
\(216\) 5.90467e9 0.184567
\(217\) −3.71090e10 −1.13608
\(218\) −8.83751e10 −2.65018
\(219\) 1.64076e10 0.482000
\(220\) 4.87985e10 1.40444
\(221\) −3.08872e9 −0.0870989
\(222\) −1.13341e10 −0.313182
\(223\) 4.93406e10 1.33608 0.668040 0.744126i \(-0.267134\pi\)
0.668040 + 0.744126i \(0.267134\pi\)
\(224\) −7.28868e10 −1.93434
\(225\) 2.56289e9 0.0666667
\(226\) 2.89168e10 0.737329
\(227\) −6.56397e10 −1.64078 −0.820390 0.571804i \(-0.806244\pi\)
−0.820390 + 0.571804i \(0.806244\pi\)
\(228\) 8.62211e9 0.211304
\(229\) −4.43686e10 −1.06614 −0.533072 0.846070i \(-0.678963\pi\)
−0.533072 + 0.846070i \(0.678963\pi\)
\(230\) −3.38894e10 −0.798524
\(231\) 9.14759e10 2.11375
\(232\) 3.70421e9 0.0839459
\(233\) −1.31162e10 −0.291545 −0.145772 0.989318i \(-0.546567\pi\)
−0.145772 + 0.989318i \(0.546567\pi\)
\(234\) 4.03467e9 0.0879704
\(235\) 2.06755e10 0.442233
\(236\) 4.99375e10 1.04791
\(237\) 3.01287e9 0.0620315
\(238\) 7.88512e10 1.59299
\(239\) 6.36237e10 1.26133 0.630665 0.776056i \(-0.282782\pi\)
0.630665 + 0.776056i \(0.282782\pi\)
\(240\) 6.67568e8 0.0129881
\(241\) 2.02480e10 0.386640 0.193320 0.981136i \(-0.438075\pi\)
0.193320 + 0.981136i \(0.438075\pi\)
\(242\) −2.47130e11 −4.63187
\(243\) −3.48678e9 −0.0641500
\(244\) 6.00959e10 1.08540
\(245\) 6.20158e10 1.09965
\(246\) 9.64633e10 1.67940
\(247\) 2.19848e9 0.0375826
\(248\) −3.48987e10 −0.585837
\(249\) −3.42754e10 −0.565047
\(250\) −8.89958e9 −0.144092
\(251\) 8.40258e10 1.33623 0.668115 0.744058i \(-0.267102\pi\)
0.668115 + 0.744058i \(0.267102\pi\)
\(252\) −6.33132e10 −0.988989
\(253\) 1.42189e11 2.18184
\(254\) 2.03381e11 3.06591
\(255\) −9.26903e9 −0.137279
\(256\) −6.30310e10 −0.917222
\(257\) 1.09762e11 1.56947 0.784737 0.619828i \(-0.212798\pi\)
0.784737 + 0.619828i \(0.212798\pi\)
\(258\) −1.73927e10 −0.244387
\(259\) 4.53504e10 0.626227
\(260\) −8.61198e9 −0.116875
\(261\) −2.18738e9 −0.0291771
\(262\) −6.67660e10 −0.875386
\(263\) 1.62101e10 0.208922 0.104461 0.994529i \(-0.466688\pi\)
0.104461 + 0.994529i \(0.466688\pi\)
\(264\) 8.60275e10 1.08998
\(265\) 1.32827e10 0.165455
\(266\) −5.61246e10 −0.687363
\(267\) 6.51678e10 0.784752
\(268\) −1.19514e11 −1.41518
\(269\) −1.18031e11 −1.37440 −0.687198 0.726470i \(-0.741160\pi\)
−0.687198 + 0.726470i \(0.741160\pi\)
\(270\) 1.21078e10 0.138652
\(271\) −1.46021e11 −1.64457 −0.822285 0.569076i \(-0.807301\pi\)
−0.822285 + 0.569076i \(0.807301\pi\)
\(272\) −2.41435e9 −0.0267448
\(273\) −1.61437e10 −0.175902
\(274\) −2.21259e11 −2.37150
\(275\) 3.73398e10 0.393708
\(276\) −9.84132e10 −1.02085
\(277\) 1.26820e10 0.129428 0.0647139 0.997904i \(-0.479387\pi\)
0.0647139 + 0.997904i \(0.479387\pi\)
\(278\) −6.45774e10 −0.648454
\(279\) 2.06082e10 0.203620
\(280\) 8.20408e10 0.797662
\(281\) 8.00945e10 0.766345 0.383173 0.923677i \(-0.374831\pi\)
0.383173 + 0.923677i \(0.374831\pi\)
\(282\) 9.76767e10 0.919750
\(283\) 1.88164e11 1.74380 0.871901 0.489683i \(-0.162887\pi\)
0.871901 + 0.489683i \(0.162887\pi\)
\(284\) −1.03467e10 −0.0943777
\(285\) 6.59750e9 0.0592349
\(286\) 5.87827e10 0.519520
\(287\) −3.85974e11 −3.35806
\(288\) 4.04771e10 0.346691
\(289\) −8.50652e10 −0.717318
\(290\) 7.59564e9 0.0630628
\(291\) 7.27845e10 0.595005
\(292\) −1.65453e11 −1.33184
\(293\) 2.15272e11 1.70641 0.853205 0.521575i \(-0.174655\pi\)
0.853205 + 0.521575i \(0.174655\pi\)
\(294\) 2.92979e11 2.28704
\(295\) 3.82114e10 0.293761
\(296\) 4.26492e10 0.322923
\(297\) −5.08004e10 −0.378846
\(298\) 2.01524e11 1.48031
\(299\) −2.50936e10 −0.181569
\(300\) −2.58440e10 −0.184210
\(301\) 6.95923e10 0.488666
\(302\) 1.29153e11 0.893458
\(303\) 1.62131e11 1.10503
\(304\) 1.71848e9 0.0115402
\(305\) 4.59844e10 0.304272
\(306\) −4.37894e10 −0.285511
\(307\) −1.40446e11 −0.902375 −0.451187 0.892429i \(-0.648999\pi\)
−0.451187 + 0.892429i \(0.648999\pi\)
\(308\) −9.22435e11 −5.84060
\(309\) 7.83979e10 0.489205
\(310\) −7.15614e10 −0.440100
\(311\) 3.04278e11 1.84437 0.922187 0.386744i \(-0.126400\pi\)
0.922187 + 0.386744i \(0.126400\pi\)
\(312\) −1.51822e10 −0.0907064
\(313\) 3.56788e10 0.210117 0.105058 0.994466i \(-0.466497\pi\)
0.105058 + 0.994466i \(0.466497\pi\)
\(314\) 3.32176e11 1.92834
\(315\) −4.84462e10 −0.277244
\(316\) −3.03815e10 −0.171402
\(317\) 6.23182e10 0.346616 0.173308 0.984868i \(-0.444554\pi\)
0.173308 + 0.984868i \(0.444554\pi\)
\(318\) 6.27510e10 0.344111
\(319\) −3.18689e10 −0.172309
\(320\) −1.36336e11 −0.726835
\(321\) 1.70070e10 0.0894037
\(322\) 6.40609e11 3.32079
\(323\) −2.38607e10 −0.121975
\(324\) 3.51604e10 0.177256
\(325\) −6.58974e9 −0.0327637
\(326\) −3.62796e11 −1.77903
\(327\) −1.96375e11 −0.949775
\(328\) −3.62985e11 −1.73163
\(329\) −3.90829e11 −1.83910
\(330\) 1.76403e11 0.818830
\(331\) 1.92962e11 0.883579 0.441789 0.897119i \(-0.354344\pi\)
0.441789 + 0.897119i \(0.354344\pi\)
\(332\) 3.45630e11 1.56131
\(333\) −2.51849e10 −0.112239
\(334\) −1.25452e11 −0.551593
\(335\) −9.14499e10 −0.396718
\(336\) −1.26190e10 −0.0540130
\(337\) −3.61375e11 −1.52624 −0.763121 0.646255i \(-0.776334\pi\)
−0.763121 + 0.646255i \(0.776334\pi\)
\(338\) 3.76188e11 1.56776
\(339\) 6.42547e10 0.264245
\(340\) 9.34682e10 0.379322
\(341\) 3.00249e11 1.20250
\(342\) 3.11683e10 0.123196
\(343\) −6.95530e11 −2.71326
\(344\) 6.54473e10 0.251988
\(345\) −7.53042e10 −0.286176
\(346\) 3.70095e11 1.38826
\(347\) 3.87461e11 1.43465 0.717324 0.696740i \(-0.245367\pi\)
0.717324 + 0.696740i \(0.245367\pi\)
\(348\) 2.20574e10 0.0806209
\(349\) 9.14403e10 0.329931 0.164965 0.986299i \(-0.447249\pi\)
0.164965 + 0.986299i \(0.447249\pi\)
\(350\) 1.68228e11 0.599229
\(351\) 8.96527e9 0.0315269
\(352\) 5.89727e11 2.04743
\(353\) 2.83578e11 0.972045 0.486023 0.873946i \(-0.338447\pi\)
0.486023 + 0.873946i \(0.338447\pi\)
\(354\) 1.80521e11 0.610959
\(355\) −7.91713e9 −0.0264570
\(356\) −6.57147e11 −2.16839
\(357\) 1.75212e11 0.570896
\(358\) 7.43926e10 0.239362
\(359\) −3.09975e11 −0.984923 −0.492461 0.870334i \(-0.663903\pi\)
−0.492461 + 0.870334i \(0.663903\pi\)
\(360\) −4.55607e10 −0.142965
\(361\) 1.69836e10 0.0526316
\(362\) −8.29995e11 −2.54031
\(363\) −5.49138e11 −1.65997
\(364\) 1.62792e11 0.486045
\(365\) −1.26602e11 −0.373355
\(366\) 2.17243e11 0.632820
\(367\) 1.27018e11 0.365484 0.182742 0.983161i \(-0.441503\pi\)
0.182742 + 0.983161i \(0.441503\pi\)
\(368\) −1.96148e10 −0.0557531
\(369\) 2.14347e11 0.601865
\(370\) 8.74541e10 0.242590
\(371\) −2.51082e11 −0.688071
\(372\) −2.07811e11 −0.562633
\(373\) −1.66747e11 −0.446035 −0.223017 0.974814i \(-0.571591\pi\)
−0.223017 + 0.974814i \(0.571591\pi\)
\(374\) −6.37985e11 −1.68612
\(375\) −1.97754e10 −0.0516398
\(376\) −3.67550e11 −0.948356
\(377\) 5.62424e9 0.0143393
\(378\) −2.28873e11 −0.576609
\(379\) −5.25882e11 −1.30922 −0.654608 0.755968i \(-0.727166\pi\)
−0.654608 + 0.755968i \(0.727166\pi\)
\(380\) −6.65286e10 −0.163675
\(381\) 4.51925e11 1.09876
\(382\) 3.13089e11 0.752285
\(383\) 2.06211e11 0.489685 0.244842 0.969563i \(-0.421264\pi\)
0.244842 + 0.969563i \(0.421264\pi\)
\(384\) −3.88233e11 −0.911174
\(385\) −7.05832e11 −1.63730
\(386\) −3.08513e11 −0.707345
\(387\) −3.86475e10 −0.0875835
\(388\) −7.33953e11 −1.64409
\(389\) 2.31217e10 0.0511972 0.0255986 0.999672i \(-0.491851\pi\)
0.0255986 + 0.999672i \(0.491851\pi\)
\(390\) −3.11317e10 −0.0681416
\(391\) 2.72348e11 0.589289
\(392\) −1.10246e12 −2.35817
\(393\) −1.48358e11 −0.313722
\(394\) −8.74604e11 −1.82843
\(395\) −2.32474e10 −0.0480494
\(396\) 5.12267e11 1.04681
\(397\) −4.48694e11 −0.906553 −0.453277 0.891370i \(-0.649745\pi\)
−0.453277 + 0.891370i \(0.649745\pi\)
\(398\) 9.65993e11 1.92975
\(399\) −1.24712e11 −0.246338
\(400\) −5.15099e9 −0.0100605
\(401\) −3.22219e11 −0.622302 −0.311151 0.950361i \(-0.600714\pi\)
−0.311151 + 0.950361i \(0.600714\pi\)
\(402\) −4.32034e11 −0.825088
\(403\) −5.29880e10 −0.100070
\(404\) −1.63491e12 −3.05336
\(405\) 2.69042e10 0.0496904
\(406\) −1.43580e11 −0.262257
\(407\) −3.66930e11 −0.662839
\(408\) 1.64776e11 0.294391
\(409\) −7.42146e11 −1.31140 −0.655699 0.755022i \(-0.727626\pi\)
−0.655699 + 0.755022i \(0.727626\pi\)
\(410\) −7.44316e11 −1.30086
\(411\) −4.91651e11 −0.849901
\(412\) −7.90558e11 −1.35175
\(413\) −7.22308e11 −1.22165
\(414\) −3.55757e11 −0.595185
\(415\) 2.64470e11 0.437684
\(416\) −1.04075e11 −0.170384
\(417\) −1.43495e11 −0.232394
\(418\) 4.54104e11 0.727549
\(419\) 1.13868e12 1.80484 0.902419 0.430859i \(-0.141789\pi\)
0.902419 + 0.430859i \(0.141789\pi\)
\(420\) 4.88528e11 0.766068
\(421\) 8.92523e11 1.38468 0.692341 0.721570i \(-0.256579\pi\)
0.692341 + 0.721570i \(0.256579\pi\)
\(422\) −4.92105e11 −0.755356
\(423\) 2.17043e11 0.329621
\(424\) −2.36127e11 −0.354813
\(425\) 7.15203e10 0.106336
\(426\) −3.74026e10 −0.0550248
\(427\) −8.69242e11 −1.26536
\(428\) −1.71497e11 −0.247036
\(429\) 1.30619e11 0.186186
\(430\) 1.34203e11 0.189301
\(431\) 4.57772e11 0.639001 0.319501 0.947586i \(-0.396485\pi\)
0.319501 + 0.947586i \(0.396485\pi\)
\(432\) 7.00786e9 0.00968074
\(433\) 1.06478e12 1.45568 0.727838 0.685749i \(-0.240525\pi\)
0.727838 + 0.685749i \(0.240525\pi\)
\(434\) 1.35272e12 1.83023
\(435\) 1.68780e10 0.0226005
\(436\) 1.98023e12 2.62437
\(437\) −1.93851e11 −0.254274
\(438\) −5.98101e11 −0.776499
\(439\) 4.35696e11 0.559877 0.279939 0.960018i \(-0.409686\pi\)
0.279939 + 0.960018i \(0.409686\pi\)
\(440\) −6.63792e11 −0.844297
\(441\) 6.51017e11 0.819631
\(442\) 1.12592e11 0.140316
\(443\) −9.88791e11 −1.21980 −0.609899 0.792479i \(-0.708790\pi\)
−0.609899 + 0.792479i \(0.708790\pi\)
\(444\) 2.53963e11 0.310132
\(445\) −5.02838e11 −0.607866
\(446\) −1.79860e12 −2.15242
\(447\) 4.47798e11 0.530516
\(448\) 2.57715e12 3.02266
\(449\) 1.65503e12 1.92175 0.960877 0.276975i \(-0.0893319\pi\)
0.960877 + 0.276975i \(0.0893319\pi\)
\(450\) −9.34242e10 −0.107400
\(451\) 3.12291e12 3.55439
\(452\) −6.47939e11 −0.730149
\(453\) 2.86986e11 0.320198
\(454\) 2.39274e12 2.64329
\(455\) 1.24566e11 0.136253
\(456\) −1.17284e11 −0.127028
\(457\) 2.23169e11 0.239337 0.119669 0.992814i \(-0.461817\pi\)
0.119669 + 0.992814i \(0.461817\pi\)
\(458\) 1.61735e12 1.71755
\(459\) −9.73026e10 −0.102322
\(460\) 7.59361e11 0.790748
\(461\) −7.10006e11 −0.732163 −0.366082 0.930583i \(-0.619301\pi\)
−0.366082 + 0.930583i \(0.619301\pi\)
\(462\) −3.33454e12 −3.40524
\(463\) 4.63597e11 0.468842 0.234421 0.972135i \(-0.424681\pi\)
0.234421 + 0.972135i \(0.424681\pi\)
\(464\) 4.39628e9 0.00440306
\(465\) −1.59014e11 −0.157723
\(466\) 4.78119e11 0.469677
\(467\) 5.15792e11 0.501821 0.250910 0.968010i \(-0.419270\pi\)
0.250910 + 0.968010i \(0.419270\pi\)
\(468\) −9.04051e10 −0.0871137
\(469\) 1.72867e12 1.64982
\(470\) −7.53678e11 −0.712436
\(471\) 7.38115e11 0.691082
\(472\) −6.79286e11 −0.629961
\(473\) −5.63072e11 −0.517236
\(474\) −1.09827e11 −0.0999325
\(475\) −5.09066e10 −0.0458831
\(476\) −1.76682e12 −1.57747
\(477\) 1.39436e11 0.123323
\(478\) −2.31925e12 −2.03200
\(479\) 1.93993e12 1.68375 0.841873 0.539675i \(-0.181453\pi\)
0.841873 + 0.539675i \(0.181453\pi\)
\(480\) −3.12323e11 −0.268546
\(481\) 6.47559e10 0.0551603
\(482\) −7.38095e11 −0.622875
\(483\) 1.42347e12 1.19011
\(484\) 5.53746e12 4.58676
\(485\) −5.61609e11 −0.460889
\(486\) 1.27103e11 0.103345
\(487\) 1.27218e12 1.02487 0.512434 0.858726i \(-0.328744\pi\)
0.512434 + 0.858726i \(0.328744\pi\)
\(488\) −8.17469e11 −0.652502
\(489\) −8.06154e11 −0.637570
\(490\) −2.26064e12 −1.77153
\(491\) 8.72520e11 0.677499 0.338750 0.940877i \(-0.389996\pi\)
0.338750 + 0.940877i \(0.389996\pi\)
\(492\) −2.16146e12 −1.66305
\(493\) −6.10414e10 −0.0465386
\(494\) −8.01405e10 −0.0605454
\(495\) 3.91978e11 0.293453
\(496\) −4.14190e10 −0.0307278
\(497\) 1.49657e11 0.110026
\(498\) 1.24943e12 0.910289
\(499\) −2.96818e11 −0.214308 −0.107154 0.994242i \(-0.534174\pi\)
−0.107154 + 0.994242i \(0.534174\pi\)
\(500\) 1.99413e11 0.142689
\(501\) −2.78762e11 −0.197681
\(502\) −3.06297e12 −2.15266
\(503\) 1.39265e12 0.970031 0.485015 0.874506i \(-0.338814\pi\)
0.485015 + 0.874506i \(0.338814\pi\)
\(504\) 8.61232e11 0.594542
\(505\) −1.25101e12 −0.855951
\(506\) −5.18317e12 −3.51494
\(507\) 8.35913e11 0.561856
\(508\) −4.55717e12 −3.03605
\(509\) 4.27278e11 0.282150 0.141075 0.989999i \(-0.454944\pi\)
0.141075 + 0.989999i \(0.454944\pi\)
\(510\) 3.37881e11 0.221156
\(511\) 2.39315e12 1.55266
\(512\) −1.56366e11 −0.100561
\(513\) 6.92579e10 0.0441511
\(514\) −4.00113e12 −2.52842
\(515\) −6.04922e11 −0.378937
\(516\) 3.89718e11 0.242007
\(517\) 3.16219e12 1.94662
\(518\) −1.65314e12 −1.00885
\(519\) 8.22373e11 0.497526
\(520\) 1.17146e11 0.0702609
\(521\) −2.66832e12 −1.58660 −0.793302 0.608829i \(-0.791640\pi\)
−0.793302 + 0.608829i \(0.791640\pi\)
\(522\) 7.97360e10 0.0470043
\(523\) −2.25553e11 −0.131823 −0.0659115 0.997825i \(-0.520996\pi\)
−0.0659115 + 0.997825i \(0.520996\pi\)
\(524\) 1.49603e12 0.866861
\(525\) 3.73813e11 0.214752
\(526\) −5.90901e11 −0.336572
\(527\) 5.75094e11 0.324781
\(528\) 1.02100e11 0.0571708
\(529\) 4.11473e11 0.228450
\(530\) −4.84190e11 −0.266547
\(531\) 4.01128e11 0.218956
\(532\) 1.25759e12 0.680669
\(533\) −5.51133e11 −0.295790
\(534\) −2.37554e12 −1.26423
\(535\) −1.31227e11 −0.0692518
\(536\) 1.62571e12 0.850750
\(537\) 1.65305e11 0.0857829
\(538\) 4.30256e12 2.21415
\(539\) 9.48493e12 4.84044
\(540\) −2.71300e11 −0.137302
\(541\) 5.00442e11 0.251169 0.125584 0.992083i \(-0.459919\pi\)
0.125584 + 0.992083i \(0.459919\pi\)
\(542\) 5.32284e12 2.64939
\(543\) −1.84430e12 −0.910400
\(544\) 1.12956e12 0.552985
\(545\) 1.51524e12 0.735693
\(546\) 5.88481e11 0.283378
\(547\) −4.48276e11 −0.214093 −0.107046 0.994254i \(-0.534139\pi\)
−0.107046 + 0.994254i \(0.534139\pi\)
\(548\) 4.95777e12 2.34841
\(549\) 4.82726e11 0.226791
\(550\) −1.36114e12 −0.634263
\(551\) 4.34480e10 0.0200811
\(552\) 1.33869e12 0.613696
\(553\) 4.39445e11 0.199821
\(554\) −4.62291e11 −0.208508
\(555\) 1.94328e11 0.0869396
\(556\) 1.44699e12 0.642139
\(557\) −2.58324e12 −1.13715 −0.568573 0.822633i \(-0.692504\pi\)
−0.568573 + 0.822633i \(0.692504\pi\)
\(558\) −7.51223e11 −0.328031
\(559\) 9.93711e10 0.0430435
\(560\) 9.73689e10 0.0418383
\(561\) −1.41764e12 −0.604273
\(562\) −2.91966e12 −1.23458
\(563\) −4.56634e12 −1.91549 −0.957746 0.287614i \(-0.907138\pi\)
−0.957746 + 0.287614i \(0.907138\pi\)
\(564\) −2.18865e12 −0.910793
\(565\) −4.95793e11 −0.204683
\(566\) −6.85907e12 −2.80926
\(567\) −5.08569e11 −0.206646
\(568\) 1.40743e11 0.0567362
\(569\) −8.29166e11 −0.331617 −0.165808 0.986158i \(-0.553023\pi\)
−0.165808 + 0.986158i \(0.553023\pi\)
\(570\) −2.40497e11 −0.0954271
\(571\) −3.46204e12 −1.36292 −0.681460 0.731856i \(-0.738655\pi\)
−0.681460 + 0.731856i \(0.738655\pi\)
\(572\) −1.31715e12 −0.514461
\(573\) 6.95702e11 0.269605
\(574\) 1.40698e13 5.40983
\(575\) 5.81051e11 0.221671
\(576\) −1.43120e12 −0.541751
\(577\) −4.67597e12 −1.75622 −0.878112 0.478454i \(-0.841197\pi\)
−0.878112 + 0.478454i \(0.841197\pi\)
\(578\) 3.10085e12 1.15560
\(579\) −6.85535e11 −0.253499
\(580\) −1.70196e11 −0.0624487
\(581\) −4.99927e12 −1.82018
\(582\) −2.65319e12 −0.958550
\(583\) 2.03151e12 0.728299
\(584\) 2.25061e12 0.800650
\(585\) −6.91765e10 −0.0244206
\(586\) −7.84724e12 −2.74902
\(587\) 3.44418e12 1.19733 0.598665 0.800999i \(-0.295698\pi\)
0.598665 + 0.800999i \(0.295698\pi\)
\(588\) −6.56480e12 −2.26477
\(589\) −4.09339e11 −0.140141
\(590\) −1.39291e12 −0.473247
\(591\) −1.94342e12 −0.655275
\(592\) 5.06176e10 0.0169377
\(593\) 1.29401e12 0.429727 0.214864 0.976644i \(-0.431069\pi\)
0.214864 + 0.976644i \(0.431069\pi\)
\(594\) 1.85181e12 0.610320
\(595\) −1.35195e12 −0.442214
\(596\) −4.51556e12 −1.46590
\(597\) 2.14649e12 0.691585
\(598\) 9.14728e11 0.292507
\(599\) −1.22394e12 −0.388455 −0.194227 0.980957i \(-0.562220\pi\)
−0.194227 + 0.980957i \(0.562220\pi\)
\(600\) 3.51549e11 0.110740
\(601\) −3.86681e12 −1.20898 −0.604488 0.796614i \(-0.706622\pi\)
−0.604488 + 0.796614i \(0.706622\pi\)
\(602\) −2.53683e12 −0.787239
\(603\) −9.60005e11 −0.295696
\(604\) −2.89394e12 −0.884757
\(605\) 4.23717e12 1.28581
\(606\) −5.91010e12 −1.78020
\(607\) −1.23144e12 −0.368184 −0.184092 0.982909i \(-0.558935\pi\)
−0.184092 + 0.982909i \(0.558935\pi\)
\(608\) −8.03996e11 −0.238609
\(609\) −3.19043e11 −0.0939879
\(610\) −1.67626e12 −0.490180
\(611\) −5.58065e11 −0.161994
\(612\) 9.81191e11 0.282730
\(613\) −1.02185e12 −0.292292 −0.146146 0.989263i \(-0.546687\pi\)
−0.146146 + 0.989263i \(0.546687\pi\)
\(614\) 5.11964e12 1.45372
\(615\) −1.65391e12 −0.466203
\(616\) 1.25476e13 3.51114
\(617\) −2.72512e11 −0.0757011 −0.0378506 0.999283i \(-0.512051\pi\)
−0.0378506 + 0.999283i \(0.512051\pi\)
\(618\) −2.85781e12 −0.788108
\(619\) 5.05549e12 1.38406 0.692031 0.721868i \(-0.256716\pi\)
0.692031 + 0.721868i \(0.256716\pi\)
\(620\) 1.60348e12 0.435814
\(621\) −7.90513e11 −0.213303
\(622\) −1.10918e13 −2.97128
\(623\) 9.50512e12 2.52791
\(624\) −1.80187e10 −0.00475766
\(625\) 1.52588e11 0.0400000
\(626\) −1.30059e12 −0.338497
\(627\) 1.00905e12 0.260740
\(628\) −7.44309e12 −1.90957
\(629\) −7.02814e11 −0.179025
\(630\) 1.76599e12 0.446639
\(631\) 2.46748e12 0.619615 0.309807 0.950799i \(-0.399735\pi\)
0.309807 + 0.950799i \(0.399735\pi\)
\(632\) 4.13271e11 0.103041
\(633\) −1.09349e12 −0.270705
\(634\) −2.27167e12 −0.558397
\(635\) −3.48708e12 −0.851098
\(636\) −1.40607e12 −0.340760
\(637\) −1.67390e12 −0.402813
\(638\) 1.16171e12 0.277590
\(639\) −8.31108e10 −0.0197199
\(640\) 2.99562e12 0.705793
\(641\) 1.57170e12 0.367713 0.183857 0.982953i \(-0.441142\pi\)
0.183857 + 0.982953i \(0.441142\pi\)
\(642\) −6.19951e11 −0.144029
\(643\) 2.74560e12 0.633414 0.316707 0.948523i \(-0.397423\pi\)
0.316707 + 0.948523i \(0.397423\pi\)
\(644\) −1.43542e13 −3.28845
\(645\) 2.98206e11 0.0678419
\(646\) 8.69788e11 0.196502
\(647\) 1.57859e12 0.354161 0.177080 0.984196i \(-0.443335\pi\)
0.177080 + 0.984196i \(0.443335\pi\)
\(648\) −4.78278e11 −0.106560
\(649\) 5.84419e12 1.29307
\(650\) 2.40214e11 0.0527822
\(651\) 3.00583e12 0.655918
\(652\) 8.12919e12 1.76170
\(653\) −1.46072e12 −0.314381 −0.157191 0.987568i \(-0.550244\pi\)
−0.157191 + 0.987568i \(0.550244\pi\)
\(654\) 7.15839e12 1.53008
\(655\) 1.14474e12 0.243008
\(656\) −4.30803e11 −0.0908262
\(657\) −1.32902e12 −0.278283
\(658\) 1.42467e13 2.96278
\(659\) 1.48318e12 0.306344 0.153172 0.988200i \(-0.451051\pi\)
0.153172 + 0.988200i \(0.451051\pi\)
\(660\) −3.95268e12 −0.810855
\(661\) −6.87930e12 −1.40164 −0.700822 0.713336i \(-0.747183\pi\)
−0.700822 + 0.713336i \(0.747183\pi\)
\(662\) −7.03397e12 −1.42344
\(663\) 2.50186e11 0.0502866
\(664\) −4.70151e12 −0.938601
\(665\) 9.62286e11 0.190812
\(666\) 9.18059e11 0.180816
\(667\) −4.95917e11 −0.0970159
\(668\) 2.81101e12 0.546222
\(669\) −3.99659e12 −0.771386
\(670\) 3.33359e12 0.639111
\(671\) 7.03303e12 1.33934
\(672\) 5.90383e12 1.11679
\(673\) −1.28416e12 −0.241296 −0.120648 0.992695i \(-0.538497\pi\)
−0.120648 + 0.992695i \(0.538497\pi\)
\(674\) 1.31731e13 2.45877
\(675\) −2.07594e11 −0.0384900
\(676\) −8.42927e12 −1.55249
\(677\) −9.23697e12 −1.68998 −0.844988 0.534785i \(-0.820393\pi\)
−0.844988 + 0.534785i \(0.820393\pi\)
\(678\) −2.34226e12 −0.425697
\(679\) 1.06161e13 1.91668
\(680\) −1.27142e12 −0.228034
\(681\) 5.31682e12 0.947305
\(682\) −1.09449e13 −1.93723
\(683\) 1.49089e12 0.262152 0.131076 0.991372i \(-0.458157\pi\)
0.131076 + 0.991372i \(0.458157\pi\)
\(684\) −6.98391e11 −0.121996
\(685\) 3.79360e12 0.658331
\(686\) 2.53539e13 4.37106
\(687\) 3.59386e12 0.615539
\(688\) 7.76752e10 0.0132170
\(689\) −3.58521e11 −0.0606078
\(690\) 2.74504e12 0.461028
\(691\) −1.20099e12 −0.200396 −0.100198 0.994968i \(-0.531948\pi\)
−0.100198 + 0.994968i \(0.531948\pi\)
\(692\) −8.29274e12 −1.37474
\(693\) −7.40955e12 −1.22037
\(694\) −1.41240e13 −2.31121
\(695\) 1.10721e12 0.180011
\(696\) −3.00041e11 −0.0484662
\(697\) 5.98160e12 0.959997
\(698\) −3.33324e12 −0.531517
\(699\) 1.06241e12 0.168323
\(700\) −3.76950e12 −0.593394
\(701\) −8.76705e11 −0.137127 −0.0685634 0.997647i \(-0.521842\pi\)
−0.0685634 + 0.997647i \(0.521842\pi\)
\(702\) −3.26808e11 −0.0507897
\(703\) 5.00248e11 0.0772479
\(704\) −2.08518e13 −3.19938
\(705\) −1.67472e12 −0.255323
\(706\) −1.03372e13 −1.56596
\(707\) 2.36478e13 3.55961
\(708\) −4.04494e12 −0.605009
\(709\) 1.03651e13 1.54052 0.770260 0.637730i \(-0.220126\pi\)
0.770260 + 0.637730i \(0.220126\pi\)
\(710\) 2.88600e11 0.0426221
\(711\) −2.44042e11 −0.0358139
\(712\) 8.93899e12 1.30355
\(713\) 4.67222e12 0.677049
\(714\) −6.38695e12 −0.919712
\(715\) −1.00786e12 −0.144219
\(716\) −1.66692e12 −0.237031
\(717\) −5.15352e12 −0.728229
\(718\) 1.12994e13 1.58671
\(719\) 8.99817e12 1.25567 0.627833 0.778348i \(-0.283942\pi\)
0.627833 + 0.778348i \(0.283942\pi\)
\(720\) −5.40730e10 −0.00749867
\(721\) 1.14348e13 1.57587
\(722\) −6.19096e11 −0.0847892
\(723\) −1.64009e12 −0.223227
\(724\) 1.85978e13 2.51557
\(725\) −1.30231e11 −0.0175063
\(726\) 2.00175e13 2.67421
\(727\) 1.28053e12 0.170014 0.0850072 0.996380i \(-0.472909\pi\)
0.0850072 + 0.996380i \(0.472909\pi\)
\(728\) −2.21441e12 −0.292191
\(729\) 2.82430e11 0.0370370
\(730\) 4.61498e12 0.601474
\(731\) −1.07850e12 −0.139699
\(732\) −4.86777e12 −0.626658
\(733\) 1.05419e12 0.134881 0.0674406 0.997723i \(-0.478517\pi\)
0.0674406 + 0.997723i \(0.478517\pi\)
\(734\) −4.63016e12 −0.588794
\(735\) −5.02328e12 −0.634884
\(736\) 9.17684e12 1.15277
\(737\) −1.39867e13 −1.74627
\(738\) −7.81353e12 −0.969602
\(739\) −5.82336e12 −0.718247 −0.359123 0.933290i \(-0.616924\pi\)
−0.359123 + 0.933290i \(0.616924\pi\)
\(740\) −1.95959e12 −0.240227
\(741\) −1.78077e11 −0.0216983
\(742\) 9.15262e12 1.10848
\(743\) −6.48172e12 −0.780262 −0.390131 0.920759i \(-0.627570\pi\)
−0.390131 + 0.920759i \(0.627570\pi\)
\(744\) 2.82680e12 0.338233
\(745\) −3.45523e12 −0.410936
\(746\) 6.07838e12 0.718560
\(747\) 2.77630e12 0.326230
\(748\) 1.42954e13 1.66970
\(749\) 2.48058e12 0.287995
\(750\) 7.20866e11 0.0831915
\(751\) 9.69899e12 1.11262 0.556310 0.830975i \(-0.312217\pi\)
0.556310 + 0.830975i \(0.312217\pi\)
\(752\) −4.36221e11 −0.0497424
\(753\) −6.80609e12 −0.771472
\(754\) −2.05018e11 −0.0231005
\(755\) −2.21440e12 −0.248025
\(756\) 5.12837e12 0.570993
\(757\) 8.49820e11 0.0940580 0.0470290 0.998894i \(-0.485025\pi\)
0.0470290 + 0.998894i \(0.485025\pi\)
\(758\) 1.91698e13 2.10914
\(759\) −1.15173e13 −1.25969
\(760\) 9.04971e11 0.0983951
\(761\) −7.06141e12 −0.763238 −0.381619 0.924320i \(-0.624633\pi\)
−0.381619 + 0.924320i \(0.624633\pi\)
\(762\) −1.64739e13 −1.77010
\(763\) −2.86425e13 −3.05950
\(764\) −7.01540e12 −0.744959
\(765\) 7.50792e11 0.0792580
\(766\) −7.51693e12 −0.788880
\(767\) −1.03139e12 −0.107607
\(768\) 5.10551e12 0.529558
\(769\) −9.71694e12 −1.00198 −0.500992 0.865452i \(-0.667031\pi\)
−0.500992 + 0.865452i \(0.667031\pi\)
\(770\) 2.57295e13 2.63768
\(771\) −8.89075e12 −0.906137
\(772\) 6.91288e12 0.700456
\(773\) 9.65653e12 0.972778 0.486389 0.873743i \(-0.338314\pi\)
0.486389 + 0.873743i \(0.338314\pi\)
\(774\) 1.40881e12 0.141097
\(775\) 1.22696e12 0.122172
\(776\) 9.98376e12 0.988363
\(777\) −3.67338e12 −0.361552
\(778\) −8.42846e11 −0.0824784
\(779\) −4.25757e12 −0.414232
\(780\) 6.97570e11 0.0674780
\(781\) −1.21088e12 −0.116458
\(782\) −9.92779e12 −0.949341
\(783\) 1.77178e11 0.0168454
\(784\) −1.30844e12 −0.123689
\(785\) −5.69533e12 −0.535310
\(786\) 5.40805e12 0.505405
\(787\) 2.91353e12 0.270728 0.135364 0.990796i \(-0.456780\pi\)
0.135364 + 0.990796i \(0.456780\pi\)
\(788\) 1.95973e13 1.81062
\(789\) −1.31302e12 −0.120621
\(790\) 8.47431e11 0.0774074
\(791\) 9.37195e12 0.851208
\(792\) −6.96823e12 −0.629302
\(793\) −1.24119e12 −0.111458
\(794\) 1.63561e13 1.46045
\(795\) −1.07590e12 −0.0955255
\(796\) −2.16451e13 −1.91095
\(797\) 1.12774e13 0.990027 0.495013 0.868885i \(-0.335163\pi\)
0.495013 + 0.868885i \(0.335163\pi\)
\(798\) 4.54610e12 0.396849
\(799\) 6.05684e12 0.525758
\(800\) 2.40990e12 0.208015
\(801\) −5.27859e12 −0.453077
\(802\) 1.17457e13 1.00253
\(803\) −1.93630e13 −1.64343
\(804\) 9.68061e12 0.817053
\(805\) −1.09836e13 −0.921854
\(806\) 1.93156e12 0.161213
\(807\) 9.56054e12 0.793508
\(808\) 2.22393e13 1.83556
\(809\) 1.46910e13 1.20582 0.602912 0.797808i \(-0.294007\pi\)
0.602912 + 0.797808i \(0.294007\pi\)
\(810\) −9.80730e11 −0.0800510
\(811\) −1.74204e12 −0.141405 −0.0707024 0.997497i \(-0.522524\pi\)
−0.0707024 + 0.997497i \(0.522524\pi\)
\(812\) 3.21721e12 0.259703
\(813\) 1.18277e13 0.949493
\(814\) 1.33756e13 1.06783
\(815\) 6.22032e12 0.493860
\(816\) 1.95562e11 0.0154411
\(817\) 7.67655e11 0.0602791
\(818\) 2.70532e13 2.11266
\(819\) 1.30764e12 0.101557
\(820\) 1.66779e13 1.28819
\(821\) −2.32540e12 −0.178630 −0.0893149 0.996003i \(-0.528468\pi\)
−0.0893149 + 0.996003i \(0.528468\pi\)
\(822\) 1.79220e13 1.36919
\(823\) −3.14851e11 −0.0239225 −0.0119612 0.999928i \(-0.503807\pi\)
−0.0119612 + 0.999928i \(0.503807\pi\)
\(824\) 1.07537e13 0.812619
\(825\) −3.02452e12 −0.227308
\(826\) 2.63300e13 1.96807
\(827\) 1.57386e13 1.17001 0.585006 0.811029i \(-0.301092\pi\)
0.585006 + 0.811029i \(0.301092\pi\)
\(828\) 7.97147e12 0.589389
\(829\) −7.30710e12 −0.537341 −0.268670 0.963232i \(-0.586584\pi\)
−0.268670 + 0.963232i \(0.586584\pi\)
\(830\) −9.64065e12 −0.705107
\(831\) −1.02724e12 −0.0747252
\(832\) 3.67993e12 0.266247
\(833\) 1.81673e13 1.30734
\(834\) 5.23077e12 0.374385
\(835\) 2.15094e12 0.153123
\(836\) −1.01751e13 −0.720464
\(837\) −1.66926e12 −0.117560
\(838\) −4.15079e13 −2.90759
\(839\) 2.38448e12 0.166136 0.0830681 0.996544i \(-0.473528\pi\)
0.0830681 + 0.996544i \(0.473528\pi\)
\(840\) −6.64531e12 −0.460530
\(841\) −1.43960e13 −0.992338
\(842\) −3.25349e13 −2.23072
\(843\) −6.48766e12 −0.442450
\(844\) 1.10266e13 0.748000
\(845\) −6.44994e12 −0.435212
\(846\) −7.91181e12 −0.531018
\(847\) −8.00951e13 −5.34725
\(848\) −2.80244e11 −0.0186104
\(849\) −1.52413e13 −1.00678
\(850\) −2.60711e12 −0.171306
\(851\) −5.70985e12 −0.373200
\(852\) 8.38083e11 0.0544890
\(853\) −2.30156e13 −1.48851 −0.744256 0.667894i \(-0.767196\pi\)
−0.744256 + 0.667894i \(0.767196\pi\)
\(854\) 3.16862e13 2.03849
\(855\) −5.34398e11 −0.0341993
\(856\) 2.33283e12 0.148509
\(857\) 1.24046e13 0.785541 0.392771 0.919636i \(-0.371517\pi\)
0.392771 + 0.919636i \(0.371517\pi\)
\(858\) −4.76140e12 −0.299945
\(859\) 1.06162e13 0.665276 0.332638 0.943055i \(-0.392061\pi\)
0.332638 + 0.943055i \(0.392061\pi\)
\(860\) −3.00709e12 −0.187458
\(861\) 3.12639e13 1.93878
\(862\) −1.66870e13 −1.02943
\(863\) 8.84193e12 0.542623 0.271312 0.962492i \(-0.412543\pi\)
0.271312 + 0.962492i \(0.412543\pi\)
\(864\) −3.27864e12 −0.200162
\(865\) −6.34547e12 −0.385382
\(866\) −3.88141e13 −2.34509
\(867\) 6.89028e12 0.414144
\(868\) −3.03105e13 −1.81240
\(869\) −3.55555e12 −0.211504
\(870\) −6.15247e11 −0.0364093
\(871\) 2.46838e12 0.145322
\(872\) −2.69365e13 −1.57767
\(873\) −5.89554e12 −0.343526
\(874\) 7.06639e12 0.409634
\(875\) −2.88436e12 −0.166346
\(876\) 1.34017e13 0.768937
\(877\) −4.28830e12 −0.244786 −0.122393 0.992482i \(-0.539057\pi\)
−0.122393 + 0.992482i \(0.539057\pi\)
\(878\) −1.58823e13 −0.901960
\(879\) −1.74370e13 −0.985197
\(880\) −7.87811e11 −0.0442843
\(881\) 1.35648e13 0.758616 0.379308 0.925271i \(-0.376162\pi\)
0.379308 + 0.925271i \(0.376162\pi\)
\(882\) −2.37313e13 −1.32042
\(883\) 3.08940e13 1.71022 0.855108 0.518451i \(-0.173491\pi\)
0.855108 + 0.518451i \(0.173491\pi\)
\(884\) −2.52285e12 −0.138950
\(885\) −3.09512e12 −0.169603
\(886\) 3.60441e13 1.96509
\(887\) 4.62365e12 0.250800 0.125400 0.992106i \(-0.459979\pi\)
0.125400 + 0.992106i \(0.459979\pi\)
\(888\) −3.45459e12 −0.186440
\(889\) 6.59160e13 3.53943
\(890\) 1.83298e13 0.979270
\(891\) 4.11483e12 0.218727
\(892\) 4.03012e13 2.13146
\(893\) −4.31113e12 −0.226861
\(894\) −1.63234e13 −0.854659
\(895\) −1.27550e12 −0.0664472
\(896\) −5.66261e13 −2.93515
\(897\) 2.03258e12 0.104829
\(898\) −6.03303e13 −3.09594
\(899\) −1.04719e12 −0.0534694
\(900\) 2.09336e12 0.106354
\(901\) 3.89113e12 0.196704
\(902\) −1.13838e14 −5.72611
\(903\) −5.63698e12 −0.282132
\(904\) 8.81374e12 0.438937
\(905\) 1.42307e13 0.705193
\(906\) −1.04614e13 −0.515838
\(907\) 2.75167e13 1.35009 0.675045 0.737776i \(-0.264124\pi\)
0.675045 + 0.737776i \(0.264124\pi\)
\(908\) −5.36144e13 −2.61755
\(909\) −1.31326e13 −0.637988
\(910\) −4.54075e12 −0.219503
\(911\) −3.06176e13 −1.47278 −0.736390 0.676557i \(-0.763471\pi\)
−0.736390 + 0.676557i \(0.763471\pi\)
\(912\) −1.39197e11 −0.00666274
\(913\) 4.04491e13 1.92659
\(914\) −8.13510e12 −0.385571
\(915\) −3.72474e12 −0.175671
\(916\) −3.62401e13 −1.70083
\(917\) −2.16389e13 −1.01059
\(918\) 3.54694e12 0.164840
\(919\) 1.52873e13 0.706988 0.353494 0.935437i \(-0.384994\pi\)
0.353494 + 0.935437i \(0.384994\pi\)
\(920\) −1.03294e13 −0.475367
\(921\) 1.13761e13 0.520986
\(922\) 2.58816e13 1.17951
\(923\) 2.13696e11 0.00969144
\(924\) 7.47172e13 3.37207
\(925\) −1.49945e12 −0.0673431
\(926\) −1.68994e13 −0.755302
\(927\) −6.35023e12 −0.282443
\(928\) −2.05681e12 −0.0910392
\(929\) −3.69049e12 −0.162560 −0.0812800 0.996691i \(-0.525901\pi\)
−0.0812800 + 0.996691i \(0.525901\pi\)
\(930\) 5.79647e12 0.254092
\(931\) −1.29311e13 −0.564109
\(932\) −1.07132e13 −0.465103
\(933\) −2.46465e13 −1.06485
\(934\) −1.88020e13 −0.808431
\(935\) 1.09386e13 0.468068
\(936\) 1.22976e12 0.0523694
\(937\) 3.09955e13 1.31362 0.656811 0.754055i \(-0.271905\pi\)
0.656811 + 0.754055i \(0.271905\pi\)
\(938\) −6.30148e13 −2.65785
\(939\) −2.88998e12 −0.121311
\(940\) 1.68877e13 0.705497
\(941\) −3.33184e13 −1.38526 −0.692629 0.721294i \(-0.743548\pi\)
−0.692629 + 0.721294i \(0.743548\pi\)
\(942\) −2.69062e13 −1.11333
\(943\) 4.85961e13 2.00124
\(944\) −8.06200e11 −0.0330422
\(945\) 3.92414e12 0.160067
\(946\) 2.05255e13 0.833264
\(947\) 1.17967e13 0.476633 0.238316 0.971188i \(-0.423404\pi\)
0.238316 + 0.971188i \(0.423404\pi\)
\(948\) 2.46090e12 0.0989593
\(949\) 3.41719e12 0.136764
\(950\) 1.85568e12 0.0739175
\(951\) −5.04778e12 −0.200119
\(952\) 2.40336e13 0.948316
\(953\) 2.07064e13 0.813180 0.406590 0.913611i \(-0.366718\pi\)
0.406590 + 0.913611i \(0.366718\pi\)
\(954\) −5.08283e12 −0.198673
\(955\) −5.36807e12 −0.208835
\(956\) 5.19677e13 2.01221
\(957\) 2.58138e12 0.0994828
\(958\) −7.07157e13 −2.71251
\(959\) −7.17103e13 −2.73778
\(960\) 1.10432e13 0.419638
\(961\) −1.65737e13 −0.626850
\(962\) −2.36053e12 −0.0888630
\(963\) −1.37757e12 −0.0516172
\(964\) 1.65385e13 0.616809
\(965\) 5.28962e12 0.196359
\(966\) −5.18893e13 −1.91726
\(967\) 2.68913e13 0.988992 0.494496 0.869180i \(-0.335353\pi\)
0.494496 + 0.869180i \(0.335353\pi\)
\(968\) −7.53245e13 −2.75738
\(969\) 1.93272e12 0.0704226
\(970\) 2.04721e13 0.742490
\(971\) 3.11390e13 1.12413 0.562067 0.827092i \(-0.310006\pi\)
0.562067 + 0.827092i \(0.310006\pi\)
\(972\) −2.84800e12 −0.102339
\(973\) −2.09296e13 −0.748606
\(974\) −4.63744e13 −1.65106
\(975\) 5.33769e11 0.0189162
\(976\) −9.70200e11 −0.0342245
\(977\) −4.21292e13 −1.47930 −0.739652 0.672990i \(-0.765010\pi\)
−0.739652 + 0.672990i \(0.765010\pi\)
\(978\) 2.93865e13 1.02712
\(979\) −7.69059e13 −2.67570
\(980\) 5.06543e13 1.75428
\(981\) 1.59064e13 0.548353
\(982\) −3.18057e13 −1.09145
\(983\) −5.68734e13 −1.94276 −0.971379 0.237536i \(-0.923660\pi\)
−0.971379 + 0.237536i \(0.923660\pi\)
\(984\) 2.94017e13 0.999759
\(985\) 1.49955e13 0.507574
\(986\) 2.22512e12 0.0749735
\(987\) 3.16571e13 1.06180
\(988\) 1.79571e12 0.0599558
\(989\) −8.76205e12 −0.291221
\(990\) −1.42887e13 −0.472751
\(991\) 6.65317e12 0.219128 0.109564 0.993980i \(-0.465055\pi\)
0.109564 + 0.993980i \(0.465055\pi\)
\(992\) 1.93780e13 0.635340
\(993\) −1.56299e13 −0.510134
\(994\) −5.45540e12 −0.177251
\(995\) −1.65625e13 −0.535699
\(996\) −2.79960e13 −0.901424
\(997\) 3.13287e13 1.00419 0.502093 0.864814i \(-0.332564\pi\)
0.502093 + 0.864814i \(0.332564\pi\)
\(998\) 1.08198e13 0.345249
\(999\) 2.03998e12 0.0648009
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.10.a.h.1.2 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.10.a.h.1.2 15 1.1 even 1 trivial