Properties

Label 285.10.a.h.1.15
Level $285$
Weight $10$
Character 285.1
Self dual yes
Analytic conductor $146.785$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.785213307\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 2 x^{14} - 6356 x^{13} + 18436 x^{12} + 15858707 x^{11} - 49616078 x^{10} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{6}\cdot 5^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Root \(-45.0746\) of defining polynomial
Character \(\chi\) \(=\) 285.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+44.0746 q^{2} -81.0000 q^{3} +1430.57 q^{4} +625.000 q^{5} -3570.04 q^{6} -6480.81 q^{7} +40485.6 q^{8} +6561.00 q^{9} +O(q^{10})\) \(q+44.0746 q^{2} -81.0000 q^{3} +1430.57 q^{4} +625.000 q^{5} -3570.04 q^{6} -6480.81 q^{7} +40485.6 q^{8} +6561.00 q^{9} +27546.6 q^{10} -16845.3 q^{11} -115876. q^{12} -113957. q^{13} -285639. q^{14} -50625.0 q^{15} +1.05193e6 q^{16} +289208. q^{17} +289173. q^{18} -130321. q^{19} +894106. q^{20} +524945. q^{21} -742450. q^{22} +804006. q^{23} -3.27933e6 q^{24} +390625. q^{25} -5.02262e6 q^{26} -531441. q^{27} -9.27124e6 q^{28} +7.24242e6 q^{29} -2.23128e6 q^{30} +9.93122e6 q^{31} +2.56349e7 q^{32} +1.36447e6 q^{33} +1.27467e7 q^{34} -4.05051e6 q^{35} +9.38596e6 q^{36} +2.05418e7 q^{37} -5.74384e6 q^{38} +9.23053e6 q^{39} +2.53035e7 q^{40} -4.90838e6 q^{41} +2.31368e7 q^{42} -5.18880e6 q^{43} -2.40984e7 q^{44} +4.10062e6 q^{45} +3.54362e7 q^{46} -3.39717e7 q^{47} -8.52065e7 q^{48} +1.64727e6 q^{49} +1.72166e7 q^{50} -2.34258e7 q^{51} -1.63024e8 q^{52} +1.08619e7 q^{53} -2.34230e7 q^{54} -1.05283e7 q^{55} -2.62379e8 q^{56} +1.05560e7 q^{57} +3.19207e8 q^{58} +1.50863e8 q^{59} -7.24226e7 q^{60} -3.90769e7 q^{61} +4.37714e8 q^{62} -4.25206e7 q^{63} +5.91258e8 q^{64} -7.12233e7 q^{65} +6.01384e7 q^{66} -2.58318e8 q^{67} +4.13732e8 q^{68} -6.51245e7 q^{69} -1.78524e8 q^{70} +1.47177e8 q^{71} +2.65626e8 q^{72} -3.55554e8 q^{73} +9.05370e8 q^{74} -3.16406e7 q^{75} -1.86433e8 q^{76} +1.09171e8 q^{77} +4.06832e8 q^{78} +6.71093e8 q^{79} +6.57458e8 q^{80} +4.30467e7 q^{81} -2.16335e8 q^{82} +4.05588e8 q^{83} +7.50971e8 q^{84} +1.80755e8 q^{85} -2.28694e8 q^{86} -5.86636e8 q^{87} -6.81992e8 q^{88} +4.17963e8 q^{89} +1.80733e8 q^{90} +7.38535e8 q^{91} +1.15019e9 q^{92} -8.04429e8 q^{93} -1.49729e9 q^{94} -8.14506e7 q^{95} -2.07643e9 q^{96} -3.08832e8 q^{97} +7.26026e7 q^{98} -1.10522e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9} - 10625 q^{10} + 138230 q^{11} - 409455 q^{12} - 176712 q^{13} - 555994 q^{14} - 759375 q^{15} + 1695731 q^{16} - 274992 q^{17} - 111537 q^{18} - 1954815 q^{19} + 3159375 q^{20} - 109512 q^{21} - 1031106 q^{22} + 1714212 q^{23} + 291357 q^{24} + 5859375 q^{25} + 9500004 q^{26} - 7971615 q^{27} + 14545598 q^{28} + 1754340 q^{29} + 860625 q^{30} + 8442914 q^{31} + 35638859 q^{32} - 11196630 q^{33} + 47218266 q^{34} + 845000 q^{35} + 33165855 q^{36} + 2956096 q^{37} + 2215457 q^{38} + 14313672 q^{39} - 2248125 q^{40} - 38550502 q^{41} + 45035514 q^{42} + 50753570 q^{43} + 212125630 q^{44} + 61509375 q^{45} - 117130008 q^{46} - 40252876 q^{47} - 137354211 q^{48} + 110123035 q^{49} - 6640625 q^{50} + 22274352 q^{51} - 87136648 q^{52} + 65532542 q^{53} + 9034497 q^{54} + 86393750 q^{55} - 377288898 q^{56} + 158340015 q^{57} + 211630876 q^{58} + 175407418 q^{59} - 255909375 q^{60} + 151231854 q^{61} - 30983940 q^{62} + 8870472 q^{63} + 836879575 q^{64} - 110445000 q^{65} + 83519586 q^{66} + 40009476 q^{67} - 124850430 q^{68} - 138851172 q^{69} - 347496250 q^{70} + 87578500 q^{71} - 23599917 q^{72} - 360657638 q^{73} + 1373397084 q^{74} - 474609375 q^{75} - 658772655 q^{76} - 304618172 q^{77} - 769500324 q^{78} + 205798286 q^{79} + 1059831875 q^{80} + 645700815 q^{81} - 2327138772 q^{82} - 63321462 q^{83} - 1178193438 q^{84} - 171870000 q^{85} - 848405762 q^{86} - 142101540 q^{87} - 3211126502 q^{88} - 381069174 q^{89} - 69710625 q^{90} + 1476892872 q^{91} - 2382818588 q^{92} - 683876034 q^{93} - 5137318040 q^{94} - 1221759375 q^{95} - 2886747579 q^{96} - 3915268828 q^{97} - 8273557437 q^{98} + 906927030 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 44.0746 1.94784 0.973920 0.226892i \(-0.0728564\pi\)
0.973920 + 0.226892i \(0.0728564\pi\)
\(3\) −81.0000 −0.577350
\(4\) 1430.57 2.79408
\(5\) 625.000 0.447214
\(6\) −3570.04 −1.12459
\(7\) −6480.81 −1.02021 −0.510103 0.860113i \(-0.670393\pi\)
−0.510103 + 0.860113i \(0.670393\pi\)
\(8\) 40485.6 3.49458
\(9\) 6561.00 0.333333
\(10\) 27546.6 0.871100
\(11\) −16845.3 −0.346906 −0.173453 0.984842i \(-0.555492\pi\)
−0.173453 + 0.984842i \(0.555492\pi\)
\(12\) −115876. −1.61316
\(13\) −113957. −1.10662 −0.553308 0.832977i \(-0.686635\pi\)
−0.553308 + 0.832977i \(0.686635\pi\)
\(14\) −285639. −1.98720
\(15\) −50625.0 −0.258199
\(16\) 1.05193e6 4.01280
\(17\) 289208. 0.839827 0.419914 0.907564i \(-0.362060\pi\)
0.419914 + 0.907564i \(0.362060\pi\)
\(18\) 289173. 0.649280
\(19\) −130321. −0.229416
\(20\) 894106. 1.24955
\(21\) 524945. 0.589016
\(22\) −742450. −0.675717
\(23\) 804006. 0.599079 0.299539 0.954084i \(-0.403167\pi\)
0.299539 + 0.954084i \(0.403167\pi\)
\(24\) −3.27933e6 −2.01760
\(25\) 390625. 0.200000
\(26\) −5.02262e6 −2.15551
\(27\) −531441. −0.192450
\(28\) −9.27124e6 −2.85054
\(29\) 7.24242e6 1.90148 0.950742 0.309982i \(-0.100323\pi\)
0.950742 + 0.309982i \(0.100323\pi\)
\(30\) −2.23128e6 −0.502930
\(31\) 9.93122e6 1.93141 0.965706 0.259637i \(-0.0836030\pi\)
0.965706 + 0.259637i \(0.0836030\pi\)
\(32\) 2.56349e7 4.32172
\(33\) 1.36447e6 0.200286
\(34\) 1.27467e7 1.63585
\(35\) −4.05051e6 −0.456250
\(36\) 9.38596e6 0.931360
\(37\) 2.05418e7 1.80190 0.900949 0.433925i \(-0.142872\pi\)
0.900949 + 0.433925i \(0.142872\pi\)
\(38\) −5.74384e6 −0.446865
\(39\) 9.23053e6 0.638905
\(40\) 2.53035e7 1.56282
\(41\) −4.90838e6 −0.271276 −0.135638 0.990758i \(-0.543308\pi\)
−0.135638 + 0.990758i \(0.543308\pi\)
\(42\) 2.31368e7 1.14731
\(43\) −5.18880e6 −0.231451 −0.115725 0.993281i \(-0.536919\pi\)
−0.115725 + 0.993281i \(0.536919\pi\)
\(44\) −2.40984e7 −0.969283
\(45\) 4.10062e6 0.149071
\(46\) 3.54362e7 1.16691
\(47\) −3.39717e7 −1.01549 −0.507747 0.861506i \(-0.669521\pi\)
−0.507747 + 0.861506i \(0.669521\pi\)
\(48\) −8.52065e7 −2.31679
\(49\) 1.64727e6 0.0408208
\(50\) 1.72166e7 0.389568
\(51\) −2.34258e7 −0.484874
\(52\) −1.63024e8 −3.09197
\(53\) 1.08619e7 0.189088 0.0945439 0.995521i \(-0.469861\pi\)
0.0945439 + 0.995521i \(0.469861\pi\)
\(54\) −2.34230e7 −0.374862
\(55\) −1.05283e7 −0.155141
\(56\) −2.62379e8 −3.56519
\(57\) 1.05560e7 0.132453
\(58\) 3.19207e8 3.70379
\(59\) 1.50863e8 1.62087 0.810436 0.585827i \(-0.199230\pi\)
0.810436 + 0.585827i \(0.199230\pi\)
\(60\) −7.24226e7 −0.721428
\(61\) −3.90769e7 −0.361356 −0.180678 0.983542i \(-0.557829\pi\)
−0.180678 + 0.983542i \(0.557829\pi\)
\(62\) 4.37714e8 3.76208
\(63\) −4.25206e7 −0.340069
\(64\) 5.91258e8 4.40521
\(65\) −7.12233e7 −0.494893
\(66\) 6.01384e7 0.390126
\(67\) −2.58318e8 −1.56610 −0.783049 0.621960i \(-0.786336\pi\)
−0.783049 + 0.621960i \(0.786336\pi\)
\(68\) 4.13732e8 2.34654
\(69\) −6.51245e7 −0.345878
\(70\) −1.78524e8 −0.888702
\(71\) 1.47177e8 0.687349 0.343674 0.939089i \(-0.388328\pi\)
0.343674 + 0.939089i \(0.388328\pi\)
\(72\) 2.65626e8 1.16486
\(73\) −3.55554e8 −1.46539 −0.732695 0.680557i \(-0.761738\pi\)
−0.732695 + 0.680557i \(0.761738\pi\)
\(74\) 9.05370e8 3.50981
\(75\) −3.16406e7 −0.115470
\(76\) −1.86433e8 −0.641006
\(77\) 1.09171e8 0.353916
\(78\) 4.06832e8 1.24448
\(79\) 6.71093e8 1.93848 0.969239 0.246122i \(-0.0791562\pi\)
0.969239 + 0.246122i \(0.0791562\pi\)
\(80\) 6.57458e8 1.79458
\(81\) 4.30467e7 0.111111
\(82\) −2.16335e8 −0.528401
\(83\) 4.05588e8 0.938066 0.469033 0.883181i \(-0.344602\pi\)
0.469033 + 0.883181i \(0.344602\pi\)
\(84\) 7.50971e8 1.64576
\(85\) 1.80755e8 0.375582
\(86\) −2.28694e8 −0.450829
\(87\) −5.86636e8 −1.09782
\(88\) −6.81992e8 −1.21229
\(89\) 4.17963e8 0.706128 0.353064 0.935599i \(-0.385140\pi\)
0.353064 + 0.935599i \(0.385140\pi\)
\(90\) 1.80733e8 0.290367
\(91\) 7.38535e8 1.12898
\(92\) 1.15019e9 1.67387
\(93\) −8.04429e8 −1.11510
\(94\) −1.49729e9 −1.97802
\(95\) −8.14506e7 −0.102598
\(96\) −2.07643e9 −2.49515
\(97\) −3.08832e8 −0.354201 −0.177101 0.984193i \(-0.556672\pi\)
−0.177101 + 0.984193i \(0.556672\pi\)
\(98\) 7.26026e7 0.0795124
\(99\) −1.10522e8 −0.115635
\(100\) 5.58816e8 0.558816
\(101\) −8.05833e8 −0.770546 −0.385273 0.922803i \(-0.625893\pi\)
−0.385273 + 0.922803i \(0.625893\pi\)
\(102\) −1.03248e9 −0.944458
\(103\) 5.85528e8 0.512601 0.256301 0.966597i \(-0.417496\pi\)
0.256301 + 0.966597i \(0.417496\pi\)
\(104\) −4.61362e9 −3.86716
\(105\) 3.28091e8 0.263416
\(106\) 4.78733e8 0.368313
\(107\) 2.03970e9 1.50431 0.752157 0.658984i \(-0.229013\pi\)
0.752157 + 0.658984i \(0.229013\pi\)
\(108\) −7.60263e8 −0.537721
\(109\) −1.77914e9 −1.20723 −0.603615 0.797276i \(-0.706274\pi\)
−0.603615 + 0.797276i \(0.706274\pi\)
\(110\) −4.64031e8 −0.302190
\(111\) −1.66388e9 −1.04033
\(112\) −6.81737e9 −4.09389
\(113\) 1.31492e9 0.758656 0.379328 0.925262i \(-0.376155\pi\)
0.379328 + 0.925262i \(0.376155\pi\)
\(114\) 4.65251e8 0.257998
\(115\) 5.02503e8 0.267916
\(116\) 1.03608e10 5.31290
\(117\) −7.47673e8 −0.368872
\(118\) 6.64922e9 3.15720
\(119\) −1.87430e9 −0.856797
\(120\) −2.04958e9 −0.902297
\(121\) −2.07418e9 −0.879656
\(122\) −1.72230e9 −0.703864
\(123\) 3.97579e8 0.156621
\(124\) 1.42073e10 5.39652
\(125\) 2.44141e8 0.0894427
\(126\) −1.87408e9 −0.662399
\(127\) −2.78388e9 −0.949584 −0.474792 0.880098i \(-0.657477\pi\)
−0.474792 + 0.880098i \(0.657477\pi\)
\(128\) 1.29344e10 4.25893
\(129\) 4.20293e8 0.133628
\(130\) −3.13914e9 −0.963973
\(131\) −1.52925e9 −0.453689 −0.226844 0.973931i \(-0.572841\pi\)
−0.226844 + 0.973931i \(0.572841\pi\)
\(132\) 1.95197e9 0.559616
\(133\) 8.44585e8 0.234051
\(134\) −1.13853e10 −3.05051
\(135\) −3.32151e8 −0.0860663
\(136\) 1.17087e10 2.93484
\(137\) 9.14293e8 0.221739 0.110870 0.993835i \(-0.464636\pi\)
0.110870 + 0.993835i \(0.464636\pi\)
\(138\) −2.87033e9 −0.673715
\(139\) −2.61869e9 −0.595002 −0.297501 0.954722i \(-0.596153\pi\)
−0.297501 + 0.954722i \(0.596153\pi\)
\(140\) −5.79453e9 −1.27480
\(141\) 2.75171e9 0.586295
\(142\) 6.48676e9 1.33885
\(143\) 1.91964e9 0.383892
\(144\) 6.90173e9 1.33760
\(145\) 4.52651e9 0.850370
\(146\) −1.56709e10 −2.85434
\(147\) −1.33429e8 −0.0235679
\(148\) 2.93864e10 5.03465
\(149\) −4.38438e9 −0.728736 −0.364368 0.931255i \(-0.618715\pi\)
−0.364368 + 0.931255i \(0.618715\pi\)
\(150\) −1.39455e9 −0.224917
\(151\) 7.10948e9 1.11286 0.556431 0.830894i \(-0.312170\pi\)
0.556431 + 0.830894i \(0.312170\pi\)
\(152\) −5.27612e9 −0.801712
\(153\) 1.89749e9 0.279942
\(154\) 4.81168e9 0.689371
\(155\) 6.20701e9 0.863754
\(156\) 1.32049e10 1.78515
\(157\) −1.37630e10 −1.80787 −0.903933 0.427675i \(-0.859333\pi\)
−0.903933 + 0.427675i \(0.859333\pi\)
\(158\) 2.95782e10 3.77584
\(159\) −8.79812e8 −0.109170
\(160\) 1.60218e10 1.93273
\(161\) −5.21061e9 −0.611184
\(162\) 1.89727e9 0.216427
\(163\) 2.86047e9 0.317390 0.158695 0.987328i \(-0.449271\pi\)
0.158695 + 0.987328i \(0.449271\pi\)
\(164\) −7.02177e9 −0.757966
\(165\) 8.52794e8 0.0895708
\(166\) 1.78761e10 1.82720
\(167\) 9.52462e9 0.947596 0.473798 0.880633i \(-0.342883\pi\)
0.473798 + 0.880633i \(0.342883\pi\)
\(168\) 2.12527e10 2.05837
\(169\) 2.38175e9 0.224598
\(170\) 7.96670e9 0.731574
\(171\) −8.55036e8 −0.0764719
\(172\) −7.42293e9 −0.646692
\(173\) 8.87083e9 0.752934 0.376467 0.926430i \(-0.377139\pi\)
0.376467 + 0.926430i \(0.377139\pi\)
\(174\) −2.58557e10 −2.13838
\(175\) −2.53157e9 −0.204041
\(176\) −1.77201e10 −1.39207
\(177\) −1.22199e10 −0.935811
\(178\) 1.84216e10 1.37542
\(179\) −4.18429e9 −0.304638 −0.152319 0.988331i \(-0.548674\pi\)
−0.152319 + 0.988331i \(0.548674\pi\)
\(180\) 5.86623e9 0.416517
\(181\) 1.84663e10 1.27887 0.639435 0.768845i \(-0.279168\pi\)
0.639435 + 0.768845i \(0.279168\pi\)
\(182\) 3.25506e10 2.19906
\(183\) 3.16523e9 0.208629
\(184\) 3.25506e10 2.09353
\(185\) 1.28386e10 0.805833
\(186\) −3.54549e10 −2.17204
\(187\) −4.87179e9 −0.291341
\(188\) −4.85989e10 −2.83737
\(189\) 3.44417e9 0.196339
\(190\) −3.58990e9 −0.199844
\(191\) 1.79582e10 0.976367 0.488183 0.872741i \(-0.337660\pi\)
0.488183 + 0.872741i \(0.337660\pi\)
\(192\) −4.78919e10 −2.54335
\(193\) 7.83978e9 0.406721 0.203360 0.979104i \(-0.434814\pi\)
0.203360 + 0.979104i \(0.434814\pi\)
\(194\) −1.36117e10 −0.689927
\(195\) 5.76908e9 0.285727
\(196\) 2.35653e9 0.114057
\(197\) −6.77245e9 −0.320367 −0.160184 0.987087i \(-0.551209\pi\)
−0.160184 + 0.987087i \(0.551209\pi\)
\(198\) −4.87121e9 −0.225239
\(199\) −2.99734e10 −1.35487 −0.677435 0.735583i \(-0.736908\pi\)
−0.677435 + 0.735583i \(0.736908\pi\)
\(200\) 1.58147e10 0.698916
\(201\) 2.09238e10 0.904187
\(202\) −3.55168e10 −1.50090
\(203\) −4.69367e10 −1.93991
\(204\) −3.35123e10 −1.35478
\(205\) −3.06774e9 −0.121318
\(206\) 2.58069e10 0.998465
\(207\) 5.27508e9 0.199693
\(208\) −1.19875e11 −4.44063
\(209\) 2.19530e9 0.0795857
\(210\) 1.44605e10 0.513092
\(211\) 1.54538e9 0.0536739 0.0268369 0.999640i \(-0.491457\pi\)
0.0268369 + 0.999640i \(0.491457\pi\)
\(212\) 1.55387e10 0.528327
\(213\) −1.19213e10 −0.396841
\(214\) 8.98988e10 2.93016
\(215\) −3.24300e9 −0.103508
\(216\) −2.15157e10 −0.672532
\(217\) −6.43623e10 −1.97044
\(218\) −7.84147e10 −2.35149
\(219\) 2.87999e10 0.846043
\(220\) −1.50615e10 −0.433477
\(221\) −3.29573e10 −0.929366
\(222\) −7.33350e10 −2.02639
\(223\) 1.49507e10 0.404845 0.202423 0.979298i \(-0.435119\pi\)
0.202423 + 0.979298i \(0.435119\pi\)
\(224\) −1.66135e11 −4.40905
\(225\) 2.56289e9 0.0666667
\(226\) 5.79543e10 1.47774
\(227\) 2.71727e10 0.679229 0.339615 0.940565i \(-0.389703\pi\)
0.339615 + 0.940565i \(0.389703\pi\)
\(228\) 1.51011e10 0.370085
\(229\) 4.04991e10 0.973163 0.486582 0.873635i \(-0.338244\pi\)
0.486582 + 0.873635i \(0.338244\pi\)
\(230\) 2.21476e10 0.521858
\(231\) −8.84287e9 −0.204333
\(232\) 2.93213e11 6.64489
\(233\) −3.95779e10 −0.879734 −0.439867 0.898063i \(-0.644974\pi\)
−0.439867 + 0.898063i \(0.644974\pi\)
\(234\) −3.29534e10 −0.718503
\(235\) −2.12323e10 −0.454142
\(236\) 2.15820e11 4.52885
\(237\) −5.43585e10 −1.11918
\(238\) −8.26090e10 −1.66890
\(239\) 7.30250e10 1.44771 0.723854 0.689953i \(-0.242369\pi\)
0.723854 + 0.689953i \(0.242369\pi\)
\(240\) −5.32541e10 −1.03610
\(241\) −7.35344e10 −1.40415 −0.702075 0.712103i \(-0.747743\pi\)
−0.702075 + 0.712103i \(0.747743\pi\)
\(242\) −9.14188e10 −1.71343
\(243\) −3.48678e9 −0.0641500
\(244\) −5.59022e10 −1.00966
\(245\) 1.02954e9 0.0182556
\(246\) 1.75231e10 0.305073
\(247\) 1.48510e10 0.253875
\(248\) 4.02071e11 6.74948
\(249\) −3.28526e10 −0.541593
\(250\) 1.07604e10 0.174220
\(251\) −3.50482e10 −0.557358 −0.278679 0.960384i \(-0.589897\pi\)
−0.278679 + 0.960384i \(0.589897\pi\)
\(252\) −6.08286e10 −0.950179
\(253\) −1.35437e10 −0.207824
\(254\) −1.22698e11 −1.84964
\(255\) −1.46411e10 −0.216842
\(256\) 2.67353e11 3.89050
\(257\) −6.00220e10 −0.858245 −0.429123 0.903246i \(-0.641177\pi\)
−0.429123 + 0.903246i \(0.641177\pi\)
\(258\) 1.85242e10 0.260286
\(259\) −1.33127e11 −1.83831
\(260\) −1.01890e11 −1.38277
\(261\) 4.75175e10 0.633828
\(262\) −6.74011e10 −0.883713
\(263\) −4.50367e10 −0.580451 −0.290225 0.956958i \(-0.593730\pi\)
−0.290225 + 0.956958i \(0.593730\pi\)
\(264\) 5.52413e10 0.699917
\(265\) 6.78867e9 0.0845626
\(266\) 3.72248e10 0.455895
\(267\) −3.38550e10 −0.407683
\(268\) −3.69542e11 −4.37580
\(269\) 1.46337e11 1.70400 0.851999 0.523543i \(-0.175390\pi\)
0.851999 + 0.523543i \(0.175390\pi\)
\(270\) −1.46394e10 −0.167643
\(271\) −4.20525e10 −0.473620 −0.236810 0.971556i \(-0.576102\pi\)
−0.236810 + 0.971556i \(0.576102\pi\)
\(272\) 3.04227e11 3.37006
\(273\) −5.98213e10 −0.651815
\(274\) 4.02971e10 0.431913
\(275\) −6.58020e9 −0.0693812
\(276\) −9.31650e10 −0.966411
\(277\) −1.25529e11 −1.28110 −0.640551 0.767915i \(-0.721294\pi\)
−0.640551 + 0.767915i \(0.721294\pi\)
\(278\) −1.15418e11 −1.15897
\(279\) 6.51587e10 0.643804
\(280\) −1.63987e11 −1.59440
\(281\) 7.64846e10 0.731805 0.365903 0.930653i \(-0.380760\pi\)
0.365903 + 0.930653i \(0.380760\pi\)
\(282\) 1.21280e11 1.14201
\(283\) −1.23517e11 −1.14469 −0.572343 0.820014i \(-0.693965\pi\)
−0.572343 + 0.820014i \(0.693965\pi\)
\(284\) 2.10547e11 1.92051
\(285\) 6.59750e9 0.0592349
\(286\) 8.46075e10 0.747759
\(287\) 3.18103e10 0.276757
\(288\) 1.68191e11 1.44057
\(289\) −3.49467e10 −0.294691
\(290\) 1.99504e11 1.65638
\(291\) 2.50154e10 0.204498
\(292\) −5.08645e11 −4.09442
\(293\) 1.54221e11 1.22248 0.611238 0.791447i \(-0.290672\pi\)
0.611238 + 0.791447i \(0.290672\pi\)
\(294\) −5.88081e9 −0.0459065
\(295\) 9.42894e10 0.724876
\(296\) 8.31645e11 6.29688
\(297\) 8.95229e9 0.0667621
\(298\) −1.93240e11 −1.41946
\(299\) −9.16222e10 −0.662950
\(300\) −4.52641e10 −0.322633
\(301\) 3.36276e10 0.236128
\(302\) 3.13347e11 2.16768
\(303\) 6.52725e10 0.444875
\(304\) −1.37089e11 −0.920601
\(305\) −2.44231e10 −0.161603
\(306\) 8.36312e10 0.545283
\(307\) 9.77171e10 0.627839 0.313919 0.949450i \(-0.398358\pi\)
0.313919 + 0.949450i \(0.398358\pi\)
\(308\) 1.56177e11 0.988869
\(309\) −4.74277e10 −0.295951
\(310\) 2.73572e11 1.68245
\(311\) −1.54504e11 −0.936523 −0.468261 0.883590i \(-0.655119\pi\)
−0.468261 + 0.883590i \(0.655119\pi\)
\(312\) 3.73703e11 2.23270
\(313\) −3.16612e11 −1.86456 −0.932282 0.361732i \(-0.882186\pi\)
−0.932282 + 0.361732i \(0.882186\pi\)
\(314\) −6.06600e11 −3.52143
\(315\) −2.65754e10 −0.152083
\(316\) 9.60045e11 5.41626
\(317\) −1.83066e11 −1.01822 −0.509109 0.860702i \(-0.670025\pi\)
−0.509109 + 0.860702i \(0.670025\pi\)
\(318\) −3.87774e10 −0.212645
\(319\) −1.22001e11 −0.659637
\(320\) 3.69536e11 1.97007
\(321\) −1.65215e11 −0.868516
\(322\) −2.29655e11 −1.19049
\(323\) −3.76899e10 −0.192670
\(324\) 6.15813e10 0.310453
\(325\) −4.45145e10 −0.221323
\(326\) 1.26074e11 0.618226
\(327\) 1.44110e11 0.696995
\(328\) −1.98718e11 −0.947995
\(329\) 2.20164e11 1.03601
\(330\) 3.75865e10 0.174469
\(331\) −1.91317e11 −0.876050 −0.438025 0.898963i \(-0.644322\pi\)
−0.438025 + 0.898963i \(0.644322\pi\)
\(332\) 5.80221e11 2.62103
\(333\) 1.34775e11 0.600633
\(334\) 4.19793e11 1.84577
\(335\) −1.61449e11 −0.700380
\(336\) 5.52207e11 2.36361
\(337\) −3.93309e10 −0.166111 −0.0830556 0.996545i \(-0.526468\pi\)
−0.0830556 + 0.996545i \(0.526468\pi\)
\(338\) 1.04974e11 0.437480
\(339\) −1.06508e11 −0.438010
\(340\) 2.58582e11 1.04941
\(341\) −1.67294e11 −0.670019
\(342\) −3.76854e10 −0.148955
\(343\) 2.50848e11 0.978561
\(344\) −2.10071e11 −0.808824
\(345\) −4.07028e10 −0.154681
\(346\) 3.90978e11 1.46659
\(347\) −2.16441e11 −0.801412 −0.400706 0.916207i \(-0.631235\pi\)
−0.400706 + 0.916207i \(0.631235\pi\)
\(348\) −8.39224e11 −3.06740
\(349\) −2.02993e11 −0.732429 −0.366215 0.930530i \(-0.619346\pi\)
−0.366215 + 0.930530i \(0.619346\pi\)
\(350\) −1.11578e11 −0.397440
\(351\) 6.05615e10 0.212968
\(352\) −4.31828e11 −1.49923
\(353\) 2.08347e11 0.714169 0.357084 0.934072i \(-0.383771\pi\)
0.357084 + 0.934072i \(0.383771\pi\)
\(354\) −5.38587e11 −1.82281
\(355\) 9.19856e10 0.307392
\(356\) 5.97925e11 1.97298
\(357\) 1.51818e11 0.494672
\(358\) −1.84421e11 −0.593385
\(359\) 8.40964e10 0.267210 0.133605 0.991035i \(-0.457345\pi\)
0.133605 + 0.991035i \(0.457345\pi\)
\(360\) 1.66016e11 0.520941
\(361\) 1.69836e10 0.0526316
\(362\) 8.13895e11 2.49103
\(363\) 1.68009e11 0.507870
\(364\) 1.05653e12 3.15445
\(365\) −2.22222e11 −0.655342
\(366\) 1.39506e11 0.406376
\(367\) 1.85725e11 0.534408 0.267204 0.963640i \(-0.413900\pi\)
0.267204 + 0.963640i \(0.413900\pi\)
\(368\) 8.45760e11 2.40399
\(369\) −3.22039e10 −0.0904252
\(370\) 5.65857e11 1.56963
\(371\) −7.03938e10 −0.192909
\(372\) −1.15079e12 −3.11568
\(373\) −1.06693e11 −0.285396 −0.142698 0.989766i \(-0.545578\pi\)
−0.142698 + 0.989766i \(0.545578\pi\)
\(374\) −2.14722e11 −0.567486
\(375\) −1.97754e10 −0.0516398
\(376\) −1.37536e12 −3.54872
\(377\) −8.25326e11 −2.10421
\(378\) 1.51800e11 0.382437
\(379\) 1.16373e11 0.289719 0.144859 0.989452i \(-0.453727\pi\)
0.144859 + 0.989452i \(0.453727\pi\)
\(380\) −1.16521e11 −0.286667
\(381\) 2.25494e11 0.548243
\(382\) 7.91501e11 1.90181
\(383\) −2.49862e11 −0.593342 −0.296671 0.954980i \(-0.595877\pi\)
−0.296671 + 0.954980i \(0.595877\pi\)
\(384\) −1.04768e12 −2.45890
\(385\) 6.82320e10 0.158276
\(386\) 3.45535e11 0.792226
\(387\) −3.40437e10 −0.0771503
\(388\) −4.41806e11 −0.989667
\(389\) 8.71290e11 1.92925 0.964627 0.263618i \(-0.0849158\pi\)
0.964627 + 0.263618i \(0.0849158\pi\)
\(390\) 2.54270e11 0.556550
\(391\) 2.32525e11 0.503122
\(392\) 6.66905e10 0.142652
\(393\) 1.23869e11 0.261937
\(394\) −2.98493e11 −0.624024
\(395\) 4.19433e11 0.866914
\(396\) −1.58109e11 −0.323094
\(397\) −3.39189e11 −0.685306 −0.342653 0.939462i \(-0.611325\pi\)
−0.342653 + 0.939462i \(0.611325\pi\)
\(398\) −1.32107e12 −2.63907
\(399\) −6.84114e10 −0.135130
\(400\) 4.10911e11 0.802561
\(401\) 2.63453e11 0.508808 0.254404 0.967098i \(-0.418121\pi\)
0.254404 + 0.967098i \(0.418121\pi\)
\(402\) 9.22207e11 1.76121
\(403\) −1.13173e12 −2.13733
\(404\) −1.15280e12 −2.15297
\(405\) 2.69042e10 0.0496904
\(406\) −2.06872e12 −3.77863
\(407\) −3.46033e11 −0.625089
\(408\) −9.48408e11 −1.69443
\(409\) 2.46141e10 0.0434940 0.0217470 0.999764i \(-0.493077\pi\)
0.0217470 + 0.999764i \(0.493077\pi\)
\(410\) −1.35209e11 −0.236308
\(411\) −7.40577e10 −0.128021
\(412\) 8.37638e11 1.43225
\(413\) −9.77714e11 −1.65362
\(414\) 2.32497e11 0.388970
\(415\) 2.53492e11 0.419516
\(416\) −2.92128e12 −4.78248
\(417\) 2.12114e11 0.343524
\(418\) 9.67568e10 0.155020
\(419\) −4.37161e11 −0.692912 −0.346456 0.938066i \(-0.612615\pi\)
−0.346456 + 0.938066i \(0.612615\pi\)
\(420\) 4.69357e11 0.736006
\(421\) −1.26591e12 −1.96397 −0.981983 0.188967i \(-0.939486\pi\)
−0.981983 + 0.188967i \(0.939486\pi\)
\(422\) 6.81118e10 0.104548
\(423\) −2.22888e11 −0.338498
\(424\) 4.39749e11 0.660783
\(425\) 1.12972e11 0.167965
\(426\) −5.25428e11 −0.772983
\(427\) 2.53250e11 0.368658
\(428\) 2.91793e12 4.20317
\(429\) −1.55491e11 −0.221640
\(430\) −1.42934e11 −0.201617
\(431\) −1.24026e12 −1.73128 −0.865638 0.500670i \(-0.833087\pi\)
−0.865638 + 0.500670i \(0.833087\pi\)
\(432\) −5.59040e11 −0.772265
\(433\) −1.31908e12 −1.80333 −0.901663 0.432440i \(-0.857653\pi\)
−0.901663 + 0.432440i \(0.857653\pi\)
\(434\) −2.83674e12 −3.83810
\(435\) −3.66648e11 −0.490961
\(436\) −2.54518e12 −3.37310
\(437\) −1.04779e11 −0.137438
\(438\) 1.26934e12 1.64796
\(439\) 3.97666e11 0.511009 0.255504 0.966808i \(-0.417758\pi\)
0.255504 + 0.966808i \(0.417758\pi\)
\(440\) −4.26245e11 −0.542153
\(441\) 1.08077e10 0.0136069
\(442\) −1.45258e12 −1.81026
\(443\) 1.46310e12 1.80492 0.902459 0.430776i \(-0.141760\pi\)
0.902459 + 0.430776i \(0.141760\pi\)
\(444\) −2.38030e12 −2.90676
\(445\) 2.61227e11 0.315790
\(446\) 6.58945e11 0.788574
\(447\) 3.55135e11 0.420736
\(448\) −3.83183e12 −4.49423
\(449\) −6.06007e11 −0.703670 −0.351835 0.936062i \(-0.614442\pi\)
−0.351835 + 0.936062i \(0.614442\pi\)
\(450\) 1.12958e11 0.129856
\(451\) 8.26831e10 0.0941071
\(452\) 1.88108e12 2.11975
\(453\) −5.75867e11 −0.642511
\(454\) 1.19763e12 1.32303
\(455\) 4.61584e11 0.504893
\(456\) 4.27366e11 0.462869
\(457\) −4.26247e10 −0.0457129 −0.0228565 0.999739i \(-0.507276\pi\)
−0.0228565 + 0.999739i \(0.507276\pi\)
\(458\) 1.78498e12 1.89557
\(459\) −1.53697e11 −0.161625
\(460\) 7.18866e11 0.748579
\(461\) 1.33600e12 1.37770 0.688848 0.724906i \(-0.258117\pi\)
0.688848 + 0.724906i \(0.258117\pi\)
\(462\) −3.89746e11 −0.398009
\(463\) 6.09893e11 0.616792 0.308396 0.951258i \(-0.400208\pi\)
0.308396 + 0.951258i \(0.400208\pi\)
\(464\) 7.61854e12 7.63029
\(465\) −5.02768e11 −0.498689
\(466\) −1.74438e12 −1.71358
\(467\) −1.43135e12 −1.39258 −0.696291 0.717760i \(-0.745168\pi\)
−0.696291 + 0.717760i \(0.745168\pi\)
\(468\) −1.06960e12 −1.03066
\(469\) 1.67411e12 1.59774
\(470\) −9.35806e11 −0.884597
\(471\) 1.11481e12 1.04377
\(472\) 6.10777e12 5.66427
\(473\) 8.74069e10 0.0802917
\(474\) −2.39583e12 −2.17998
\(475\) −5.09066e10 −0.0458831
\(476\) −2.68132e12 −2.39396
\(477\) 7.12648e10 0.0630293
\(478\) 3.21855e12 2.81991
\(479\) −7.23671e9 −0.00628103 −0.00314052 0.999995i \(-0.501000\pi\)
−0.00314052 + 0.999995i \(0.501000\pi\)
\(480\) −1.29777e12 −1.11586
\(481\) −2.34088e12 −1.99401
\(482\) −3.24100e12 −2.73506
\(483\) 4.22059e11 0.352867
\(484\) −2.96726e12 −2.45783
\(485\) −1.93020e11 −0.158404
\(486\) −1.53679e11 −0.124954
\(487\) 7.23563e11 0.582903 0.291451 0.956586i \(-0.405862\pi\)
0.291451 + 0.956586i \(0.405862\pi\)
\(488\) −1.58205e12 −1.26279
\(489\) −2.31698e11 −0.183245
\(490\) 4.53766e10 0.0355590
\(491\) 1.80191e12 1.39916 0.699579 0.714555i \(-0.253371\pi\)
0.699579 + 0.714555i \(0.253371\pi\)
\(492\) 5.68764e11 0.437612
\(493\) 2.09456e12 1.59692
\(494\) 6.54552e11 0.494508
\(495\) −6.90763e10 −0.0517137
\(496\) 1.04470e13 7.75038
\(497\) −9.53825e11 −0.701237
\(498\) −1.44797e12 −1.05494
\(499\) −1.35285e12 −0.976778 −0.488389 0.872626i \(-0.662415\pi\)
−0.488389 + 0.872626i \(0.662415\pi\)
\(500\) 3.49260e11 0.249910
\(501\) −7.71494e11 −0.547095
\(502\) −1.54474e12 −1.08564
\(503\) 5.68061e10 0.0395675 0.0197838 0.999804i \(-0.493702\pi\)
0.0197838 + 0.999804i \(0.493702\pi\)
\(504\) −1.72147e12 −1.18840
\(505\) −5.03646e11 −0.344599
\(506\) −5.96934e11 −0.404808
\(507\) −1.92921e11 −0.129672
\(508\) −3.98253e12 −2.65321
\(509\) −4.67991e11 −0.309035 −0.154518 0.987990i \(-0.549382\pi\)
−0.154518 + 0.987990i \(0.549382\pi\)
\(510\) −6.45302e11 −0.422374
\(511\) 2.30428e12 1.49500
\(512\) 5.16109e12 3.31914
\(513\) 6.92579e10 0.0441511
\(514\) −2.64544e12 −1.67172
\(515\) 3.65955e11 0.229242
\(516\) 6.01258e11 0.373368
\(517\) 5.72264e11 0.352281
\(518\) −5.86753e12 −3.58073
\(519\) −7.18537e11 −0.434707
\(520\) −2.88351e12 −1.72945
\(521\) 1.37815e12 0.819456 0.409728 0.912208i \(-0.365624\pi\)
0.409728 + 0.912208i \(0.365624\pi\)
\(522\) 2.09432e12 1.23460
\(523\) −1.08970e12 −0.636869 −0.318434 0.947945i \(-0.603157\pi\)
−0.318434 + 0.947945i \(0.603157\pi\)
\(524\) −2.18770e12 −1.26764
\(525\) 2.05057e11 0.117803
\(526\) −1.98497e12 −1.13063
\(527\) 2.87219e12 1.62205
\(528\) 1.43533e12 0.803710
\(529\) −1.15473e12 −0.641105
\(530\) 2.99208e11 0.164714
\(531\) 9.89812e11 0.540291
\(532\) 1.20824e12 0.653958
\(533\) 5.59345e11 0.300198
\(534\) −1.49215e12 −0.794101
\(535\) 1.27481e12 0.672750
\(536\) −1.04582e13 −5.47285
\(537\) 3.38928e11 0.175883
\(538\) 6.44975e12 3.31912
\(539\) −2.77487e10 −0.0141610
\(540\) −4.75164e11 −0.240476
\(541\) 3.81155e11 0.191300 0.0956498 0.995415i \(-0.469507\pi\)
0.0956498 + 0.995415i \(0.469507\pi\)
\(542\) −1.85345e12 −0.922536
\(543\) −1.49577e12 −0.738356
\(544\) 7.41381e12 3.62950
\(545\) −1.11196e12 −0.539890
\(546\) −2.63660e12 −1.26963
\(547\) −7.42468e11 −0.354597 −0.177298 0.984157i \(-0.556736\pi\)
−0.177298 + 0.984157i \(0.556736\pi\)
\(548\) 1.30796e12 0.619558
\(549\) −2.56383e11 −0.120452
\(550\) −2.90020e11 −0.135143
\(551\) −9.43840e11 −0.436231
\(552\) −2.63660e12 −1.20870
\(553\) −4.34923e12 −1.97765
\(554\) −5.53262e12 −2.49538
\(555\) −1.03993e12 −0.465248
\(556\) −3.74622e12 −1.66248
\(557\) 3.09585e12 1.36280 0.681399 0.731912i \(-0.261372\pi\)
0.681399 + 0.731912i \(0.261372\pi\)
\(558\) 2.87184e12 1.25403
\(559\) 5.91301e11 0.256127
\(560\) −4.26086e12 −1.83084
\(561\) 3.94615e11 0.168206
\(562\) 3.37103e12 1.42544
\(563\) 2.39148e12 1.00318 0.501589 0.865106i \(-0.332749\pi\)
0.501589 + 0.865106i \(0.332749\pi\)
\(564\) 3.93651e12 1.63816
\(565\) 8.21822e11 0.339281
\(566\) −5.44394e12 −2.22966
\(567\) −2.78978e11 −0.113356
\(568\) 5.95854e12 2.40200
\(569\) −1.16995e12 −0.467910 −0.233955 0.972247i \(-0.575167\pi\)
−0.233955 + 0.972247i \(0.575167\pi\)
\(570\) 2.90782e11 0.115380
\(571\) 1.70173e12 0.669927 0.334963 0.942231i \(-0.391276\pi\)
0.334963 + 0.942231i \(0.391276\pi\)
\(572\) 2.74618e12 1.07262
\(573\) −1.45462e12 −0.563706
\(574\) 1.40202e12 0.539078
\(575\) 3.14065e11 0.119816
\(576\) 3.87924e12 1.46840
\(577\) 4.20521e11 0.157942 0.0789708 0.996877i \(-0.474837\pi\)
0.0789708 + 0.996877i \(0.474837\pi\)
\(578\) −1.54026e12 −0.574010
\(579\) −6.35022e11 −0.234820
\(580\) 6.47549e12 2.37600
\(581\) −2.62854e12 −0.957021
\(582\) 1.10254e12 0.398330
\(583\) −1.82972e11 −0.0655957
\(584\) −1.43948e13 −5.12092
\(585\) −4.67296e11 −0.164964
\(586\) 6.79724e12 2.38119
\(587\) 1.77537e12 0.617190 0.308595 0.951194i \(-0.400141\pi\)
0.308595 + 0.951194i \(0.400141\pi\)
\(588\) −1.90879e11 −0.0658506
\(589\) −1.29425e12 −0.443096
\(590\) 4.15576e12 1.41194
\(591\) 5.48569e11 0.184964
\(592\) 2.16086e13 7.23067
\(593\) −4.24846e12 −1.41087 −0.705433 0.708777i \(-0.749247\pi\)
−0.705433 + 0.708777i \(0.749247\pi\)
\(594\) 3.94568e11 0.130042
\(595\) −1.17144e12 −0.383171
\(596\) −6.27216e12 −2.03615
\(597\) 2.42785e12 0.782234
\(598\) −4.03821e12 −1.29132
\(599\) −6.69285e10 −0.0212418 −0.0106209 0.999944i \(-0.503381\pi\)
−0.0106209 + 0.999944i \(0.503381\pi\)
\(600\) −1.28099e12 −0.403519
\(601\) −2.76803e12 −0.865436 −0.432718 0.901529i \(-0.642445\pi\)
−0.432718 + 0.901529i \(0.642445\pi\)
\(602\) 1.48212e12 0.459939
\(603\) −1.69483e12 −0.522032
\(604\) 1.01706e13 3.10943
\(605\) −1.29636e12 −0.393394
\(606\) 2.87686e12 0.866546
\(607\) −9.85957e11 −0.294787 −0.147394 0.989078i \(-0.547088\pi\)
−0.147394 + 0.989078i \(0.547088\pi\)
\(608\) −3.34076e12 −0.991471
\(609\) 3.80188e12 1.12001
\(610\) −1.07644e12 −0.314778
\(611\) 3.87132e12 1.12376
\(612\) 2.71449e12 0.782181
\(613\) −1.08226e12 −0.309569 −0.154785 0.987948i \(-0.549468\pi\)
−0.154785 + 0.987948i \(0.549468\pi\)
\(614\) 4.30684e12 1.22293
\(615\) 2.48487e11 0.0700431
\(616\) 4.41986e12 1.23679
\(617\) −1.91309e12 −0.531436 −0.265718 0.964051i \(-0.585609\pi\)
−0.265718 + 0.964051i \(0.585609\pi\)
\(618\) −2.09036e12 −0.576464
\(619\) −3.11172e12 −0.851909 −0.425955 0.904745i \(-0.640062\pi\)
−0.425955 + 0.904745i \(0.640062\pi\)
\(620\) 8.87956e12 2.41340
\(621\) −4.27282e11 −0.115293
\(622\) −6.80971e12 −1.82420
\(623\) −2.70874e12 −0.720396
\(624\) 9.70990e12 2.56380
\(625\) 1.52588e11 0.0400000
\(626\) −1.39545e13 −3.63187
\(627\) −1.77819e11 −0.0459488
\(628\) −1.96890e13 −5.05132
\(629\) 5.94084e12 1.51328
\(630\) −1.17130e12 −0.296234
\(631\) 7.40098e12 1.85848 0.929238 0.369482i \(-0.120465\pi\)
0.929238 + 0.369482i \(0.120465\pi\)
\(632\) 2.71696e13 6.77417
\(633\) −1.25175e11 −0.0309886
\(634\) −8.06855e12 −1.98332
\(635\) −1.73992e12 −0.424667
\(636\) −1.25863e12 −0.305029
\(637\) −1.87718e11 −0.0451729
\(638\) −5.37714e12 −1.28487
\(639\) 9.65628e11 0.229116
\(640\) 8.08398e12 1.90465
\(641\) −2.20386e12 −0.515611 −0.257805 0.966197i \(-0.582999\pi\)
−0.257805 + 0.966197i \(0.582999\pi\)
\(642\) −7.28180e12 −1.69173
\(643\) −1.58888e12 −0.366557 −0.183278 0.983061i \(-0.558671\pi\)
−0.183278 + 0.983061i \(0.558671\pi\)
\(644\) −7.45413e12 −1.70770
\(645\) 2.62683e11 0.0597603
\(646\) −1.66116e12 −0.375289
\(647\) 5.75384e12 1.29089 0.645444 0.763808i \(-0.276673\pi\)
0.645444 + 0.763808i \(0.276673\pi\)
\(648\) 1.74277e12 0.388287
\(649\) −2.54133e12 −0.562290
\(650\) −1.96196e12 −0.431102
\(651\) 5.21335e12 1.13763
\(652\) 4.09211e12 0.886814
\(653\) 4.53046e12 0.975064 0.487532 0.873105i \(-0.337897\pi\)
0.487532 + 0.873105i \(0.337897\pi\)
\(654\) 6.35159e12 1.35763
\(655\) −9.55782e11 −0.202896
\(656\) −5.16328e12 −1.08858
\(657\) −2.33279e12 −0.488463
\(658\) 9.70364e12 2.01799
\(659\) −6.30093e12 −1.30143 −0.650714 0.759323i \(-0.725530\pi\)
−0.650714 + 0.759323i \(0.725530\pi\)
\(660\) 1.21998e12 0.250268
\(661\) 9.57086e11 0.195004 0.0975022 0.995235i \(-0.468915\pi\)
0.0975022 + 0.995235i \(0.468915\pi\)
\(662\) −8.43224e12 −1.70640
\(663\) 2.66954e12 0.536569
\(664\) 1.64204e13 3.27815
\(665\) 5.27866e11 0.104671
\(666\) 5.94014e12 1.16994
\(667\) 5.82295e12 1.13914
\(668\) 1.36256e13 2.64766
\(669\) −1.21101e12 −0.233738
\(670\) −7.11580e12 −1.36423
\(671\) 6.58262e11 0.125357
\(672\) 1.34569e13 2.54556
\(673\) 9.83184e11 0.184743 0.0923713 0.995725i \(-0.470555\pi\)
0.0923713 + 0.995725i \(0.470555\pi\)
\(674\) −1.73349e12 −0.323558
\(675\) −2.07594e11 −0.0384900
\(676\) 3.40725e12 0.627544
\(677\) −9.04907e12 −1.65560 −0.827799 0.561025i \(-0.810407\pi\)
−0.827799 + 0.561025i \(0.810407\pi\)
\(678\) −4.69430e12 −0.853174
\(679\) 2.00148e12 0.361358
\(680\) 7.31796e12 1.31250
\(681\) −2.20099e12 −0.392153
\(682\) −7.37343e12 −1.30509
\(683\) 1.79559e12 0.315729 0.157864 0.987461i \(-0.449539\pi\)
0.157864 + 0.987461i \(0.449539\pi\)
\(684\) −1.22319e12 −0.213669
\(685\) 5.71433e11 0.0991649
\(686\) 1.10560e13 1.90608
\(687\) −3.28043e12 −0.561856
\(688\) −5.45827e12 −0.928767
\(689\) −1.23779e12 −0.209247
\(690\) −1.79396e12 −0.301295
\(691\) 4.59106e12 0.766058 0.383029 0.923736i \(-0.374881\pi\)
0.383029 + 0.923736i \(0.374881\pi\)
\(692\) 1.26903e13 2.10376
\(693\) 7.16272e11 0.117972
\(694\) −9.53953e12 −1.56102
\(695\) −1.63668e12 −0.266093
\(696\) −2.37503e13 −3.83643
\(697\) −1.41954e12 −0.227825
\(698\) −8.94681e12 −1.42666
\(699\) 3.20581e12 0.507915
\(700\) −3.62158e12 −0.570108
\(701\) −5.07126e12 −0.793203 −0.396602 0.917991i \(-0.629811\pi\)
−0.396602 + 0.917991i \(0.629811\pi\)
\(702\) 2.66922e12 0.414828
\(703\) −2.67703e12 −0.413384
\(704\) −9.95992e12 −1.52820
\(705\) 1.71982e12 0.262199
\(706\) 9.18280e12 1.39109
\(707\) 5.22245e12 0.786116
\(708\) −1.74814e13 −2.61473
\(709\) −4.91552e12 −0.730569 −0.365284 0.930896i \(-0.619028\pi\)
−0.365284 + 0.930896i \(0.619028\pi\)
\(710\) 4.05423e12 0.598750
\(711\) 4.40304e12 0.646159
\(712\) 1.69215e13 2.46762
\(713\) 7.98476e12 1.15707
\(714\) 6.69133e12 0.963542
\(715\) 1.19978e12 0.171682
\(716\) −5.98592e12 −0.851182
\(717\) −5.91503e12 −0.835835
\(718\) 3.70651e12 0.520482
\(719\) −6.89392e12 −0.962024 −0.481012 0.876714i \(-0.659731\pi\)
−0.481012 + 0.876714i \(0.659731\pi\)
\(720\) 4.31358e12 0.598194
\(721\) −3.79469e12 −0.522959
\(722\) 7.48544e11 0.102518
\(723\) 5.95628e12 0.810687
\(724\) 2.64173e13 3.57327
\(725\) 2.82907e12 0.380297
\(726\) 7.40492e12 0.989249
\(727\) 1.69634e12 0.225221 0.112611 0.993639i \(-0.464079\pi\)
0.112611 + 0.993639i \(0.464079\pi\)
\(728\) 2.99000e13 3.94530
\(729\) 2.82430e11 0.0370370
\(730\) −9.79432e12 −1.27650
\(731\) −1.50064e12 −0.194379
\(732\) 4.52808e12 0.582927
\(733\) 1.39450e13 1.78423 0.892116 0.451807i \(-0.149220\pi\)
0.892116 + 0.451807i \(0.149220\pi\)
\(734\) 8.18575e12 1.04094
\(735\) −8.33929e10 −0.0105399
\(736\) 2.06106e13 2.58905
\(737\) 4.35145e12 0.543289
\(738\) −1.41937e12 −0.176134
\(739\) −1.47101e13 −1.81433 −0.907164 0.420776i \(-0.861758\pi\)
−0.907164 + 0.420776i \(0.861758\pi\)
\(740\) 1.83665e13 2.25156
\(741\) −1.20293e12 −0.146575
\(742\) −3.10258e12 −0.375755
\(743\) 7.23918e11 0.0871445 0.0435722 0.999050i \(-0.486126\pi\)
0.0435722 + 0.999050i \(0.486126\pi\)
\(744\) −3.25678e13 −3.89681
\(745\) −2.74024e12 −0.325901
\(746\) −4.70247e12 −0.555906
\(747\) 2.66106e12 0.312689
\(748\) −6.96944e12 −0.814030
\(749\) −1.32189e13 −1.53471
\(750\) −8.71592e11 −0.100586
\(751\) −7.53196e12 −0.864028 −0.432014 0.901867i \(-0.642197\pi\)
−0.432014 + 0.901867i \(0.642197\pi\)
\(752\) −3.57359e13 −4.07498
\(753\) 2.83891e12 0.321791
\(754\) −3.63759e13 −4.09867
\(755\) 4.44342e12 0.497687
\(756\) 4.92712e12 0.548586
\(757\) −4.62291e11 −0.0511663 −0.0255831 0.999673i \(-0.508144\pi\)
−0.0255831 + 0.999673i \(0.508144\pi\)
\(758\) 5.12910e12 0.564325
\(759\) 1.09704e12 0.119987
\(760\) −3.29757e12 −0.358536
\(761\) 7.87029e12 0.850667 0.425333 0.905037i \(-0.360157\pi\)
0.425333 + 0.905037i \(0.360157\pi\)
\(762\) 9.93856e12 1.06789
\(763\) 1.15302e13 1.23162
\(764\) 2.56905e13 2.72805
\(765\) 1.18593e12 0.125194
\(766\) −1.10126e13 −1.15574
\(767\) −1.71919e13 −1.79368
\(768\) −2.16556e13 −2.24618
\(769\) 1.38588e13 1.42909 0.714543 0.699591i \(-0.246634\pi\)
0.714543 + 0.699591i \(0.246634\pi\)
\(770\) 3.00730e12 0.308296
\(771\) 4.86178e12 0.495508
\(772\) 1.12153e13 1.13641
\(773\) −9.39099e10 −0.00946027 −0.00473014 0.999989i \(-0.501506\pi\)
−0.00473014 + 0.999989i \(0.501506\pi\)
\(774\) −1.50046e12 −0.150276
\(775\) 3.87938e12 0.386282
\(776\) −1.25033e13 −1.23779
\(777\) 1.07833e13 1.06135
\(778\) 3.84017e13 3.75788
\(779\) 6.39665e11 0.0622349
\(780\) 8.25307e12 0.798344
\(781\) −2.47924e12 −0.238445
\(782\) 1.02484e13 0.980002
\(783\) −3.84892e12 −0.365941
\(784\) 1.73281e12 0.163806
\(785\) −8.60190e12 −0.808502
\(786\) 5.45949e12 0.510212
\(787\) 1.83669e12 0.170667 0.0853337 0.996352i \(-0.472804\pi\)
0.0853337 + 0.996352i \(0.472804\pi\)
\(788\) −9.68846e12 −0.895131
\(789\) 3.64797e12 0.335123
\(790\) 1.84863e13 1.68861
\(791\) −8.52171e12 −0.773985
\(792\) −4.47455e12 −0.404097
\(793\) 4.45309e12 0.399883
\(794\) −1.49496e13 −1.33487
\(795\) −5.49883e11 −0.0488223
\(796\) −4.28791e13 −3.78561
\(797\) 6.43629e12 0.565033 0.282516 0.959263i \(-0.408831\pi\)
0.282516 + 0.959263i \(0.408831\pi\)
\(798\) −3.01520e12 −0.263211
\(799\) −9.82488e12 −0.852839
\(800\) 1.00136e13 0.864344
\(801\) 2.74226e12 0.235376
\(802\) 1.16116e13 0.991077
\(803\) 5.98942e12 0.508353
\(804\) 2.99329e13 2.52637
\(805\) −3.25663e12 −0.273330
\(806\) −4.98807e13 −4.16318
\(807\) −1.18533e13 −0.983804
\(808\) −3.26246e13 −2.69274
\(809\) 2.12306e13 1.74259 0.871293 0.490764i \(-0.163282\pi\)
0.871293 + 0.490764i \(0.163282\pi\)
\(810\) 1.18579e12 0.0967889
\(811\) 1.85699e13 1.50735 0.753676 0.657246i \(-0.228279\pi\)
0.753676 + 0.657246i \(0.228279\pi\)
\(812\) −6.71463e13 −5.42025
\(813\) 3.40625e12 0.273445
\(814\) −1.52512e13 −1.21757
\(815\) 1.78780e12 0.141941
\(816\) −2.46424e13 −1.94571
\(817\) 6.76209e11 0.0530984
\(818\) 1.08486e12 0.0847194
\(819\) 4.84553e12 0.376325
\(820\) −4.38861e12 −0.338973
\(821\) 2.59313e13 1.99196 0.995979 0.0895905i \(-0.0285558\pi\)
0.995979 + 0.0895905i \(0.0285558\pi\)
\(822\) −3.26406e12 −0.249365
\(823\) −6.50569e12 −0.494304 −0.247152 0.968977i \(-0.579495\pi\)
−0.247152 + 0.968977i \(0.579495\pi\)
\(824\) 2.37054e13 1.79133
\(825\) 5.32996e11 0.0400573
\(826\) −4.30923e13 −3.22099
\(827\) 4.21977e12 0.313700 0.156850 0.987622i \(-0.449866\pi\)
0.156850 + 0.987622i \(0.449866\pi\)
\(828\) 7.54637e12 0.557958
\(829\) −1.76300e13 −1.29645 −0.648226 0.761448i \(-0.724489\pi\)
−0.648226 + 0.761448i \(0.724489\pi\)
\(830\) 1.11726e13 0.817150
\(831\) 1.01678e13 0.739645
\(832\) −6.73781e13 −4.87488
\(833\) 4.76402e11 0.0342824
\(834\) 9.34885e12 0.669130
\(835\) 5.95288e12 0.423778
\(836\) 3.14052e12 0.222369
\(837\) −5.27786e12 −0.371700
\(838\) −1.92677e13 −1.34968
\(839\) 6.41184e12 0.446739 0.223370 0.974734i \(-0.428294\pi\)
0.223370 + 0.974734i \(0.428294\pi\)
\(840\) 1.32829e13 0.920529
\(841\) 3.79455e13 2.61564
\(842\) −5.57946e13 −3.82549
\(843\) −6.19525e12 −0.422508
\(844\) 2.21077e12 0.149969
\(845\) 1.48859e12 0.100443
\(846\) −9.82371e12 −0.659339
\(847\) 1.34424e13 0.897431
\(848\) 1.14260e13 0.758772
\(849\) 1.00048e13 0.660885
\(850\) 4.97919e12 0.327170
\(851\) 1.65157e13 1.07948
\(852\) −1.70543e13 −1.10881
\(853\) −1.41347e13 −0.914148 −0.457074 0.889429i \(-0.651103\pi\)
−0.457074 + 0.889429i \(0.651103\pi\)
\(854\) 1.11619e13 0.718087
\(855\) −5.34398e11 −0.0341993
\(856\) 8.25782e13 5.25695
\(857\) −1.39516e13 −0.883509 −0.441754 0.897136i \(-0.645644\pi\)
−0.441754 + 0.897136i \(0.645644\pi\)
\(858\) −6.85321e12 −0.431719
\(859\) 1.30236e13 0.816137 0.408069 0.912951i \(-0.366202\pi\)
0.408069 + 0.912951i \(0.366202\pi\)
\(860\) −4.63933e12 −0.289209
\(861\) −2.57663e12 −0.159786
\(862\) −5.46641e13 −3.37225
\(863\) −2.48472e13 −1.52485 −0.762427 0.647075i \(-0.775992\pi\)
−0.762427 + 0.647075i \(0.775992\pi\)
\(864\) −1.36234e13 −0.831715
\(865\) 5.54427e12 0.336722
\(866\) −5.81377e13 −3.51259
\(867\) 2.83068e12 0.170140
\(868\) −9.20748e13 −5.50557
\(869\) −1.13048e13 −0.672470
\(870\) −1.61598e13 −0.956314
\(871\) 2.94372e13 1.73307
\(872\) −7.20294e13 −4.21877
\(873\) −2.02625e12 −0.118067
\(874\) −4.61808e12 −0.267707
\(875\) −1.58223e12 −0.0912500
\(876\) 4.12003e13 2.36391
\(877\) −2.65977e12 −0.151826 −0.0759130 0.997114i \(-0.524187\pi\)
−0.0759130 + 0.997114i \(0.524187\pi\)
\(878\) 1.75270e13 0.995363
\(879\) −1.24919e13 −0.705797
\(880\) −1.10751e13 −0.622551
\(881\) −2.73738e13 −1.53089 −0.765444 0.643503i \(-0.777481\pi\)
−0.765444 + 0.643503i \(0.777481\pi\)
\(882\) 4.76346e11 0.0265041
\(883\) −1.30273e13 −0.721157 −0.360579 0.932729i \(-0.617421\pi\)
−0.360579 + 0.932729i \(0.617421\pi\)
\(884\) −4.71477e13 −2.59672
\(885\) −7.63744e12 −0.418507
\(886\) 6.44856e13 3.51569
\(887\) −1.66187e13 −0.901448 −0.450724 0.892663i \(-0.648834\pi\)
−0.450724 + 0.892663i \(0.648834\pi\)
\(888\) −6.73633e13 −3.63551
\(889\) 1.80418e13 0.968772
\(890\) 1.15135e13 0.615108
\(891\) −7.25135e11 −0.0385451
\(892\) 2.13880e13 1.13117
\(893\) 4.42723e12 0.232970
\(894\) 1.56524e13 0.819526
\(895\) −2.61518e12 −0.136238
\(896\) −8.38252e13 −4.34499
\(897\) 7.42140e12 0.382754
\(898\) −2.67095e13 −1.37064
\(899\) 7.19261e13 3.67255
\(900\) 3.66639e12 0.186272
\(901\) 3.14134e12 0.158801
\(902\) 3.64423e12 0.183306
\(903\) −2.72384e12 −0.136328
\(904\) 5.32351e13 2.65118
\(905\) 1.15414e13 0.571928
\(906\) −2.53811e13 −1.25151
\(907\) 1.92284e13 0.943430 0.471715 0.881751i \(-0.343635\pi\)
0.471715 + 0.881751i \(0.343635\pi\)
\(908\) 3.88724e13 1.89782
\(909\) −5.28707e12 −0.256849
\(910\) 2.03441e13 0.983452
\(911\) −9.41594e12 −0.452930 −0.226465 0.974019i \(-0.572717\pi\)
−0.226465 + 0.974019i \(0.572717\pi\)
\(912\) 1.11042e13 0.531509
\(913\) −6.83225e12 −0.325421
\(914\) −1.87867e12 −0.0890414
\(915\) 1.97827e12 0.0933018
\(916\) 5.79368e13 2.71910
\(917\) 9.91078e12 0.462856
\(918\) −6.77413e12 −0.314819
\(919\) 2.02616e13 0.937032 0.468516 0.883455i \(-0.344789\pi\)
0.468516 + 0.883455i \(0.344789\pi\)
\(920\) 2.03441e13 0.936255
\(921\) −7.91509e12 −0.362483
\(922\) 5.88838e13 2.68353
\(923\) −1.67719e13 −0.760631
\(924\) −1.26503e13 −0.570924
\(925\) 8.02413e12 0.360380
\(926\) 2.68808e13 1.20141
\(927\) 3.84165e12 0.170867
\(928\) 1.85659e14 8.21768
\(929\) −1.43793e13 −0.633382 −0.316691 0.948529i \(-0.602572\pi\)
−0.316691 + 0.948529i \(0.602572\pi\)
\(930\) −2.21593e13 −0.971365
\(931\) −2.14673e11 −0.00936493
\(932\) −5.66189e13 −2.45805
\(933\) 1.25148e13 0.540702
\(934\) −6.30863e13 −2.71253
\(935\) −3.04487e12 −0.130292
\(936\) −3.02700e13 −1.28905
\(937\) 2.74023e13 1.16134 0.580670 0.814139i \(-0.302791\pi\)
0.580670 + 0.814139i \(0.302791\pi\)
\(938\) 7.37858e13 3.11215
\(939\) 2.56455e13 1.07651
\(940\) −3.03743e13 −1.26891
\(941\) 2.29331e13 0.953474 0.476737 0.879046i \(-0.341819\pi\)
0.476737 + 0.879046i \(0.341819\pi\)
\(942\) 4.91346e13 2.03310
\(943\) −3.94636e12 −0.162515
\(944\) 1.58698e14 6.50424
\(945\) 2.15260e12 0.0878054
\(946\) 3.85242e12 0.156395
\(947\) 1.25586e13 0.507419 0.253710 0.967280i \(-0.418349\pi\)
0.253710 + 0.967280i \(0.418349\pi\)
\(948\) −7.77637e13 −3.12708
\(949\) 4.05180e13 1.62162
\(950\) −2.24369e12 −0.0893730
\(951\) 1.48283e13 0.587868
\(952\) −7.58821e13 −2.99415
\(953\) −3.50799e12 −0.137765 −0.0688826 0.997625i \(-0.521943\pi\)
−0.0688826 + 0.997625i \(0.521943\pi\)
\(954\) 3.14097e12 0.122771
\(955\) 1.12239e13 0.436644
\(956\) 1.04467e14 4.04501
\(957\) 9.88207e12 0.380841
\(958\) −3.18955e11 −0.0122344
\(959\) −5.92536e12 −0.226220
\(960\) −2.99324e13 −1.13742
\(961\) 7.21895e13 2.73035
\(962\) −1.03173e14 −3.88401
\(963\) 1.33824e13 0.501438
\(964\) −1.05196e14 −3.92331
\(965\) 4.89986e12 0.181891
\(966\) 1.86021e13 0.687329
\(967\) −1.77208e13 −0.651723 −0.325862 0.945417i \(-0.605654\pi\)
−0.325862 + 0.945417i \(0.605654\pi\)
\(968\) −8.39745e13 −3.07403
\(969\) 3.05288e12 0.111238
\(970\) −8.50729e12 −0.308545
\(971\) −1.70176e12 −0.0614344 −0.0307172 0.999528i \(-0.509779\pi\)
−0.0307172 + 0.999528i \(0.509779\pi\)
\(972\) −4.98809e12 −0.179240
\(973\) 1.69713e13 0.607024
\(974\) 3.18907e13 1.13540
\(975\) 3.60568e12 0.127781
\(976\) −4.11063e13 −1.45005
\(977\) 2.89765e13 1.01747 0.508733 0.860924i \(-0.330114\pi\)
0.508733 + 0.860924i \(0.330114\pi\)
\(978\) −1.02120e13 −0.356933
\(979\) −7.04072e12 −0.244960
\(980\) 1.47283e12 0.0510077
\(981\) −1.16729e13 −0.402410
\(982\) 7.94185e13 2.72534
\(983\) 2.03910e13 0.696542 0.348271 0.937394i \(-0.386769\pi\)
0.348271 + 0.937394i \(0.386769\pi\)
\(984\) 1.60962e13 0.547325
\(985\) −4.23278e12 −0.143273
\(986\) 9.23171e13 3.11054
\(987\) −1.78333e13 −0.598142
\(988\) 2.12454e13 0.709347
\(989\) −4.17182e12 −0.138657
\(990\) −3.04451e12 −0.100730
\(991\) 3.71402e13 1.22324 0.611621 0.791151i \(-0.290518\pi\)
0.611621 + 0.791151i \(0.290518\pi\)
\(992\) 2.54586e14 8.34702
\(993\) 1.54967e13 0.505787
\(994\) −4.20395e13 −1.36590
\(995\) −1.87334e13 −0.605916
\(996\) −4.69979e13 −1.51325
\(997\) −1.45346e13 −0.465882 −0.232941 0.972491i \(-0.574835\pi\)
−0.232941 + 0.972491i \(0.574835\pi\)
\(998\) −5.96261e13 −1.90261
\(999\) −1.09167e13 −0.346776
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.10.a.h.1.15 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.10.a.h.1.15 15 1.1 even 1 trivial