Properties

Label 285.10.a.h.1.14
Level $285$
Weight $10$
Character 285.1
Self dual yes
Analytic conductor $146.785$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.785213307\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 2 x^{14} - 6356 x^{13} + 18436 x^{12} + 15858707 x^{11} - 49616078 x^{10} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{6}\cdot 5^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(-43.1627\) of defining polynomial
Character \(\chi\) \(=\) 285.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+42.1627 q^{2} -81.0000 q^{3} +1265.69 q^{4} +625.000 q^{5} -3415.18 q^{6} +4307.69 q^{7} +31777.6 q^{8} +6561.00 q^{9} +O(q^{10})\) \(q+42.1627 q^{2} -81.0000 q^{3} +1265.69 q^{4} +625.000 q^{5} -3415.18 q^{6} +4307.69 q^{7} +31777.6 q^{8} +6561.00 q^{9} +26351.7 q^{10} +74234.4 q^{11} -102521. q^{12} +162840. q^{13} +181624. q^{14} -50625.0 q^{15} +691797. q^{16} +354849. q^{17} +276629. q^{18} -130321. q^{19} +791057. q^{20} -348922. q^{21} +3.12992e6 q^{22} -2.24746e6 q^{23} -2.57399e6 q^{24} +390625. q^{25} +6.86576e6 q^{26} -531441. q^{27} +5.45220e6 q^{28} -6.17653e6 q^{29} -2.13449e6 q^{30} -7.22564e6 q^{31} +1.28978e7 q^{32} -6.01298e6 q^{33} +1.49614e7 q^{34} +2.69230e6 q^{35} +8.30420e6 q^{36} +1.44539e7 q^{37} -5.49468e6 q^{38} -1.31900e7 q^{39} +1.98610e7 q^{40} -2.14921e7 q^{41} -1.47115e7 q^{42} +3.51253e7 q^{43} +9.39578e7 q^{44} +4.10062e6 q^{45} -9.47587e7 q^{46} -3.01514e6 q^{47} -5.60355e7 q^{48} -2.17975e7 q^{49} +1.64698e7 q^{50} -2.87428e7 q^{51} +2.06105e8 q^{52} -5.03255e6 q^{53} -2.24070e7 q^{54} +4.63965e7 q^{55} +1.36888e8 q^{56} +1.05560e7 q^{57} -2.60419e8 q^{58} +3.96681e7 q^{59} -6.40756e7 q^{60} +4.80705e7 q^{61} -3.04652e8 q^{62} +2.82627e7 q^{63} +1.89608e8 q^{64} +1.01775e8 q^{65} -2.53523e8 q^{66} +6.24392e7 q^{67} +4.49130e8 q^{68} +1.82044e8 q^{69} +1.13515e8 q^{70} +1.78442e8 q^{71} +2.08493e8 q^{72} +3.85248e8 q^{73} +6.09417e8 q^{74} -3.16406e7 q^{75} -1.64946e8 q^{76} +3.19778e8 q^{77} -5.56126e8 q^{78} -2.10411e8 q^{79} +4.32373e8 q^{80} +4.30467e7 q^{81} -9.06164e8 q^{82} +4.38569e8 q^{83} -4.41628e8 q^{84} +2.21781e8 q^{85} +1.48098e9 q^{86} +5.00299e8 q^{87} +2.35899e9 q^{88} -5.81991e8 q^{89} +1.72893e8 q^{90} +7.01462e8 q^{91} -2.84459e9 q^{92} +5.85277e8 q^{93} -1.27127e8 q^{94} -8.14506e7 q^{95} -1.04473e9 q^{96} -1.26012e9 q^{97} -9.19039e8 q^{98} +4.87052e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9} - 10625 q^{10} + 138230 q^{11} - 409455 q^{12} - 176712 q^{13} - 555994 q^{14} - 759375 q^{15} + 1695731 q^{16} - 274992 q^{17} - 111537 q^{18} - 1954815 q^{19} + 3159375 q^{20} - 109512 q^{21} - 1031106 q^{22} + 1714212 q^{23} + 291357 q^{24} + 5859375 q^{25} + 9500004 q^{26} - 7971615 q^{27} + 14545598 q^{28} + 1754340 q^{29} + 860625 q^{30} + 8442914 q^{31} + 35638859 q^{32} - 11196630 q^{33} + 47218266 q^{34} + 845000 q^{35} + 33165855 q^{36} + 2956096 q^{37} + 2215457 q^{38} + 14313672 q^{39} - 2248125 q^{40} - 38550502 q^{41} + 45035514 q^{42} + 50753570 q^{43} + 212125630 q^{44} + 61509375 q^{45} - 117130008 q^{46} - 40252876 q^{47} - 137354211 q^{48} + 110123035 q^{49} - 6640625 q^{50} + 22274352 q^{51} - 87136648 q^{52} + 65532542 q^{53} + 9034497 q^{54} + 86393750 q^{55} - 377288898 q^{56} + 158340015 q^{57} + 211630876 q^{58} + 175407418 q^{59} - 255909375 q^{60} + 151231854 q^{61} - 30983940 q^{62} + 8870472 q^{63} + 836879575 q^{64} - 110445000 q^{65} + 83519586 q^{66} + 40009476 q^{67} - 124850430 q^{68} - 138851172 q^{69} - 347496250 q^{70} + 87578500 q^{71} - 23599917 q^{72} - 360657638 q^{73} + 1373397084 q^{74} - 474609375 q^{75} - 658772655 q^{76} - 304618172 q^{77} - 769500324 q^{78} + 205798286 q^{79} + 1059831875 q^{80} + 645700815 q^{81} - 2327138772 q^{82} - 63321462 q^{83} - 1178193438 q^{84} - 171870000 q^{85} - 848405762 q^{86} - 142101540 q^{87} - 3211126502 q^{88} - 381069174 q^{89} - 69710625 q^{90} + 1476892872 q^{91} - 2382818588 q^{92} - 683876034 q^{93} - 5137318040 q^{94} - 1221759375 q^{95} - 2886747579 q^{96} - 3915268828 q^{97} - 8273557437 q^{98} + 906927030 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 42.1627 1.86334 0.931672 0.363300i \(-0.118350\pi\)
0.931672 + 0.363300i \(0.118350\pi\)
\(3\) −81.0000 −0.577350
\(4\) 1265.69 2.47205
\(5\) 625.000 0.447214
\(6\) −3415.18 −1.07580
\(7\) 4307.69 0.678114 0.339057 0.940766i \(-0.389892\pi\)
0.339057 + 0.940766i \(0.389892\pi\)
\(8\) 31777.6 2.74294
\(9\) 6561.00 0.333333
\(10\) 26351.7 0.833313
\(11\) 74234.4 1.52876 0.764378 0.644769i \(-0.223046\pi\)
0.764378 + 0.644769i \(0.223046\pi\)
\(12\) −102521. −1.42724
\(13\) 162840. 1.58130 0.790652 0.612266i \(-0.209742\pi\)
0.790652 + 0.612266i \(0.209742\pi\)
\(14\) 181624. 1.26356
\(15\) −50625.0 −0.258199
\(16\) 691797. 2.63899
\(17\) 354849. 1.03044 0.515221 0.857057i \(-0.327710\pi\)
0.515221 + 0.857057i \(0.327710\pi\)
\(18\) 276629. 0.621115
\(19\) −130321. −0.229416
\(20\) 791057. 1.10554
\(21\) −348922. −0.391509
\(22\) 3.12992e6 2.84860
\(23\) −2.24746e6 −1.67462 −0.837309 0.546730i \(-0.815873\pi\)
−0.837309 + 0.546730i \(0.815873\pi\)
\(24\) −2.57399e6 −1.58364
\(25\) 390625. 0.200000
\(26\) 6.86576e6 2.94651
\(27\) −531441. −0.192450
\(28\) 5.45220e6 1.67633
\(29\) −6.17653e6 −1.62164 −0.810818 0.585298i \(-0.800978\pi\)
−0.810818 + 0.585298i \(0.800978\pi\)
\(30\) −2.13449e6 −0.481114
\(31\) −7.22564e6 −1.40523 −0.702617 0.711568i \(-0.747985\pi\)
−0.702617 + 0.711568i \(0.747985\pi\)
\(32\) 1.28978e7 2.17441
\(33\) −6.01298e6 −0.882627
\(34\) 1.49614e7 1.92007
\(35\) 2.69230e6 0.303262
\(36\) 8.30420e6 0.824018
\(37\) 1.44539e7 1.26788 0.633940 0.773382i \(-0.281437\pi\)
0.633940 + 0.773382i \(0.281437\pi\)
\(38\) −5.49468e6 −0.427481
\(39\) −1.31900e7 −0.912966
\(40\) 1.98610e7 1.22668
\(41\) −2.14921e7 −1.18782 −0.593911 0.804531i \(-0.702417\pi\)
−0.593911 + 0.804531i \(0.702417\pi\)
\(42\) −1.47115e7 −0.729517
\(43\) 3.51253e7 1.56679 0.783396 0.621522i \(-0.213486\pi\)
0.783396 + 0.621522i \(0.213486\pi\)
\(44\) 9.39578e7 3.77916
\(45\) 4.10062e6 0.149071
\(46\) −9.47587e7 −3.12039
\(47\) −3.01514e6 −0.0901297 −0.0450648 0.998984i \(-0.514349\pi\)
−0.0450648 + 0.998984i \(0.514349\pi\)
\(48\) −5.60355e7 −1.52362
\(49\) −2.17975e7 −0.540161
\(50\) 1.64698e7 0.372669
\(51\) −2.87428e7 −0.594926
\(52\) 2.06105e8 3.90907
\(53\) −5.03255e6 −0.0876087 −0.0438043 0.999040i \(-0.513948\pi\)
−0.0438043 + 0.999040i \(0.513948\pi\)
\(54\) −2.24070e7 −0.358601
\(55\) 4.63965e7 0.683680
\(56\) 1.36888e8 1.86003
\(57\) 1.05560e7 0.132453
\(58\) −2.60419e8 −3.02167
\(59\) 3.96681e7 0.426194 0.213097 0.977031i \(-0.431645\pi\)
0.213097 + 0.977031i \(0.431645\pi\)
\(60\) −6.40756e7 −0.638281
\(61\) 4.80705e7 0.444524 0.222262 0.974987i \(-0.428656\pi\)
0.222262 + 0.974987i \(0.428656\pi\)
\(62\) −3.04652e8 −2.61844
\(63\) 2.82627e7 0.226038
\(64\) 1.89608e8 1.41269
\(65\) 1.01775e8 0.707180
\(66\) −2.53523e8 −1.64464
\(67\) 6.24392e7 0.378548 0.189274 0.981924i \(-0.439387\pi\)
0.189274 + 0.981924i \(0.439387\pi\)
\(68\) 4.49130e8 2.54731
\(69\) 1.82044e8 0.966841
\(70\) 1.13515e8 0.565081
\(71\) 1.78442e8 0.833363 0.416682 0.909053i \(-0.363193\pi\)
0.416682 + 0.909053i \(0.363193\pi\)
\(72\) 2.08493e8 0.914314
\(73\) 3.85248e8 1.58777 0.793886 0.608067i \(-0.208055\pi\)
0.793886 + 0.608067i \(0.208055\pi\)
\(74\) 6.09417e8 2.36250
\(75\) −3.16406e7 −0.115470
\(76\) −1.64946e8 −0.567128
\(77\) 3.19778e8 1.03667
\(78\) −5.56126e8 −1.70117
\(79\) −2.10411e8 −0.607781 −0.303890 0.952707i \(-0.598286\pi\)
−0.303890 + 0.952707i \(0.598286\pi\)
\(80\) 4.32373e8 1.18019
\(81\) 4.30467e7 0.111111
\(82\) −9.06164e8 −2.21332
\(83\) 4.38569e8 1.01435 0.507173 0.861844i \(-0.330690\pi\)
0.507173 + 0.861844i \(0.330690\pi\)
\(84\) −4.41628e8 −0.967832
\(85\) 2.21781e8 0.460828
\(86\) 1.48098e9 2.91948
\(87\) 5.00299e8 0.936252
\(88\) 2.35899e9 4.19329
\(89\) −5.81991e8 −0.983244 −0.491622 0.870809i \(-0.663596\pi\)
−0.491622 + 0.870809i \(0.663596\pi\)
\(90\) 1.72893e8 0.277771
\(91\) 7.01462e8 1.07230
\(92\) −2.84459e9 −4.13975
\(93\) 5.85277e8 0.811312
\(94\) −1.27127e8 −0.167943
\(95\) −8.14506e7 −0.102598
\(96\) −1.04473e9 −1.25540
\(97\) −1.26012e9 −1.44524 −0.722619 0.691247i \(-0.757062\pi\)
−0.722619 + 0.691247i \(0.757062\pi\)
\(98\) −9.19039e8 −1.00651
\(99\) 4.87052e8 0.509585
\(100\) 4.94411e8 0.494411
\(101\) −9.27516e8 −0.886901 −0.443451 0.896299i \(-0.646246\pi\)
−0.443451 + 0.896299i \(0.646246\pi\)
\(102\) −1.21187e9 −1.10855
\(103\) −9.83942e8 −0.861395 −0.430697 0.902496i \(-0.641732\pi\)
−0.430697 + 0.902496i \(0.641732\pi\)
\(104\) 5.17466e9 4.33742
\(105\) −2.18077e8 −0.175088
\(106\) −2.12186e8 −0.163245
\(107\) −1.36616e9 −1.00757 −0.503786 0.863829i \(-0.668060\pi\)
−0.503786 + 0.863829i \(0.668060\pi\)
\(108\) −6.72640e8 −0.475747
\(109\) −5.74535e8 −0.389850 −0.194925 0.980818i \(-0.562446\pi\)
−0.194925 + 0.980818i \(0.562446\pi\)
\(110\) 1.95620e9 1.27393
\(111\) −1.17077e9 −0.732011
\(112\) 2.98004e9 1.78954
\(113\) 1.54217e9 0.889772 0.444886 0.895587i \(-0.353244\pi\)
0.444886 + 0.895587i \(0.353244\pi\)
\(114\) 4.45069e8 0.246806
\(115\) −1.40466e9 −0.748912
\(116\) −7.81758e9 −4.00877
\(117\) 1.06839e9 0.527101
\(118\) 1.67251e9 0.794147
\(119\) 1.52858e9 0.698758
\(120\) −1.60874e9 −0.708225
\(121\) 3.15279e9 1.33709
\(122\) 2.02678e9 0.828301
\(123\) 1.74086e9 0.685790
\(124\) −9.14543e9 −3.47381
\(125\) 2.44141e8 0.0894427
\(126\) 1.19163e9 0.421187
\(127\) 1.34581e9 0.459057 0.229529 0.973302i \(-0.426282\pi\)
0.229529 + 0.973302i \(0.426282\pi\)
\(128\) 1.39067e9 0.457911
\(129\) −2.84515e9 −0.904588
\(130\) 4.29110e9 1.31772
\(131\) −3.79431e9 −1.12567 −0.562836 0.826569i \(-0.690290\pi\)
−0.562836 + 0.826569i \(0.690290\pi\)
\(132\) −7.61058e9 −2.18190
\(133\) −5.61382e8 −0.155570
\(134\) 2.63260e9 0.705365
\(135\) −3.32151e8 −0.0860663
\(136\) 1.12763e10 2.82645
\(137\) 1.43829e9 0.348822 0.174411 0.984673i \(-0.444198\pi\)
0.174411 + 0.984673i \(0.444198\pi\)
\(138\) 7.67546e9 1.80156
\(139\) 3.76934e9 0.856444 0.428222 0.903674i \(-0.359140\pi\)
0.428222 + 0.903674i \(0.359140\pi\)
\(140\) 3.40762e9 0.749679
\(141\) 2.44227e8 0.0520364
\(142\) 7.52359e9 1.55284
\(143\) 1.20883e10 2.41743
\(144\) 4.53888e9 0.879665
\(145\) −3.86033e9 −0.725218
\(146\) 1.62431e10 2.95856
\(147\) 1.76559e9 0.311862
\(148\) 1.82942e10 3.13427
\(149\) −1.08886e10 −1.80982 −0.904911 0.425601i \(-0.860063\pi\)
−0.904911 + 0.425601i \(0.860063\pi\)
\(150\) −1.33405e9 −0.215161
\(151\) −1.00665e9 −0.157574 −0.0787868 0.996891i \(-0.525105\pi\)
−0.0787868 + 0.996891i \(0.525105\pi\)
\(152\) −4.14129e9 −0.629274
\(153\) 2.32817e9 0.343481
\(154\) 1.34827e10 1.93167
\(155\) −4.51603e9 −0.628440
\(156\) −1.66945e10 −2.25690
\(157\) −7.01052e7 −0.00920877 −0.00460438 0.999989i \(-0.501466\pi\)
−0.00460438 + 0.999989i \(0.501466\pi\)
\(158\) −8.87150e9 −1.13250
\(159\) 4.07637e8 0.0505809
\(160\) 8.06115e9 0.972428
\(161\) −9.68133e9 −1.13558
\(162\) 1.81497e9 0.207038
\(163\) 1.67556e10 1.85916 0.929580 0.368621i \(-0.120170\pi\)
0.929580 + 0.368621i \(0.120170\pi\)
\(164\) −2.72024e10 −2.93636
\(165\) −3.75811e9 −0.394723
\(166\) 1.84912e10 1.89008
\(167\) 1.31550e10 1.30878 0.654388 0.756159i \(-0.272926\pi\)
0.654388 + 0.756159i \(0.272926\pi\)
\(168\) −1.10879e10 −1.07389
\(169\) 1.59123e10 1.50052
\(170\) 9.35087e9 0.858681
\(171\) −8.55036e8 −0.0764719
\(172\) 4.44577e10 3.87320
\(173\) 1.68351e9 0.142892 0.0714460 0.997444i \(-0.477239\pi\)
0.0714460 + 0.997444i \(0.477239\pi\)
\(174\) 2.10939e10 1.74456
\(175\) 1.68269e9 0.135623
\(176\) 5.13551e10 4.03438
\(177\) −3.21312e9 −0.246063
\(178\) −2.45383e10 −1.83212
\(179\) −8.08125e9 −0.588355 −0.294178 0.955751i \(-0.595046\pi\)
−0.294178 + 0.955751i \(0.595046\pi\)
\(180\) 5.19013e9 0.368512
\(181\) −4.38315e9 −0.303552 −0.151776 0.988415i \(-0.548499\pi\)
−0.151776 + 0.988415i \(0.548499\pi\)
\(182\) 2.95755e10 1.99807
\(183\) −3.89371e9 −0.256646
\(184\) −7.14188e10 −4.59338
\(185\) 9.03371e9 0.567013
\(186\) 2.46768e10 1.51175
\(187\) 2.63420e10 1.57529
\(188\) −3.81624e9 −0.222805
\(189\) −2.28928e9 −0.130503
\(190\) −3.43418e9 −0.191175
\(191\) 2.98562e10 1.62325 0.811623 0.584182i \(-0.198585\pi\)
0.811623 + 0.584182i \(0.198585\pi\)
\(192\) −1.53582e10 −0.815616
\(193\) 4.60083e9 0.238687 0.119343 0.992853i \(-0.461921\pi\)
0.119343 + 0.992853i \(0.461921\pi\)
\(194\) −5.31301e10 −2.69298
\(195\) −8.24376e9 −0.408291
\(196\) −2.75889e10 −1.33531
\(197\) −3.86777e10 −1.82963 −0.914814 0.403875i \(-0.867663\pi\)
−0.914814 + 0.403875i \(0.867663\pi\)
\(198\) 2.05354e10 0.949533
\(199\) 6.60169e8 0.0298412 0.0149206 0.999889i \(-0.495250\pi\)
0.0149206 + 0.999889i \(0.495250\pi\)
\(200\) 1.24131e10 0.548589
\(201\) −5.05757e9 −0.218555
\(202\) −3.91066e10 −1.65260
\(203\) −2.66065e10 −1.09965
\(204\) −3.63795e10 −1.47069
\(205\) −1.34326e10 −0.531210
\(206\) −4.14856e10 −1.60508
\(207\) −1.47456e10 −0.558206
\(208\) 1.12652e11 4.17305
\(209\) −9.67430e9 −0.350720
\(210\) −9.19469e9 −0.326250
\(211\) −4.36337e10 −1.51548 −0.757741 0.652556i \(-0.773697\pi\)
−0.757741 + 0.652556i \(0.773697\pi\)
\(212\) −6.36966e9 −0.216573
\(213\) −1.44538e10 −0.481142
\(214\) −5.76011e10 −1.87745
\(215\) 2.19533e10 0.700691
\(216\) −1.68879e10 −0.527880
\(217\) −3.11258e10 −0.952909
\(218\) −2.42240e10 −0.726425
\(219\) −3.12051e10 −0.916700
\(220\) 5.87236e10 1.69009
\(221\) 5.77836e10 1.62944
\(222\) −4.93627e10 −1.36399
\(223\) −3.72619e10 −1.00900 −0.504502 0.863411i \(-0.668324\pi\)
−0.504502 + 0.863411i \(0.668324\pi\)
\(224\) 5.55599e10 1.47450
\(225\) 2.56289e9 0.0666667
\(226\) 6.50220e10 1.65795
\(227\) −6.86748e10 −1.71665 −0.858324 0.513109i \(-0.828494\pi\)
−0.858324 + 0.513109i \(0.828494\pi\)
\(228\) 1.33606e10 0.327431
\(229\) 5.06079e10 1.21607 0.608035 0.793910i \(-0.291958\pi\)
0.608035 + 0.793910i \(0.291958\pi\)
\(230\) −5.92242e10 −1.39548
\(231\) −2.59020e10 −0.598522
\(232\) −1.96276e11 −4.44806
\(233\) −3.12776e10 −0.695235 −0.347617 0.937636i \(-0.613009\pi\)
−0.347617 + 0.937636i \(0.613009\pi\)
\(234\) 4.50462e10 0.982171
\(235\) −1.88447e9 −0.0403072
\(236\) 5.02076e10 1.05357
\(237\) 1.70433e10 0.350902
\(238\) 6.44490e10 1.30203
\(239\) 4.23045e10 0.838680 0.419340 0.907829i \(-0.362262\pi\)
0.419340 + 0.907829i \(0.362262\pi\)
\(240\) −3.50222e10 −0.681386
\(241\) 3.36067e10 0.641725 0.320863 0.947126i \(-0.396027\pi\)
0.320863 + 0.947126i \(0.396027\pi\)
\(242\) 1.32930e11 2.49146
\(243\) −3.48678e9 −0.0641500
\(244\) 6.08425e10 1.09889
\(245\) −1.36234e10 −0.241567
\(246\) 7.33993e10 1.27786
\(247\) −2.12214e10 −0.362776
\(248\) −2.29614e11 −3.85448
\(249\) −3.55241e10 −0.585633
\(250\) 1.02936e10 0.166663
\(251\) 1.16669e11 1.85534 0.927670 0.373401i \(-0.121808\pi\)
0.927670 + 0.373401i \(0.121808\pi\)
\(252\) 3.57719e10 0.558778
\(253\) −1.66838e11 −2.56008
\(254\) 5.67429e10 0.855382
\(255\) −1.79642e10 −0.266059
\(256\) −3.84446e10 −0.559443
\(257\) 1.03923e11 1.48598 0.742989 0.669304i \(-0.233407\pi\)
0.742989 + 0.669304i \(0.233407\pi\)
\(258\) −1.19959e11 −1.68556
\(259\) 6.22630e10 0.859768
\(260\) 1.28815e11 1.74819
\(261\) −4.05242e10 −0.540545
\(262\) −1.59978e11 −2.09751
\(263\) 6.23590e10 0.803708 0.401854 0.915704i \(-0.368366\pi\)
0.401854 + 0.915704i \(0.368366\pi\)
\(264\) −1.91078e11 −2.42100
\(265\) −3.14535e9 −0.0391798
\(266\) −2.36694e10 −0.289881
\(267\) 4.71413e10 0.567676
\(268\) 7.90287e10 0.935790
\(269\) −1.59953e11 −1.86255 −0.931275 0.364316i \(-0.881303\pi\)
−0.931275 + 0.364316i \(0.881303\pi\)
\(270\) −1.40044e10 −0.160371
\(271\) −2.72801e9 −0.0307245 −0.0153622 0.999882i \(-0.504890\pi\)
−0.0153622 + 0.999882i \(0.504890\pi\)
\(272\) 2.45484e11 2.71933
\(273\) −5.68184e10 −0.619095
\(274\) 6.06421e10 0.649975
\(275\) 2.89978e10 0.305751
\(276\) 2.30411e11 2.39008
\(277\) −1.10528e11 −1.12801 −0.564005 0.825771i \(-0.690740\pi\)
−0.564005 + 0.825771i \(0.690740\pi\)
\(278\) 1.58926e11 1.59585
\(279\) −4.74074e10 −0.468411
\(280\) 8.55551e10 0.831830
\(281\) −7.67249e10 −0.734105 −0.367052 0.930200i \(-0.619633\pi\)
−0.367052 + 0.930200i \(0.619633\pi\)
\(282\) 1.02973e10 0.0969617
\(283\) −6.48484e10 −0.600980 −0.300490 0.953785i \(-0.597150\pi\)
−0.300490 + 0.953785i \(0.597150\pi\)
\(284\) 2.25852e11 2.06012
\(285\) 6.59750e9 0.0592349
\(286\) 5.09675e11 4.50450
\(287\) −9.25812e10 −0.805479
\(288\) 8.46228e10 0.724805
\(289\) 7.33019e9 0.0618123
\(290\) −1.62762e11 −1.35133
\(291\) 1.02070e11 0.834409
\(292\) 4.87605e11 3.92505
\(293\) 7.83259e10 0.620871 0.310435 0.950595i \(-0.399525\pi\)
0.310435 + 0.950595i \(0.399525\pi\)
\(294\) 7.44422e10 0.581107
\(295\) 2.47926e10 0.190600
\(296\) 4.59312e11 3.47772
\(297\) −3.94512e10 −0.294209
\(298\) −4.59095e11 −3.37232
\(299\) −3.65975e11 −2.64808
\(300\) −4.00473e10 −0.285448
\(301\) 1.51309e11 1.06246
\(302\) −4.24432e10 −0.293614
\(303\) 7.51288e10 0.512053
\(304\) −9.01556e10 −0.605427
\(305\) 3.00441e10 0.198797
\(306\) 9.81617e10 0.640023
\(307\) −1.79134e11 −1.15095 −0.575474 0.817820i \(-0.695182\pi\)
−0.575474 + 0.817820i \(0.695182\pi\)
\(308\) 4.04741e11 2.56270
\(309\) 7.96993e10 0.497326
\(310\) −1.90408e11 −1.17100
\(311\) 2.08018e11 1.26090 0.630448 0.776232i \(-0.282871\pi\)
0.630448 + 0.776232i \(0.282871\pi\)
\(312\) −4.19148e11 −2.50421
\(313\) −1.16413e11 −0.685572 −0.342786 0.939414i \(-0.611371\pi\)
−0.342786 + 0.939414i \(0.611371\pi\)
\(314\) −2.95582e9 −0.0171591
\(315\) 1.76642e10 0.101087
\(316\) −2.66316e11 −1.50247
\(317\) −7.33380e10 −0.407908 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(318\) 1.71871e10 0.0942496
\(319\) −4.58511e11 −2.47908
\(320\) 1.18505e11 0.631773
\(321\) 1.10659e11 0.581722
\(322\) −4.08191e11 −2.11598
\(323\) −4.62443e10 −0.236400
\(324\) 5.44839e10 0.274673
\(325\) 6.36092e10 0.316261
\(326\) 7.06462e11 3.46426
\(327\) 4.65374e10 0.225080
\(328\) −6.82968e11 −3.25813
\(329\) −1.29883e10 −0.0611182
\(330\) −1.58452e11 −0.735505
\(331\) 2.18137e11 0.998857 0.499429 0.866355i \(-0.333543\pi\)
0.499429 + 0.866355i \(0.333543\pi\)
\(332\) 5.55093e11 2.50752
\(333\) 9.48323e10 0.422627
\(334\) 5.54649e11 2.43870
\(335\) 3.90245e10 0.169292
\(336\) −2.41383e11 −1.03319
\(337\) 1.77079e11 0.747880 0.373940 0.927453i \(-0.378007\pi\)
0.373940 + 0.927453i \(0.378007\pi\)
\(338\) 6.70904e11 2.79599
\(339\) −1.24916e11 −0.513710
\(340\) 2.80706e11 1.13919
\(341\) −5.36391e11 −2.14826
\(342\) −3.60506e10 −0.142494
\(343\) −2.67727e11 −1.04441
\(344\) 1.11620e12 4.29762
\(345\) 1.13777e11 0.432385
\(346\) 7.09812e10 0.266257
\(347\) −3.26382e11 −1.20849 −0.604246 0.796798i \(-0.706525\pi\)
−0.604246 + 0.796798i \(0.706525\pi\)
\(348\) 6.33224e11 2.31447
\(349\) −4.15204e11 −1.49812 −0.749060 0.662502i \(-0.769495\pi\)
−0.749060 + 0.662502i \(0.769495\pi\)
\(350\) 7.09467e10 0.252712
\(351\) −8.65397e10 −0.304322
\(352\) 9.57463e11 3.32415
\(353\) 4.97111e11 1.70399 0.851995 0.523550i \(-0.175393\pi\)
0.851995 + 0.523550i \(0.175393\pi\)
\(354\) −1.35474e11 −0.458501
\(355\) 1.11526e11 0.372691
\(356\) −7.36621e11 −2.43063
\(357\) −1.23815e11 −0.403428
\(358\) −3.40727e11 −1.09631
\(359\) 1.57480e11 0.500381 0.250190 0.968197i \(-0.419507\pi\)
0.250190 + 0.968197i \(0.419507\pi\)
\(360\) 1.30308e11 0.408894
\(361\) 1.69836e10 0.0526316
\(362\) −1.84805e11 −0.565621
\(363\) −2.55376e11 −0.771970
\(364\) 8.87834e11 2.65079
\(365\) 2.40780e11 0.710073
\(366\) −1.64169e11 −0.478220
\(367\) 2.64406e10 0.0760806 0.0380403 0.999276i \(-0.487888\pi\)
0.0380403 + 0.999276i \(0.487888\pi\)
\(368\) −1.55478e12 −4.41931
\(369\) −1.41010e11 −0.395941
\(370\) 3.80885e11 1.05654
\(371\) −2.16787e10 −0.0594087
\(372\) 7.40780e11 2.00561
\(373\) 5.71401e11 1.52845 0.764226 0.644949i \(-0.223121\pi\)
0.764226 + 0.644949i \(0.223121\pi\)
\(374\) 1.11065e12 2.93532
\(375\) −1.97754e10 −0.0516398
\(376\) −9.58142e10 −0.247221
\(377\) −1.00578e12 −2.56430
\(378\) −9.65222e10 −0.243172
\(379\) −8.32513e10 −0.207260 −0.103630 0.994616i \(-0.533046\pi\)
−0.103630 + 0.994616i \(0.533046\pi\)
\(380\) −1.03091e11 −0.253627
\(381\) −1.09011e11 −0.265037
\(382\) 1.25882e12 3.02467
\(383\) −5.99445e10 −0.142349 −0.0711746 0.997464i \(-0.522675\pi\)
−0.0711746 + 0.997464i \(0.522675\pi\)
\(384\) −1.12645e11 −0.264375
\(385\) 1.99861e11 0.463613
\(386\) 1.93983e11 0.444756
\(387\) 2.30457e11 0.522264
\(388\) −1.59492e12 −3.57271
\(389\) −2.47682e11 −0.548430 −0.274215 0.961668i \(-0.588418\pi\)
−0.274215 + 0.961668i \(0.588418\pi\)
\(390\) −3.47579e11 −0.760786
\(391\) −7.97508e11 −1.72560
\(392\) −6.92672e11 −1.48163
\(393\) 3.07339e11 0.649907
\(394\) −1.63076e12 −3.40923
\(395\) −1.31507e11 −0.271808
\(396\) 6.16457e11 1.25972
\(397\) −3.00342e11 −0.606818 −0.303409 0.952860i \(-0.598125\pi\)
−0.303409 + 0.952860i \(0.598125\pi\)
\(398\) 2.78345e10 0.0556045
\(399\) 4.54719e10 0.0898184
\(400\) 2.70233e11 0.527799
\(401\) 9.30124e11 1.79635 0.898175 0.439637i \(-0.144893\pi\)
0.898175 + 0.439637i \(0.144893\pi\)
\(402\) −2.13241e11 −0.407243
\(403\) −1.17662e12 −2.22210
\(404\) −1.17395e12 −2.19247
\(405\) 2.69042e10 0.0496904
\(406\) −1.12180e12 −2.04904
\(407\) 1.07298e12 1.93828
\(408\) −9.13378e11 −1.63185
\(409\) 1.16060e11 0.205082 0.102541 0.994729i \(-0.467303\pi\)
0.102541 + 0.994729i \(0.467303\pi\)
\(410\) −5.66353e11 −0.989828
\(411\) −1.16501e11 −0.201392
\(412\) −1.24537e12 −2.12941
\(413\) 1.70878e11 0.289008
\(414\) −6.21712e11 −1.04013
\(415\) 2.74105e11 0.453629
\(416\) 2.10028e12 3.43841
\(417\) −3.05317e11 −0.494468
\(418\) −4.07894e11 −0.653513
\(419\) −4.76693e10 −0.0755572 −0.0377786 0.999286i \(-0.512028\pi\)
−0.0377786 + 0.999286i \(0.512028\pi\)
\(420\) −2.76018e11 −0.432828
\(421\) −2.00569e11 −0.311168 −0.155584 0.987823i \(-0.549726\pi\)
−0.155584 + 0.987823i \(0.549726\pi\)
\(422\) −1.83971e12 −2.82386
\(423\) −1.97824e10 −0.0300432
\(424\) −1.59923e11 −0.240306
\(425\) 1.38613e11 0.206089
\(426\) −6.09411e11 −0.896534
\(427\) 2.07073e11 0.301438
\(428\) −1.72914e12 −2.49077
\(429\) −9.79152e11 −1.39570
\(430\) 9.25610e11 1.30563
\(431\) −2.20817e11 −0.308238 −0.154119 0.988052i \(-0.549254\pi\)
−0.154119 + 0.988052i \(0.549254\pi\)
\(432\) −3.67649e11 −0.507875
\(433\) 5.38843e11 0.736659 0.368329 0.929695i \(-0.379930\pi\)
0.368329 + 0.929695i \(0.379930\pi\)
\(434\) −1.31235e12 −1.77560
\(435\) 3.12687e11 0.418705
\(436\) −7.27185e11 −0.963730
\(437\) 2.92891e11 0.384184
\(438\) −1.31569e12 −1.70813
\(439\) −1.32718e11 −0.170545 −0.0852726 0.996358i \(-0.527176\pi\)
−0.0852726 + 0.996358i \(0.527176\pi\)
\(440\) 1.47437e12 1.87530
\(441\) −1.43013e11 −0.180054
\(442\) 2.43631e12 3.03621
\(443\) 1.38941e12 1.71401 0.857004 0.515310i \(-0.172323\pi\)
0.857004 + 0.515310i \(0.172323\pi\)
\(444\) −1.48183e12 −1.80957
\(445\) −3.63744e11 −0.439720
\(446\) −1.57106e12 −1.88012
\(447\) 8.81980e11 1.04490
\(448\) 8.16771e11 0.957964
\(449\) 7.72066e11 0.896491 0.448246 0.893910i \(-0.352049\pi\)
0.448246 + 0.893910i \(0.352049\pi\)
\(450\) 1.08058e11 0.124223
\(451\) −1.59545e12 −1.81589
\(452\) 1.95191e12 2.19957
\(453\) 8.15388e10 0.0909751
\(454\) −2.89551e12 −3.19871
\(455\) 4.38414e11 0.479549
\(456\) 3.35445e11 0.363312
\(457\) 1.91930e11 0.205835 0.102918 0.994690i \(-0.467182\pi\)
0.102918 + 0.994690i \(0.467182\pi\)
\(458\) 2.13376e12 2.26596
\(459\) −1.88582e11 −0.198309
\(460\) −1.77787e12 −1.85135
\(461\) −6.29659e11 −0.649309 −0.324654 0.945833i \(-0.605248\pi\)
−0.324654 + 0.945833i \(0.605248\pi\)
\(462\) −1.09210e12 −1.11525
\(463\) −1.37998e12 −1.39560 −0.697798 0.716295i \(-0.745837\pi\)
−0.697798 + 0.716295i \(0.745837\pi\)
\(464\) −4.27290e12 −4.27949
\(465\) 3.65798e11 0.362830
\(466\) −1.31875e12 −1.29546
\(467\) −2.93064e10 −0.0285126 −0.0142563 0.999898i \(-0.504538\pi\)
−0.0142563 + 0.999898i \(0.504538\pi\)
\(468\) 1.35225e12 1.30302
\(469\) 2.68968e11 0.256699
\(470\) −7.94541e10 −0.0751062
\(471\) 5.67852e9 0.00531669
\(472\) 1.26056e12 1.16903
\(473\) 2.60750e12 2.39524
\(474\) 7.18591e11 0.653852
\(475\) −5.09066e10 −0.0458831
\(476\) 1.93471e12 1.72737
\(477\) −3.30186e10 −0.0292029
\(478\) 1.78367e12 1.56275
\(479\) −1.81052e12 −1.57143 −0.785713 0.618591i \(-0.787704\pi\)
−0.785713 + 0.618591i \(0.787704\pi\)
\(480\) −6.52953e11 −0.561431
\(481\) 2.35367e12 2.00490
\(482\) 1.41695e12 1.19576
\(483\) 7.84188e11 0.655629
\(484\) 3.99046e12 3.30536
\(485\) −7.87575e11 −0.646330
\(486\) −1.47012e11 −0.119534
\(487\) 6.42786e10 0.0517828 0.0258914 0.999665i \(-0.491758\pi\)
0.0258914 + 0.999665i \(0.491758\pi\)
\(488\) 1.52757e12 1.21930
\(489\) −1.35721e12 −1.07339
\(490\) −5.74399e11 −0.450123
\(491\) −4.82952e11 −0.375005 −0.187503 0.982264i \(-0.560039\pi\)
−0.187503 + 0.982264i \(0.560039\pi\)
\(492\) 2.20339e12 1.69531
\(493\) −2.19174e12 −1.67100
\(494\) −8.94752e11 −0.675976
\(495\) 3.04407e11 0.227893
\(496\) −4.99867e12 −3.70841
\(497\) 7.68671e11 0.565115
\(498\) −1.49779e12 −1.09124
\(499\) 6.03897e11 0.436024 0.218012 0.975946i \(-0.430043\pi\)
0.218012 + 0.975946i \(0.430043\pi\)
\(500\) 3.09007e11 0.221107
\(501\) −1.06555e12 −0.755623
\(502\) 4.91908e12 3.45714
\(503\) −1.68239e12 −1.17185 −0.585924 0.810366i \(-0.699268\pi\)
−0.585924 + 0.810366i \(0.699268\pi\)
\(504\) 8.98123e11 0.620009
\(505\) −5.79697e11 −0.396634
\(506\) −7.03436e12 −4.77031
\(507\) −1.28889e12 −0.866326
\(508\) 1.70338e12 1.13481
\(509\) −8.98608e11 −0.593390 −0.296695 0.954972i \(-0.595885\pi\)
−0.296695 + 0.954972i \(0.595885\pi\)
\(510\) −7.57421e11 −0.495760
\(511\) 1.65953e12 1.07669
\(512\) −2.33295e12 −1.50035
\(513\) 6.92579e10 0.0441511
\(514\) 4.38167e12 2.76889
\(515\) −6.14964e11 −0.385227
\(516\) −3.60108e12 −2.23619
\(517\) −2.23827e11 −0.137786
\(518\) 2.62517e12 1.60204
\(519\) −1.36364e11 −0.0824987
\(520\) 3.23416e12 1.93976
\(521\) −7.14639e11 −0.424930 −0.212465 0.977169i \(-0.568149\pi\)
−0.212465 + 0.977169i \(0.568149\pi\)
\(522\) −1.70861e12 −1.00722
\(523\) 8.33054e11 0.486873 0.243437 0.969917i \(-0.421725\pi\)
0.243437 + 0.969917i \(0.421725\pi\)
\(524\) −4.80242e12 −2.78272
\(525\) −1.36298e11 −0.0783019
\(526\) 2.62922e12 1.49759
\(527\) −2.56401e12 −1.44801
\(528\) −4.15976e12 −2.32925
\(529\) 3.24990e12 1.80435
\(530\) −1.32616e11 −0.0730055
\(531\) 2.60263e11 0.142065
\(532\) −7.10536e11 −0.384577
\(533\) −3.49977e12 −1.87831
\(534\) 1.98760e12 1.05778
\(535\) −8.53853e11 −0.450600
\(536\) 1.98417e12 1.03833
\(537\) 6.54581e11 0.339687
\(538\) −6.74406e12 −3.47057
\(539\) −1.61812e12 −0.825774
\(540\) −4.20400e11 −0.212760
\(541\) 1.76040e12 0.883534 0.441767 0.897130i \(-0.354352\pi\)
0.441767 + 0.897130i \(0.354352\pi\)
\(542\) −1.15020e11 −0.0572503
\(543\) 3.55035e11 0.175256
\(544\) 4.57679e12 2.24061
\(545\) −3.59085e11 −0.174346
\(546\) −2.39562e12 −1.15359
\(547\) 2.32762e12 1.11165 0.555826 0.831298i \(-0.312402\pi\)
0.555826 + 0.831298i \(0.312402\pi\)
\(548\) 1.82043e12 0.862306
\(549\) 3.15391e11 0.148175
\(550\) 1.22262e12 0.569720
\(551\) 8.04931e11 0.372029
\(552\) 5.78493e12 2.65199
\(553\) −9.06385e11 −0.412145
\(554\) −4.66015e12 −2.10187
\(555\) −7.31730e11 −0.327365
\(556\) 4.77082e12 2.11718
\(557\) 1.10535e10 0.00486576 0.00243288 0.999997i \(-0.499226\pi\)
0.00243288 + 0.999997i \(0.499226\pi\)
\(558\) −1.99882e12 −0.872812
\(559\) 5.71979e12 2.47757
\(560\) 1.86253e12 0.800306
\(561\) −2.13370e12 −0.909497
\(562\) −3.23493e12 −1.36789
\(563\) −3.95297e10 −0.0165820 −0.00829098 0.999966i \(-0.502639\pi\)
−0.00829098 + 0.999966i \(0.502639\pi\)
\(564\) 3.09116e11 0.128637
\(565\) 9.63856e11 0.397918
\(566\) −2.73418e12 −1.11983
\(567\) 1.85432e11 0.0753460
\(568\) 5.67046e12 2.28587
\(569\) −2.70995e12 −1.08382 −0.541909 0.840437i \(-0.682298\pi\)
−0.541909 + 0.840437i \(0.682298\pi\)
\(570\) 2.78168e11 0.110375
\(571\) −2.00739e12 −0.790260 −0.395130 0.918625i \(-0.629301\pi\)
−0.395130 + 0.918625i \(0.629301\pi\)
\(572\) 1.53001e13 5.97600
\(573\) −2.41835e12 −0.937181
\(574\) −3.90347e12 −1.50089
\(575\) −8.77912e11 −0.334924
\(576\) 1.24402e12 0.470896
\(577\) −3.29242e12 −1.23658 −0.618292 0.785949i \(-0.712175\pi\)
−0.618292 + 0.785949i \(0.712175\pi\)
\(578\) 3.09061e11 0.115178
\(579\) −3.72668e11 −0.137806
\(580\) −4.88599e12 −1.79278
\(581\) 1.88922e12 0.687843
\(582\) 4.30354e12 1.55479
\(583\) −3.73588e11 −0.133932
\(584\) 1.22423e13 4.35517
\(585\) 6.67744e11 0.235727
\(586\) 3.30243e12 1.15690
\(587\) 8.93550e11 0.310633 0.155316 0.987865i \(-0.450360\pi\)
0.155316 + 0.987865i \(0.450360\pi\)
\(588\) 2.23470e12 0.770940
\(589\) 9.41653e11 0.322383
\(590\) 1.04532e12 0.355153
\(591\) 3.13290e12 1.05634
\(592\) 9.99918e12 3.34593
\(593\) −4.89417e12 −1.62530 −0.812648 0.582754i \(-0.801975\pi\)
−0.812648 + 0.582754i \(0.801975\pi\)
\(594\) −1.66337e12 −0.548213
\(595\) 9.55362e11 0.312494
\(596\) −1.37817e13 −4.47398
\(597\) −5.34737e10 −0.0172288
\(598\) −1.54305e13 −4.93428
\(599\) −5.85373e12 −1.85785 −0.928927 0.370262i \(-0.879268\pi\)
−0.928927 + 0.370262i \(0.879268\pi\)
\(600\) −1.00546e12 −0.316728
\(601\) −3.52256e8 −0.000110134 0 −5.50672e−5 1.00000i \(-0.500018\pi\)
−5.50672e−5 1.00000i \(0.500018\pi\)
\(602\) 6.37958e12 1.97974
\(603\) 4.09663e11 0.126183
\(604\) −1.27411e12 −0.389530
\(605\) 1.97050e12 0.597966
\(606\) 3.16763e12 0.954130
\(607\) 1.43160e12 0.428029 0.214015 0.976830i \(-0.431346\pi\)
0.214015 + 0.976830i \(0.431346\pi\)
\(608\) −1.68086e12 −0.498845
\(609\) 2.15513e12 0.634886
\(610\) 1.26674e12 0.370427
\(611\) −4.90985e11 −0.142522
\(612\) 2.94674e12 0.849103
\(613\) −2.44906e12 −0.700530 −0.350265 0.936651i \(-0.613908\pi\)
−0.350265 + 0.936651i \(0.613908\pi\)
\(614\) −7.55278e12 −2.14461
\(615\) 1.08804e12 0.306694
\(616\) 1.01618e13 2.84353
\(617\) 1.27744e12 0.354859 0.177430 0.984134i \(-0.443222\pi\)
0.177430 + 0.984134i \(0.443222\pi\)
\(618\) 3.36034e12 0.926691
\(619\) 3.08748e12 0.845272 0.422636 0.906300i \(-0.361105\pi\)
0.422636 + 0.906300i \(0.361105\pi\)
\(620\) −5.71589e12 −1.55354
\(621\) 1.19439e12 0.322280
\(622\) 8.77060e12 2.34948
\(623\) −2.50703e12 −0.666752
\(624\) −9.12481e12 −2.40931
\(625\) 1.52588e11 0.0400000
\(626\) −4.90829e12 −1.27746
\(627\) 7.83618e11 0.202489
\(628\) −8.87315e10 −0.0227646
\(629\) 5.12897e12 1.30648
\(630\) 7.44770e11 0.188360
\(631\) −4.36233e12 −1.09543 −0.547717 0.836663i \(-0.684503\pi\)
−0.547717 + 0.836663i \(0.684503\pi\)
\(632\) −6.68637e12 −1.66711
\(633\) 3.53433e12 0.874963
\(634\) −3.09212e12 −0.760073
\(635\) 8.41131e11 0.205297
\(636\) 5.15943e11 0.125039
\(637\) −3.54949e12 −0.854159
\(638\) −1.93320e13 −4.61939
\(639\) 1.17076e12 0.277788
\(640\) 8.69172e11 0.204784
\(641\) −1.54180e12 −0.360717 −0.180359 0.983601i \(-0.557726\pi\)
−0.180359 + 0.983601i \(0.557726\pi\)
\(642\) 4.66569e12 1.08395
\(643\) 4.74956e12 1.09573 0.547866 0.836566i \(-0.315440\pi\)
0.547866 + 0.836566i \(0.315440\pi\)
\(644\) −1.22536e13 −2.80722
\(645\) −1.77822e12 −0.404544
\(646\) −1.94978e12 −0.440494
\(647\) 1.49108e12 0.334526 0.167263 0.985912i \(-0.446507\pi\)
0.167263 + 0.985912i \(0.446507\pi\)
\(648\) 1.36792e12 0.304771
\(649\) 2.94474e12 0.651547
\(650\) 2.68194e12 0.589303
\(651\) 2.52119e12 0.550162
\(652\) 2.12075e13 4.59594
\(653\) 1.87208e12 0.402916 0.201458 0.979497i \(-0.435432\pi\)
0.201458 + 0.979497i \(0.435432\pi\)
\(654\) 1.96214e12 0.419402
\(655\) −2.37144e12 −0.503415
\(656\) −1.48682e13 −3.13466
\(657\) 2.52761e12 0.529257
\(658\) −5.47621e11 −0.113884
\(659\) 3.73969e12 0.772417 0.386208 0.922412i \(-0.373785\pi\)
0.386208 + 0.922412i \(0.373785\pi\)
\(660\) −4.75661e12 −0.975776
\(661\) 3.42693e11 0.0698229 0.0349115 0.999390i \(-0.488885\pi\)
0.0349115 + 0.999390i \(0.488885\pi\)
\(662\) 9.19724e12 1.86122
\(663\) −4.68047e12 −0.940759
\(664\) 1.39367e13 2.78229
\(665\) −3.50864e11 −0.0695730
\(666\) 3.99838e12 0.787499
\(667\) 1.38815e13 2.71562
\(668\) 1.66501e13 3.23537
\(669\) 3.01821e12 0.582549
\(670\) 1.64538e12 0.315449
\(671\) 3.56849e12 0.679568
\(672\) −4.50035e12 −0.851303
\(673\) −3.70572e11 −0.0696314 −0.0348157 0.999394i \(-0.511084\pi\)
−0.0348157 + 0.999394i \(0.511084\pi\)
\(674\) 7.46612e12 1.39356
\(675\) −2.07594e11 −0.0384900
\(676\) 2.01400e13 3.70937
\(677\) 3.80524e11 0.0696199 0.0348099 0.999394i \(-0.488917\pi\)
0.0348099 + 0.999394i \(0.488917\pi\)
\(678\) −5.26678e12 −0.957220
\(679\) −5.42820e12 −0.980036
\(680\) 7.04767e12 1.26403
\(681\) 5.56266e12 0.991107
\(682\) −2.26157e13 −4.00295
\(683\) 8.53340e12 1.50047 0.750237 0.661169i \(-0.229939\pi\)
0.750237 + 0.661169i \(0.229939\pi\)
\(684\) −1.08221e12 −0.189043
\(685\) 8.98930e11 0.155998
\(686\) −1.12881e13 −1.94609
\(687\) −4.09924e12 −0.702099
\(688\) 2.42995e13 4.13476
\(689\) −8.19500e11 −0.138536
\(690\) 4.79716e12 0.805682
\(691\) −6.78420e12 −1.13200 −0.566001 0.824404i \(-0.691510\pi\)
−0.566001 + 0.824404i \(0.691510\pi\)
\(692\) 2.13080e12 0.353237
\(693\) 2.09807e12 0.345557
\(694\) −1.37611e13 −2.25184
\(695\) 2.35584e12 0.383013
\(696\) 1.58983e13 2.56809
\(697\) −7.62646e12 −1.22398
\(698\) −1.75061e13 −2.79152
\(699\) 2.53348e12 0.401394
\(700\) 2.12977e12 0.335267
\(701\) 7.95433e11 0.124415 0.0622074 0.998063i \(-0.480186\pi\)
0.0622074 + 0.998063i \(0.480186\pi\)
\(702\) −3.64874e12 −0.567057
\(703\) −1.88365e12 −0.290872
\(704\) 1.40754e13 2.15965
\(705\) 1.52642e11 0.0232714
\(706\) 2.09595e13 3.17512
\(707\) −3.99545e12 −0.601420
\(708\) −4.06682e12 −0.608282
\(709\) −4.69255e12 −0.697430 −0.348715 0.937229i \(-0.613382\pi\)
−0.348715 + 0.937229i \(0.613382\pi\)
\(710\) 4.70224e12 0.694452
\(711\) −1.38051e12 −0.202594
\(712\) −1.84943e13 −2.69698
\(713\) 1.62393e13 2.35323
\(714\) −5.22037e12 −0.751725
\(715\) 7.55519e12 1.08111
\(716\) −1.02284e13 −1.45445
\(717\) −3.42666e12 −0.484212
\(718\) 6.63978e12 0.932382
\(719\) −1.20325e13 −1.67910 −0.839548 0.543285i \(-0.817180\pi\)
−0.839548 + 0.543285i \(0.817180\pi\)
\(720\) 2.83680e12 0.393398
\(721\) −4.23851e12 −0.584124
\(722\) 7.16072e11 0.0980708
\(723\) −2.72214e12 −0.370500
\(724\) −5.54771e12 −0.750396
\(725\) −2.41271e12 −0.324327
\(726\) −1.07673e13 −1.43845
\(727\) −1.16580e13 −1.54781 −0.773907 0.633300i \(-0.781700\pi\)
−0.773907 + 0.633300i \(0.781700\pi\)
\(728\) 2.22908e13 2.94127
\(729\) 2.82430e11 0.0370370
\(730\) 1.01519e13 1.32311
\(731\) 1.24642e13 1.61449
\(732\) −4.92824e12 −0.634442
\(733\) −5.51320e12 −0.705400 −0.352700 0.935736i \(-0.614736\pi\)
−0.352700 + 0.935736i \(0.614736\pi\)
\(734\) 1.11481e12 0.141764
\(735\) 1.10350e12 0.139469
\(736\) −2.89873e13 −3.64131
\(737\) 4.63513e12 0.578707
\(738\) −5.94534e12 −0.737774
\(739\) 1.00015e13 1.23357 0.616785 0.787132i \(-0.288435\pi\)
0.616785 + 0.787132i \(0.288435\pi\)
\(740\) 1.14339e13 1.40169
\(741\) 1.71894e12 0.209449
\(742\) −9.14030e11 −0.110699
\(743\) 1.17956e13 1.41994 0.709971 0.704231i \(-0.248708\pi\)
0.709971 + 0.704231i \(0.248708\pi\)
\(744\) 1.85987e13 2.22538
\(745\) −6.80540e12 −0.809377
\(746\) 2.40918e13 2.84803
\(747\) 2.87745e12 0.338115
\(748\) 3.33409e13 3.89421
\(749\) −5.88500e12 −0.683248
\(750\) −8.33783e11 −0.0962227
\(751\) −7.19306e12 −0.825152 −0.412576 0.910923i \(-0.635371\pi\)
−0.412576 + 0.910923i \(0.635371\pi\)
\(752\) −2.08587e12 −0.237852
\(753\) −9.45018e12 −1.07118
\(754\) −4.24065e13 −4.77817
\(755\) −6.29158e11 −0.0704690
\(756\) −2.89752e12 −0.322611
\(757\) 1.10668e13 1.22488 0.612438 0.790518i \(-0.290189\pi\)
0.612438 + 0.790518i \(0.290189\pi\)
\(758\) −3.51010e12 −0.386196
\(759\) 1.35139e13 1.47806
\(760\) −2.58831e12 −0.281420
\(761\) 6.81864e12 0.736998 0.368499 0.929628i \(-0.379872\pi\)
0.368499 + 0.929628i \(0.379872\pi\)
\(762\) −4.59618e12 −0.493855
\(763\) −2.47492e12 −0.264363
\(764\) 3.77887e13 4.01275
\(765\) 1.45510e12 0.153609
\(766\) −2.52742e12 −0.265245
\(767\) 6.45954e12 0.673942
\(768\) 3.11401e12 0.322994
\(769\) −2.25133e12 −0.232151 −0.116076 0.993240i \(-0.537031\pi\)
−0.116076 + 0.993240i \(0.537031\pi\)
\(770\) 8.42669e12 0.863871
\(771\) −8.41776e12 −0.857930
\(772\) 5.82324e12 0.590047
\(773\) −4.47111e12 −0.450409 −0.225205 0.974311i \(-0.572305\pi\)
−0.225205 + 0.974311i \(0.572305\pi\)
\(774\) 9.71668e12 0.973158
\(775\) −2.82252e12 −0.281047
\(776\) −4.00437e13 −3.96421
\(777\) −5.04330e12 −0.496387
\(778\) −1.04429e13 −1.02191
\(779\) 2.80087e12 0.272505
\(780\) −1.04341e13 −1.00932
\(781\) 1.32465e13 1.27401
\(782\) −3.36251e13 −3.21538
\(783\) 3.28246e12 0.312084
\(784\) −1.50794e13 −1.42548
\(785\) −4.38157e10 −0.00411829
\(786\) 1.29582e13 1.21100
\(787\) −1.74254e13 −1.61918 −0.809590 0.586995i \(-0.800311\pi\)
−0.809590 + 0.586995i \(0.800311\pi\)
\(788\) −4.89541e13 −4.52294
\(789\) −5.05108e12 −0.464021
\(790\) −5.54469e12 −0.506472
\(791\) 6.64318e12 0.603367
\(792\) 1.54774e13 1.39776
\(793\) 7.82779e12 0.702926
\(794\) −1.26632e13 −1.13071
\(795\) 2.54773e11 0.0226205
\(796\) 8.35570e11 0.0737691
\(797\) −1.51639e13 −1.33122 −0.665609 0.746301i \(-0.731828\pi\)
−0.665609 + 0.746301i \(0.731828\pi\)
\(798\) 1.91722e12 0.167363
\(799\) −1.06992e12 −0.0928735
\(800\) 5.03822e12 0.434883
\(801\) −3.81844e12 −0.327748
\(802\) 3.92165e13 3.34722
\(803\) 2.85987e13 2.42731
\(804\) −6.40133e12 −0.540279
\(805\) −6.05083e12 −0.507848
\(806\) −4.96095e13 −4.14054
\(807\) 1.29562e13 1.07534
\(808\) −2.94743e13 −2.43272
\(809\) −8.53556e12 −0.700590 −0.350295 0.936639i \(-0.613919\pi\)
−0.350295 + 0.936639i \(0.613919\pi\)
\(810\) 1.13435e12 0.0925903
\(811\) 3.02349e12 0.245423 0.122711 0.992442i \(-0.460841\pi\)
0.122711 + 0.992442i \(0.460841\pi\)
\(812\) −3.36757e13 −2.71840
\(813\) 2.20969e11 0.0177388
\(814\) 4.52397e13 3.61168
\(815\) 1.04723e13 0.831441
\(816\) −1.98842e13 −1.57001
\(817\) −4.57756e12 −0.359447
\(818\) 4.89341e12 0.382139
\(819\) 4.60229e12 0.357435
\(820\) −1.70015e13 −1.31318
\(821\) 1.44269e13 1.10822 0.554112 0.832442i \(-0.313058\pi\)
0.554112 + 0.832442i \(0.313058\pi\)
\(822\) −4.91201e12 −0.375263
\(823\) 1.81599e13 1.37979 0.689895 0.723909i \(-0.257657\pi\)
0.689895 + 0.723909i \(0.257657\pi\)
\(824\) −3.12674e13 −2.36276
\(825\) −2.34882e12 −0.176525
\(826\) 7.20466e12 0.538522
\(827\) −1.95479e13 −1.45320 −0.726598 0.687063i \(-0.758900\pi\)
−0.726598 + 0.687063i \(0.758900\pi\)
\(828\) −1.86633e13 −1.37992
\(829\) 1.13483e13 0.834515 0.417257 0.908788i \(-0.362991\pi\)
0.417257 + 0.908788i \(0.362991\pi\)
\(830\) 1.15570e13 0.845268
\(831\) 8.95276e12 0.651257
\(832\) 3.08757e13 2.23389
\(833\) −7.73481e12 −0.556605
\(834\) −1.28730e13 −0.921365
\(835\) 8.22185e12 0.585303
\(836\) −1.22447e13 −0.867000
\(837\) 3.84000e12 0.270437
\(838\) −2.00987e12 −0.140789
\(839\) −3.54258e12 −0.246826 −0.123413 0.992355i \(-0.539384\pi\)
−0.123413 + 0.992355i \(0.539384\pi\)
\(840\) −6.92996e12 −0.480257
\(841\) 2.36424e13 1.62970
\(842\) −8.45654e12 −0.579814
\(843\) 6.21472e12 0.423836
\(844\) −5.52267e13 −3.74635
\(845\) 9.94516e12 0.671053
\(846\) −8.34077e11 −0.0559809
\(847\) 1.35812e13 0.906701
\(848\) −3.48150e12 −0.231199
\(849\) 5.25272e12 0.346976
\(850\) 5.84430e12 0.384014
\(851\) −3.24846e13 −2.12322
\(852\) −1.82940e13 −1.18941
\(853\) −2.35196e13 −1.52111 −0.760554 0.649274i \(-0.775073\pi\)
−0.760554 + 0.649274i \(0.775073\pi\)
\(854\) 8.73074e12 0.561682
\(855\) −5.34398e11 −0.0341993
\(856\) −4.34135e13 −2.76371
\(857\) −2.87466e13 −1.82042 −0.910211 0.414144i \(-0.864081\pi\)
−0.910211 + 0.414144i \(0.864081\pi\)
\(858\) −4.12837e13 −2.60067
\(859\) −8.92058e12 −0.559015 −0.279508 0.960143i \(-0.590171\pi\)
−0.279508 + 0.960143i \(0.590171\pi\)
\(860\) 2.77861e13 1.73215
\(861\) 7.49908e12 0.465044
\(862\) −9.31025e12 −0.574353
\(863\) 2.81109e13 1.72514 0.862572 0.505934i \(-0.168852\pi\)
0.862572 + 0.505934i \(0.168852\pi\)
\(864\) −6.85444e12 −0.418466
\(865\) 1.05219e12 0.0639032
\(866\) 2.27191e13 1.37265
\(867\) −5.93746e11 −0.0356874
\(868\) −3.93956e13 −2.35564
\(869\) −1.56197e13 −0.929148
\(870\) 1.31837e13 0.780191
\(871\) 1.01676e13 0.598599
\(872\) −1.82574e13 −1.06934
\(873\) −8.26765e12 −0.481746
\(874\) 1.23491e13 0.715867
\(875\) 1.05168e12 0.0606524
\(876\) −3.94960e13 −2.26613
\(877\) 2.44924e12 0.139808 0.0699042 0.997554i \(-0.477731\pi\)
0.0699042 + 0.997554i \(0.477731\pi\)
\(878\) −5.59575e12 −0.317785
\(879\) −6.34440e12 −0.358460
\(880\) 3.20969e13 1.80423
\(881\) −2.82122e13 −1.57777 −0.788887 0.614538i \(-0.789342\pi\)
−0.788887 + 0.614538i \(0.789342\pi\)
\(882\) −6.02982e12 −0.335502
\(883\) 5.81063e12 0.321662 0.160831 0.986982i \(-0.448583\pi\)
0.160831 + 0.986982i \(0.448583\pi\)
\(884\) 7.31361e13 4.02807
\(885\) −2.00820e12 −0.110043
\(886\) 5.85811e13 3.19379
\(887\) 7.85261e12 0.425949 0.212975 0.977058i \(-0.431685\pi\)
0.212975 + 0.977058i \(0.431685\pi\)
\(888\) −3.72043e13 −2.00786
\(889\) 5.79732e12 0.311293
\(890\) −1.53364e13 −0.819350
\(891\) 3.19555e12 0.169862
\(892\) −4.71620e13 −2.49431
\(893\) 3.92937e11 0.0206772
\(894\) 3.71867e13 1.94701
\(895\) −5.05078e12 −0.263121
\(896\) 5.99059e12 0.310516
\(897\) 2.96440e13 1.52887
\(898\) 3.25524e13 1.67047
\(899\) 4.46294e13 2.27878
\(900\) 3.24383e12 0.164804
\(901\) −1.78580e12 −0.0902757
\(902\) −6.72685e13 −3.38363
\(903\) −1.22560e13 −0.613414
\(904\) 4.90065e13 2.44060
\(905\) −2.73947e12 −0.135752
\(906\) 3.43790e12 0.169518
\(907\) 5.00320e12 0.245479 0.122740 0.992439i \(-0.460832\pi\)
0.122740 + 0.992439i \(0.460832\pi\)
\(908\) −8.69211e13 −4.24364
\(909\) −6.08543e12 −0.295634
\(910\) 1.84847e13 0.893565
\(911\) 8.14427e12 0.391760 0.195880 0.980628i \(-0.437244\pi\)
0.195880 + 0.980628i \(0.437244\pi\)
\(912\) 7.30261e12 0.349543
\(913\) 3.25569e13 1.55069
\(914\) 8.09228e12 0.383542
\(915\) −2.43357e12 −0.114775
\(916\) 6.40540e13 3.00619
\(917\) −1.63447e13 −0.763333
\(918\) −7.95110e12 −0.369518
\(919\) −4.01615e13 −1.85733 −0.928667 0.370915i \(-0.879044\pi\)
−0.928667 + 0.370915i \(0.879044\pi\)
\(920\) −4.46368e13 −2.05422
\(921\) 1.45099e13 0.664500
\(922\) −2.65481e13 −1.20989
\(923\) 2.90574e13 1.31780
\(924\) −3.27840e13 −1.47958
\(925\) 5.64607e12 0.253576
\(926\) −5.81838e13 −2.60048
\(927\) −6.45565e12 −0.287132
\(928\) −7.96639e13 −3.52611
\(929\) 2.84210e13 1.25190 0.625948 0.779865i \(-0.284712\pi\)
0.625948 + 0.779865i \(0.284712\pi\)
\(930\) 1.54230e13 0.676077
\(931\) 2.84067e12 0.123921
\(932\) −3.95878e13 −1.71866
\(933\) −1.68495e13 −0.727979
\(934\) −1.23564e12 −0.0531287
\(935\) 1.64638e13 0.704493
\(936\) 3.39510e13 1.44581
\(937\) −2.34042e11 −0.00991896 −0.00495948 0.999988i \(-0.501579\pi\)
−0.00495948 + 0.999988i \(0.501579\pi\)
\(938\) 1.13404e13 0.478318
\(939\) 9.42947e12 0.395815
\(940\) −2.38515e12 −0.0996416
\(941\) −1.24609e13 −0.518079 −0.259039 0.965867i \(-0.583406\pi\)
−0.259039 + 0.965867i \(0.583406\pi\)
\(942\) 2.39422e11 0.00990682
\(943\) 4.83025e13 1.98915
\(944\) 2.74423e13 1.12472
\(945\) −1.43080e12 −0.0583628
\(946\) 1.09939e14 4.46316
\(947\) 3.79693e13 1.53412 0.767058 0.641578i \(-0.221720\pi\)
0.767058 + 0.641578i \(0.221720\pi\)
\(948\) 2.15716e13 0.867449
\(949\) 6.27337e13 2.51075
\(950\) −2.14636e12 −0.0854961
\(951\) 5.94037e12 0.235506
\(952\) 4.85747e13 1.91665
\(953\) −5.77774e12 −0.226903 −0.113451 0.993544i \(-0.536191\pi\)
−0.113451 + 0.993544i \(0.536191\pi\)
\(954\) −1.39215e12 −0.0544151
\(955\) 1.86601e13 0.725937
\(956\) 5.35444e13 2.07326
\(957\) 3.71394e13 1.43130
\(958\) −7.63364e13 −2.92811
\(959\) 6.19569e12 0.236541
\(960\) −9.59889e12 −0.364754
\(961\) 2.57703e13 0.974684
\(962\) 9.92372e13 3.73583
\(963\) −8.96340e12 −0.335857
\(964\) 4.25357e13 1.58638
\(965\) 2.87552e12 0.106744
\(966\) 3.30635e13 1.22166
\(967\) 3.46199e13 1.27323 0.636615 0.771182i \(-0.280334\pi\)
0.636615 + 0.771182i \(0.280334\pi\)
\(968\) 1.00188e14 3.66757
\(969\) 3.74579e12 0.136485
\(970\) −3.32063e13 −1.20434
\(971\) −9.50632e12 −0.343183 −0.171592 0.985168i \(-0.554891\pi\)
−0.171592 + 0.985168i \(0.554891\pi\)
\(972\) −4.41319e12 −0.158582
\(973\) 1.62371e13 0.580767
\(974\) 2.71016e12 0.0964893
\(975\) −5.15235e12 −0.182593
\(976\) 3.32550e13 1.17310
\(977\) 4.65814e13 1.63564 0.817818 0.575477i \(-0.195183\pi\)
0.817818 + 0.575477i \(0.195183\pi\)
\(978\) −5.72235e13 −2.00009
\(979\) −4.32037e13 −1.50314
\(980\) −1.72430e13 −0.597168
\(981\) −3.76953e12 −0.129950
\(982\) −2.03626e13 −0.698764
\(983\) −3.08095e13 −1.05243 −0.526215 0.850351i \(-0.676389\pi\)
−0.526215 + 0.850351i \(0.676389\pi\)
\(984\) 5.53204e13 1.88108
\(985\) −2.41736e13 −0.818235
\(986\) −9.24095e13 −3.11366
\(987\) 1.05205e12 0.0352866
\(988\) −2.68598e13 −0.896801
\(989\) −7.89425e13 −2.62378
\(990\) 1.28346e13 0.424644
\(991\) 1.90167e13 0.626331 0.313166 0.949699i \(-0.398611\pi\)
0.313166 + 0.949699i \(0.398611\pi\)
\(992\) −9.31952e13 −3.05556
\(993\) −1.76691e13 −0.576691
\(994\) 3.24092e13 1.05300
\(995\) 4.12606e11 0.0133454
\(996\) −4.49625e13 −1.44772
\(997\) 5.10662e13 1.63684 0.818419 0.574622i \(-0.194851\pi\)
0.818419 + 0.574622i \(0.194851\pi\)
\(998\) 2.54619e13 0.812462
\(999\) −7.68141e12 −0.244004
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.10.a.h.1.14 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.10.a.h.1.14 15 1.1 even 1 trivial