Properties

Label 285.10.a.h.1.13
Level $285$
Weight $10$
Character 285.1
Self dual yes
Analytic conductor $146.785$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.785213307\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 2 x^{14} - 6356 x^{13} + 18436 x^{12} + 15858707 x^{11} - 49616078 x^{10} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{6}\cdot 5^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(-30.5956\) of defining polynomial
Character \(\chi\) \(=\) 285.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+29.5956 q^{2} -81.0000 q^{3} +363.897 q^{4} +625.000 q^{5} -2397.24 q^{6} +5260.19 q^{7} -4383.19 q^{8} +6561.00 q^{9} +O(q^{10})\) \(q+29.5956 q^{2} -81.0000 q^{3} +363.897 q^{4} +625.000 q^{5} -2397.24 q^{6} +5260.19 q^{7} -4383.19 q^{8} +6561.00 q^{9} +18497.2 q^{10} -16671.4 q^{11} -29475.7 q^{12} +87976.8 q^{13} +155678. q^{14} -50625.0 q^{15} -316038. q^{16} -38968.0 q^{17} +194176. q^{18} -130321. q^{19} +227436. q^{20} -426075. q^{21} -493398. q^{22} +1.43783e6 q^{23} +355038. q^{24} +390625. q^{25} +2.60372e6 q^{26} -531441. q^{27} +1.91417e6 q^{28} +5.99644e6 q^{29} -1.49828e6 q^{30} -6.55958e6 q^{31} -7.10913e6 q^{32} +1.35038e6 q^{33} -1.15328e6 q^{34} +3.28762e6 q^{35} +2.38753e6 q^{36} -720606. q^{37} -3.85692e6 q^{38} -7.12612e6 q^{39} -2.73949e6 q^{40} +1.52841e7 q^{41} -1.26099e7 q^{42} +5.25803e6 q^{43} -6.06666e6 q^{44} +4.10062e6 q^{45} +4.25535e7 q^{46} -2.40643e7 q^{47} +2.55991e7 q^{48} -1.26840e7 q^{49} +1.15608e7 q^{50} +3.15641e6 q^{51} +3.20145e7 q^{52} +5.99941e7 q^{53} -1.57283e7 q^{54} -1.04196e7 q^{55} -2.30564e7 q^{56} +1.05560e7 q^{57} +1.77468e8 q^{58} -2.20079e7 q^{59} -1.84223e7 q^{60} -1.56098e8 q^{61} -1.94134e8 q^{62} +3.45121e7 q^{63} -4.85872e7 q^{64} +5.49855e7 q^{65} +3.99653e7 q^{66} +2.29519e8 q^{67} -1.41803e7 q^{68} -1.16465e8 q^{69} +9.72988e7 q^{70} +2.87813e8 q^{71} -2.87581e7 q^{72} +1.04710e8 q^{73} -2.13268e7 q^{74} -3.16406e7 q^{75} -4.74234e7 q^{76} -8.76945e7 q^{77} -2.10901e8 q^{78} +4.55596e8 q^{79} -1.97524e8 q^{80} +4.30467e7 q^{81} +4.52341e8 q^{82} -4.84057e7 q^{83} -1.55047e8 q^{84} -2.43550e7 q^{85} +1.55614e8 q^{86} -4.85712e8 q^{87} +7.30738e7 q^{88} +7.55034e7 q^{89} +1.21360e8 q^{90} +4.62774e8 q^{91} +5.23224e8 q^{92} +5.31326e8 q^{93} -7.12197e8 q^{94} -8.14506e7 q^{95} +5.75840e8 q^{96} -2.70214e8 q^{97} -3.75391e8 q^{98} -1.09381e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9} - 10625 q^{10} + 138230 q^{11} - 409455 q^{12} - 176712 q^{13} - 555994 q^{14} - 759375 q^{15} + 1695731 q^{16} - 274992 q^{17} - 111537 q^{18} - 1954815 q^{19} + 3159375 q^{20} - 109512 q^{21} - 1031106 q^{22} + 1714212 q^{23} + 291357 q^{24} + 5859375 q^{25} + 9500004 q^{26} - 7971615 q^{27} + 14545598 q^{28} + 1754340 q^{29} + 860625 q^{30} + 8442914 q^{31} + 35638859 q^{32} - 11196630 q^{33} + 47218266 q^{34} + 845000 q^{35} + 33165855 q^{36} + 2956096 q^{37} + 2215457 q^{38} + 14313672 q^{39} - 2248125 q^{40} - 38550502 q^{41} + 45035514 q^{42} + 50753570 q^{43} + 212125630 q^{44} + 61509375 q^{45} - 117130008 q^{46} - 40252876 q^{47} - 137354211 q^{48} + 110123035 q^{49} - 6640625 q^{50} + 22274352 q^{51} - 87136648 q^{52} + 65532542 q^{53} + 9034497 q^{54} + 86393750 q^{55} - 377288898 q^{56} + 158340015 q^{57} + 211630876 q^{58} + 175407418 q^{59} - 255909375 q^{60} + 151231854 q^{61} - 30983940 q^{62} + 8870472 q^{63} + 836879575 q^{64} - 110445000 q^{65} + 83519586 q^{66} + 40009476 q^{67} - 124850430 q^{68} - 138851172 q^{69} - 347496250 q^{70} + 87578500 q^{71} - 23599917 q^{72} - 360657638 q^{73} + 1373397084 q^{74} - 474609375 q^{75} - 658772655 q^{76} - 304618172 q^{77} - 769500324 q^{78} + 205798286 q^{79} + 1059831875 q^{80} + 645700815 q^{81} - 2327138772 q^{82} - 63321462 q^{83} - 1178193438 q^{84} - 171870000 q^{85} - 848405762 q^{86} - 142101540 q^{87} - 3211126502 q^{88} - 381069174 q^{89} - 69710625 q^{90} + 1476892872 q^{91} - 2382818588 q^{92} - 683876034 q^{93} - 5137318040 q^{94} - 1221759375 q^{95} - 2886747579 q^{96} - 3915268828 q^{97} - 8273557437 q^{98} + 906927030 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 29.5956 1.30795 0.653976 0.756516i \(-0.273100\pi\)
0.653976 + 0.756516i \(0.273100\pi\)
\(3\) −81.0000 −0.577350
\(4\) 363.897 0.710736
\(5\) 625.000 0.447214
\(6\) −2397.24 −0.755146
\(7\) 5260.19 0.828056 0.414028 0.910264i \(-0.364121\pi\)
0.414028 + 0.910264i \(0.364121\pi\)
\(8\) −4383.19 −0.378343
\(9\) 6561.00 0.333333
\(10\) 18497.2 0.584934
\(11\) −16671.4 −0.343324 −0.171662 0.985156i \(-0.554914\pi\)
−0.171662 + 0.985156i \(0.554914\pi\)
\(12\) −29475.7 −0.410344
\(13\) 87976.8 0.854325 0.427162 0.904175i \(-0.359513\pi\)
0.427162 + 0.904175i \(0.359513\pi\)
\(14\) 155678. 1.08306
\(15\) −50625.0 −0.258199
\(16\) −316038. −1.20559
\(17\) −38968.0 −0.113159 −0.0565793 0.998398i \(-0.518019\pi\)
−0.0565793 + 0.998398i \(0.518019\pi\)
\(18\) 194176. 0.435984
\(19\) −130321. −0.229416
\(20\) 227436. 0.317851
\(21\) −426075. −0.478079
\(22\) −493398. −0.449051
\(23\) 1.43783e6 1.07136 0.535678 0.844422i \(-0.320056\pi\)
0.535678 + 0.844422i \(0.320056\pi\)
\(24\) 355038. 0.218436
\(25\) 390625. 0.200000
\(26\) 2.60372e6 1.11742
\(27\) −531441. −0.192450
\(28\) 1.91417e6 0.588530
\(29\) 5.99644e6 1.57436 0.787178 0.616726i \(-0.211541\pi\)
0.787178 + 0.616726i \(0.211541\pi\)
\(30\) −1.49828e6 −0.337712
\(31\) −6.55958e6 −1.27570 −0.637850 0.770161i \(-0.720176\pi\)
−0.637850 + 0.770161i \(0.720176\pi\)
\(32\) −7.10913e6 −1.19851
\(33\) 1.35038e6 0.198218
\(34\) −1.15328e6 −0.148006
\(35\) 3.28762e6 0.370318
\(36\) 2.38753e6 0.236912
\(37\) −720606. −0.0632107 −0.0316053 0.999500i \(-0.510062\pi\)
−0.0316053 + 0.999500i \(0.510062\pi\)
\(38\) −3.85692e6 −0.300065
\(39\) −7.12612e6 −0.493245
\(40\) −2.73949e6 −0.169200
\(41\) 1.52841e7 0.844719 0.422360 0.906428i \(-0.361202\pi\)
0.422360 + 0.906428i \(0.361202\pi\)
\(42\) −1.26099e7 −0.625304
\(43\) 5.25803e6 0.234539 0.117269 0.993100i \(-0.462586\pi\)
0.117269 + 0.993100i \(0.462586\pi\)
\(44\) −6.06666e6 −0.244013
\(45\) 4.10062e6 0.149071
\(46\) 4.25535e7 1.40128
\(47\) −2.40643e7 −0.719339 −0.359669 0.933080i \(-0.617111\pi\)
−0.359669 + 0.933080i \(0.617111\pi\)
\(48\) 2.55991e7 0.696048
\(49\) −1.26840e7 −0.314322
\(50\) 1.15608e7 0.261590
\(51\) 3.15641e6 0.0653322
\(52\) 3.20145e7 0.607200
\(53\) 5.99941e7 1.04440 0.522201 0.852823i \(-0.325111\pi\)
0.522201 + 0.852823i \(0.325111\pi\)
\(54\) −1.57283e7 −0.251715
\(55\) −1.04196e7 −0.153539
\(56\) −2.30564e7 −0.313289
\(57\) 1.05560e7 0.132453
\(58\) 1.77468e8 2.05918
\(59\) −2.20079e7 −0.236453 −0.118226 0.992987i \(-0.537721\pi\)
−0.118226 + 0.992987i \(0.537721\pi\)
\(60\) −1.84223e7 −0.183511
\(61\) −1.56098e8 −1.44349 −0.721743 0.692161i \(-0.756659\pi\)
−0.721743 + 0.692161i \(0.756659\pi\)
\(62\) −1.94134e8 −1.66855
\(63\) 3.45121e7 0.276019
\(64\) −4.85872e7 −0.362003
\(65\) 5.49855e7 0.382066
\(66\) 3.99653e7 0.259260
\(67\) 2.29519e8 1.39150 0.695748 0.718286i \(-0.255073\pi\)
0.695748 + 0.718286i \(0.255073\pi\)
\(68\) −1.41803e7 −0.0804260
\(69\) −1.16465e8 −0.618547
\(70\) 9.72988e7 0.484358
\(71\) 2.87813e8 1.34415 0.672074 0.740484i \(-0.265404\pi\)
0.672074 + 0.740484i \(0.265404\pi\)
\(72\) −2.87581e7 −0.126114
\(73\) 1.04710e8 0.431554 0.215777 0.976443i \(-0.430772\pi\)
0.215777 + 0.976443i \(0.430772\pi\)
\(74\) −2.13268e7 −0.0826765
\(75\) −3.16406e7 −0.115470
\(76\) −4.74234e7 −0.163054
\(77\) −8.76945e7 −0.284292
\(78\) −2.10901e8 −0.645140
\(79\) 4.55596e8 1.31601 0.658003 0.753016i \(-0.271402\pi\)
0.658003 + 0.753016i \(0.271402\pi\)
\(80\) −1.97524e8 −0.539156
\(81\) 4.30467e7 0.111111
\(82\) 4.52341e8 1.10485
\(83\) −4.84057e7 −0.111955 −0.0559777 0.998432i \(-0.517828\pi\)
−0.0559777 + 0.998432i \(0.517828\pi\)
\(84\) −1.55047e8 −0.339788
\(85\) −2.43550e7 −0.0506061
\(86\) 1.55614e8 0.306765
\(87\) −4.85712e8 −0.908955
\(88\) 7.30738e7 0.129894
\(89\) 7.55034e7 0.127559 0.0637795 0.997964i \(-0.479685\pi\)
0.0637795 + 0.997964i \(0.479685\pi\)
\(90\) 1.21360e8 0.194978
\(91\) 4.62774e8 0.707429
\(92\) 5.23224e8 0.761451
\(93\) 5.31326e8 0.736525
\(94\) −7.12197e8 −0.940860
\(95\) −8.14506e7 −0.102598
\(96\) 5.75840e8 0.691960
\(97\) −2.70214e8 −0.309909 −0.154955 0.987922i \(-0.549523\pi\)
−0.154955 + 0.987922i \(0.549523\pi\)
\(98\) −3.75391e8 −0.411118
\(99\) −1.09381e8 −0.114441
\(100\) 1.42147e8 0.142147
\(101\) −4.02870e8 −0.385229 −0.192614 0.981275i \(-0.561697\pi\)
−0.192614 + 0.981275i \(0.561697\pi\)
\(102\) 9.34156e7 0.0854513
\(103\) 2.05018e9 1.79483 0.897417 0.441184i \(-0.145441\pi\)
0.897417 + 0.441184i \(0.145441\pi\)
\(104\) −3.85619e8 −0.323228
\(105\) −2.66297e8 −0.213803
\(106\) 1.77556e9 1.36603
\(107\) 1.17752e9 0.868446 0.434223 0.900805i \(-0.357023\pi\)
0.434223 + 0.900805i \(0.357023\pi\)
\(108\) −1.93390e8 −0.136781
\(109\) −8.09835e8 −0.549512 −0.274756 0.961514i \(-0.588597\pi\)
−0.274756 + 0.961514i \(0.588597\pi\)
\(110\) −3.08374e8 −0.200822
\(111\) 5.83691e7 0.0364947
\(112\) −1.66242e9 −0.998297
\(113\) 8.11057e8 0.467949 0.233975 0.972243i \(-0.424827\pi\)
0.233975 + 0.972243i \(0.424827\pi\)
\(114\) 3.12411e8 0.173242
\(115\) 8.98647e8 0.479125
\(116\) 2.18209e9 1.11895
\(117\) 5.77216e8 0.284775
\(118\) −6.51336e8 −0.309269
\(119\) −2.04979e8 −0.0937017
\(120\) 2.21899e8 0.0976877
\(121\) −2.08001e9 −0.882129
\(122\) −4.61980e9 −1.88801
\(123\) −1.23801e9 −0.487699
\(124\) −2.38701e9 −0.906686
\(125\) 2.44141e8 0.0894427
\(126\) 1.02140e9 0.361019
\(127\) 4.58160e9 1.56279 0.781394 0.624037i \(-0.214509\pi\)
0.781394 + 0.624037i \(0.214509\pi\)
\(128\) 2.20191e9 0.725028
\(129\) −4.25900e8 −0.135411
\(130\) 1.62733e9 0.499723
\(131\) 3.93266e9 1.16672 0.583358 0.812215i \(-0.301738\pi\)
0.583358 + 0.812215i \(0.301738\pi\)
\(132\) 4.91400e8 0.140881
\(133\) −6.85513e8 −0.189969
\(134\) 6.79274e9 1.82001
\(135\) −3.32151e8 −0.0860663
\(136\) 1.70804e8 0.0428127
\(137\) 3.90112e9 0.946121 0.473060 0.881030i \(-0.343149\pi\)
0.473060 + 0.881030i \(0.343149\pi\)
\(138\) −3.44683e9 −0.809030
\(139\) 6.90330e9 1.56852 0.784260 0.620432i \(-0.213043\pi\)
0.784260 + 0.620432i \(0.213043\pi\)
\(140\) 1.19635e9 0.263199
\(141\) 1.94921e9 0.415310
\(142\) 8.51797e9 1.75808
\(143\) −1.46669e9 −0.293310
\(144\) −2.07353e9 −0.401863
\(145\) 3.74778e9 0.704073
\(146\) 3.09895e9 0.564451
\(147\) 1.02741e9 0.181474
\(148\) −2.62227e8 −0.0449261
\(149\) 8.37260e9 1.39163 0.695813 0.718223i \(-0.255044\pi\)
0.695813 + 0.718223i \(0.255044\pi\)
\(150\) −9.36422e8 −0.151029
\(151\) −3.18560e9 −0.498649 −0.249324 0.968420i \(-0.580209\pi\)
−0.249324 + 0.968420i \(0.580209\pi\)
\(152\) 5.71222e8 0.0867978
\(153\) −2.55669e8 −0.0377195
\(154\) −2.59537e9 −0.371840
\(155\) −4.09974e9 −0.570510
\(156\) −2.59317e9 −0.350567
\(157\) 8.30989e9 1.09156 0.545779 0.837929i \(-0.316234\pi\)
0.545779 + 0.837929i \(0.316234\pi\)
\(158\) 1.34836e10 1.72127
\(159\) −4.85952e9 −0.602985
\(160\) −4.44321e9 −0.535990
\(161\) 7.56328e9 0.887143
\(162\) 1.27399e9 0.145328
\(163\) 6.52494e9 0.723990 0.361995 0.932180i \(-0.382096\pi\)
0.361995 + 0.932180i \(0.382096\pi\)
\(164\) 5.56184e9 0.600373
\(165\) 8.43988e8 0.0886459
\(166\) −1.43259e9 −0.146432
\(167\) 7.21410e9 0.717725 0.358863 0.933390i \(-0.383165\pi\)
0.358863 + 0.933390i \(0.383165\pi\)
\(168\) 1.86757e9 0.180878
\(169\) −2.86458e9 −0.270129
\(170\) −7.20799e8 −0.0661903
\(171\) −8.55036e8 −0.0764719
\(172\) 1.91338e9 0.166695
\(173\) −2.18345e10 −1.85325 −0.926627 0.375981i \(-0.877306\pi\)
−0.926627 + 0.375981i \(0.877306\pi\)
\(174\) −1.43749e10 −1.18887
\(175\) 2.05476e9 0.165611
\(176\) 5.26879e9 0.413908
\(177\) 1.78264e9 0.136516
\(178\) 2.23456e9 0.166841
\(179\) −1.28038e10 −0.932178 −0.466089 0.884738i \(-0.654337\pi\)
−0.466089 + 0.884738i \(0.654337\pi\)
\(180\) 1.49221e9 0.105950
\(181\) 2.29543e10 1.58968 0.794842 0.606816i \(-0.207554\pi\)
0.794842 + 0.606816i \(0.207554\pi\)
\(182\) 1.36961e10 0.925283
\(183\) 1.26439e10 0.833397
\(184\) −6.30230e9 −0.405340
\(185\) −4.50379e8 −0.0282687
\(186\) 1.57249e10 0.963339
\(187\) 6.49649e8 0.0388501
\(188\) −8.75694e9 −0.511260
\(189\) −2.79548e9 −0.159360
\(190\) −2.41058e9 −0.134193
\(191\) −2.87136e10 −1.56112 −0.780561 0.625080i \(-0.785066\pi\)
−0.780561 + 0.625080i \(0.785066\pi\)
\(192\) 3.93556e9 0.209003
\(193\) 1.82235e10 0.945419 0.472710 0.881218i \(-0.343276\pi\)
0.472710 + 0.881218i \(0.343276\pi\)
\(194\) −7.99712e9 −0.405346
\(195\) −4.45382e9 −0.220586
\(196\) −4.61569e9 −0.223400
\(197\) 5.85082e9 0.276770 0.138385 0.990379i \(-0.455809\pi\)
0.138385 + 0.990379i \(0.455809\pi\)
\(198\) −3.23719e9 −0.149684
\(199\) −1.64666e10 −0.744330 −0.372165 0.928167i \(-0.621385\pi\)
−0.372165 + 0.928167i \(0.621385\pi\)
\(200\) −1.71218e9 −0.0756685
\(201\) −1.85910e10 −0.803380
\(202\) −1.19232e10 −0.503860
\(203\) 3.15424e10 1.30366
\(204\) 1.14861e9 0.0464339
\(205\) 9.55256e9 0.377770
\(206\) 6.06762e10 2.34755
\(207\) 9.43363e9 0.357119
\(208\) −2.78040e10 −1.02997
\(209\) 2.17263e9 0.0787639
\(210\) −7.88121e9 −0.279644
\(211\) 2.37649e10 0.825400 0.412700 0.910867i \(-0.364586\pi\)
0.412700 + 0.910867i \(0.364586\pi\)
\(212\) 2.18317e10 0.742294
\(213\) −2.33128e10 −0.776044
\(214\) 3.48495e10 1.13588
\(215\) 3.28627e9 0.104889
\(216\) 2.32941e9 0.0728121
\(217\) −3.45046e10 −1.05635
\(218\) −2.39675e10 −0.718735
\(219\) −8.48150e9 −0.249158
\(220\) −3.79166e9 −0.109126
\(221\) −3.42828e9 −0.0966742
\(222\) 1.72747e9 0.0477333
\(223\) 1.07774e10 0.291837 0.145919 0.989297i \(-0.453386\pi\)
0.145919 + 0.989297i \(0.453386\pi\)
\(224\) −3.73954e10 −0.992434
\(225\) 2.56289e9 0.0666667
\(226\) 2.40037e10 0.612055
\(227\) −3.35431e10 −0.838468 −0.419234 0.907878i \(-0.637701\pi\)
−0.419234 + 0.907878i \(0.637701\pi\)
\(228\) 3.84130e9 0.0941393
\(229\) −5.58240e10 −1.34141 −0.670704 0.741725i \(-0.734008\pi\)
−0.670704 + 0.741725i \(0.734008\pi\)
\(230\) 2.65959e10 0.626672
\(231\) 7.10326e9 0.164136
\(232\) −2.62836e10 −0.595646
\(233\) −1.09578e10 −0.243569 −0.121784 0.992557i \(-0.538862\pi\)
−0.121784 + 0.992557i \(0.538862\pi\)
\(234\) 1.70830e10 0.372472
\(235\) −1.50402e10 −0.321698
\(236\) −8.00861e9 −0.168056
\(237\) −3.69032e10 −0.759796
\(238\) −6.06646e9 −0.122557
\(239\) −7.42341e10 −1.47168 −0.735839 0.677157i \(-0.763212\pi\)
−0.735839 + 0.677157i \(0.763212\pi\)
\(240\) 1.59994e10 0.311282
\(241\) −7.94561e10 −1.51723 −0.758613 0.651541i \(-0.774123\pi\)
−0.758613 + 0.651541i \(0.774123\pi\)
\(242\) −6.15591e10 −1.15378
\(243\) −3.48678e9 −0.0641500
\(244\) −5.68035e10 −1.02594
\(245\) −7.92753e9 −0.140569
\(246\) −3.66396e10 −0.637886
\(247\) −1.14652e10 −0.195996
\(248\) 2.87519e10 0.482652
\(249\) 3.92086e9 0.0646375
\(250\) 7.22548e9 0.116987
\(251\) 2.75852e10 0.438676 0.219338 0.975649i \(-0.429610\pi\)
0.219338 + 0.975649i \(0.429610\pi\)
\(252\) 1.25588e10 0.196177
\(253\) −2.39707e10 −0.367822
\(254\) 1.35595e11 2.04405
\(255\) 1.97275e9 0.0292174
\(256\) 9.00434e10 1.31030
\(257\) 6.17608e10 0.883108 0.441554 0.897235i \(-0.354427\pi\)
0.441554 + 0.897235i \(0.354427\pi\)
\(258\) −1.26048e10 −0.177111
\(259\) −3.79052e9 −0.0523420
\(260\) 2.00091e10 0.271548
\(261\) 3.93427e10 0.524785
\(262\) 1.16389e11 1.52601
\(263\) −4.24114e10 −0.546615 −0.273308 0.961927i \(-0.588118\pi\)
−0.273308 + 0.961927i \(0.588118\pi\)
\(264\) −5.91898e9 −0.0749944
\(265\) 3.74963e10 0.467070
\(266\) −2.02881e10 −0.248470
\(267\) −6.11577e9 −0.0736463
\(268\) 8.35212e10 0.988986
\(269\) 7.71799e10 0.898709 0.449355 0.893353i \(-0.351654\pi\)
0.449355 + 0.893353i \(0.351654\pi\)
\(270\) −9.83018e9 −0.112571
\(271\) 1.30709e10 0.147213 0.0736064 0.997287i \(-0.476549\pi\)
0.0736064 + 0.997287i \(0.476549\pi\)
\(272\) 1.23154e10 0.136423
\(273\) −3.74847e10 −0.408434
\(274\) 1.15456e11 1.23748
\(275\) −6.51225e9 −0.0686648
\(276\) −4.23811e10 −0.439624
\(277\) −3.09264e10 −0.315624 −0.157812 0.987469i \(-0.550444\pi\)
−0.157812 + 0.987469i \(0.550444\pi\)
\(278\) 2.04307e11 2.05155
\(279\) −4.30374e10 −0.425233
\(280\) −1.44102e10 −0.140107
\(281\) 1.97645e11 1.89107 0.945533 0.325527i \(-0.105542\pi\)
0.945533 + 0.325527i \(0.105542\pi\)
\(282\) 5.76880e10 0.543206
\(283\) 2.35003e9 0.0217788 0.0108894 0.999941i \(-0.496534\pi\)
0.0108894 + 0.999941i \(0.496534\pi\)
\(284\) 1.04734e11 0.955335
\(285\) 6.59750e9 0.0592349
\(286\) −4.34076e10 −0.383635
\(287\) 8.03972e10 0.699475
\(288\) −4.66430e10 −0.399503
\(289\) −1.17069e11 −0.987195
\(290\) 1.10918e11 0.920893
\(291\) 2.18873e10 0.178926
\(292\) 3.81036e10 0.306721
\(293\) −1.89958e11 −1.50575 −0.752875 0.658164i \(-0.771333\pi\)
−0.752875 + 0.658164i \(0.771333\pi\)
\(294\) 3.04067e10 0.237359
\(295\) −1.37549e10 −0.105745
\(296\) 3.15856e9 0.0239153
\(297\) 8.85985e9 0.0660727
\(298\) 2.47792e11 1.82018
\(299\) 1.26496e11 0.915286
\(300\) −1.15139e10 −0.0820688
\(301\) 2.76582e10 0.194211
\(302\) −9.42796e10 −0.652209
\(303\) 3.26325e10 0.222412
\(304\) 4.11864e10 0.276581
\(305\) −9.75612e10 −0.645547
\(306\) −7.56666e9 −0.0493353
\(307\) −1.83901e11 −1.18158 −0.590788 0.806827i \(-0.701183\pi\)
−0.590788 + 0.806827i \(0.701183\pi\)
\(308\) −3.19118e10 −0.202056
\(309\) −1.66064e11 −1.03625
\(310\) −1.21334e11 −0.746199
\(311\) 1.47297e11 0.892835 0.446418 0.894825i \(-0.352700\pi\)
0.446418 + 0.894825i \(0.352700\pi\)
\(312\) 3.12351e10 0.186616
\(313\) 2.99716e11 1.76506 0.882532 0.470253i \(-0.155837\pi\)
0.882532 + 0.470253i \(0.155837\pi\)
\(314\) 2.45936e11 1.42770
\(315\) 2.15701e10 0.123439
\(316\) 1.65790e11 0.935333
\(317\) −1.65038e11 −0.917946 −0.458973 0.888450i \(-0.651782\pi\)
−0.458973 + 0.888450i \(0.651782\pi\)
\(318\) −1.43820e11 −0.788675
\(319\) −9.99689e10 −0.540514
\(320\) −3.03670e10 −0.161893
\(321\) −9.53795e10 −0.501398
\(322\) 2.23839e11 1.16034
\(323\) 5.07835e9 0.0259604
\(324\) 1.56646e10 0.0789707
\(325\) 3.43659e10 0.170865
\(326\) 1.93109e11 0.946943
\(327\) 6.55966e10 0.317261
\(328\) −6.69931e10 −0.319593
\(329\) −1.26583e11 −0.595653
\(330\) 2.49783e10 0.115944
\(331\) 1.12912e11 0.517028 0.258514 0.966007i \(-0.416767\pi\)
0.258514 + 0.966007i \(0.416767\pi\)
\(332\) −1.76147e10 −0.0795707
\(333\) −4.72790e9 −0.0210702
\(334\) 2.13505e11 0.938749
\(335\) 1.43449e11 0.622296
\(336\) 1.34656e11 0.576367
\(337\) −1.08997e11 −0.460342 −0.230171 0.973150i \(-0.573929\pi\)
−0.230171 + 0.973150i \(0.573929\pi\)
\(338\) −8.47790e10 −0.353316
\(339\) −6.56956e10 −0.270171
\(340\) −8.86271e9 −0.0359676
\(341\) 1.09357e11 0.437978
\(342\) −2.53053e10 −0.100022
\(343\) −2.78988e11 −1.08833
\(344\) −2.30469e10 −0.0887360
\(345\) −7.27904e10 −0.276623
\(346\) −6.46203e11 −2.42397
\(347\) −9.48580e10 −0.351230 −0.175615 0.984459i \(-0.556191\pi\)
−0.175615 + 0.984459i \(0.556191\pi\)
\(348\) −1.76749e11 −0.646027
\(349\) −1.91771e11 −0.691941 −0.345970 0.938245i \(-0.612450\pi\)
−0.345970 + 0.938245i \(0.612450\pi\)
\(350\) 6.08118e10 0.216611
\(351\) −4.67545e10 −0.164415
\(352\) 1.18519e11 0.411477
\(353\) 7.46866e10 0.256010 0.128005 0.991774i \(-0.459143\pi\)
0.128005 + 0.991774i \(0.459143\pi\)
\(354\) 5.27582e10 0.178556
\(355\) 1.79883e11 0.601121
\(356\) 2.74755e10 0.0906609
\(357\) 1.66033e10 0.0540987
\(358\) −3.78935e11 −1.21924
\(359\) 2.57741e11 0.818951 0.409475 0.912321i \(-0.365712\pi\)
0.409475 + 0.912321i \(0.365712\pi\)
\(360\) −1.79738e10 −0.0564000
\(361\) 1.69836e10 0.0526316
\(362\) 6.79346e11 2.07923
\(363\) 1.68481e11 0.509297
\(364\) 1.68402e11 0.502796
\(365\) 6.54437e10 0.192997
\(366\) 3.74204e11 1.09004
\(367\) 6.10014e11 1.75526 0.877632 0.479336i \(-0.159122\pi\)
0.877632 + 0.479336i \(0.159122\pi\)
\(368\) −4.54411e11 −1.29162
\(369\) 1.00279e11 0.281573
\(370\) −1.33292e10 −0.0369740
\(371\) 3.15580e11 0.864823
\(372\) 1.93348e11 0.523475
\(373\) −4.42938e11 −1.18482 −0.592411 0.805636i \(-0.701824\pi\)
−0.592411 + 0.805636i \(0.701824\pi\)
\(374\) 1.92267e10 0.0508140
\(375\) −1.97754e10 −0.0516398
\(376\) 1.05479e11 0.272157
\(377\) 5.27548e11 1.34501
\(378\) −8.27338e10 −0.208435
\(379\) −4.25185e11 −1.05853 −0.529263 0.848458i \(-0.677532\pi\)
−0.529263 + 0.848458i \(0.677532\pi\)
\(380\) −2.96396e10 −0.0729200
\(381\) −3.71109e11 −0.902277
\(382\) −8.49794e11 −2.04187
\(383\) 3.55576e11 0.844380 0.422190 0.906507i \(-0.361261\pi\)
0.422190 + 0.906507i \(0.361261\pi\)
\(384\) −1.78355e11 −0.418595
\(385\) −5.48091e10 −0.127139
\(386\) 5.39335e11 1.23656
\(387\) 3.44979e10 0.0781796
\(388\) −9.83299e10 −0.220264
\(389\) −3.81169e11 −0.844003 −0.422001 0.906595i \(-0.638672\pi\)
−0.422001 + 0.906595i \(0.638672\pi\)
\(390\) −1.31813e11 −0.288515
\(391\) −5.60295e10 −0.121233
\(392\) 5.55966e10 0.118922
\(393\) −3.18545e11 −0.673604
\(394\) 1.73158e11 0.362001
\(395\) 2.84747e11 0.588535
\(396\) −3.98034e10 −0.0813376
\(397\) −1.30221e11 −0.263103 −0.131551 0.991309i \(-0.541996\pi\)
−0.131551 + 0.991309i \(0.541996\pi\)
\(398\) −4.87339e11 −0.973548
\(399\) 5.55265e10 0.109679
\(400\) −1.23452e11 −0.241118
\(401\) −4.01929e11 −0.776247 −0.388124 0.921607i \(-0.626877\pi\)
−0.388124 + 0.921607i \(0.626877\pi\)
\(402\) −5.50212e11 −1.05078
\(403\) −5.77091e11 −1.08986
\(404\) −1.46603e11 −0.273796
\(405\) 2.69042e10 0.0496904
\(406\) 9.33515e11 1.70512
\(407\) 1.20135e10 0.0217017
\(408\) −1.38351e10 −0.0247179
\(409\) 1.82150e10 0.0321865 0.0160933 0.999870i \(-0.494877\pi\)
0.0160933 + 0.999870i \(0.494877\pi\)
\(410\) 2.82713e11 0.494105
\(411\) −3.15991e11 −0.546243
\(412\) 7.46054e11 1.27565
\(413\) −1.15766e11 −0.195796
\(414\) 2.79194e11 0.467094
\(415\) −3.02535e10 −0.0500680
\(416\) −6.25439e11 −1.02392
\(417\) −5.59167e11 −0.905585
\(418\) 6.43002e10 0.103019
\(419\) −1.41367e11 −0.224071 −0.112036 0.993704i \(-0.535737\pi\)
−0.112036 + 0.993704i \(0.535737\pi\)
\(420\) −9.69047e10 −0.151958
\(421\) −1.78853e11 −0.277477 −0.138738 0.990329i \(-0.544305\pi\)
−0.138738 + 0.990329i \(0.544305\pi\)
\(422\) 7.03334e11 1.07958
\(423\) −1.57886e11 −0.239780
\(424\) −2.62966e11 −0.395142
\(425\) −1.52219e10 −0.0226317
\(426\) −6.89956e11 −1.01503
\(427\) −8.21104e11 −1.19529
\(428\) 4.28498e11 0.617236
\(429\) 1.18802e11 0.169343
\(430\) 9.72589e10 0.137190
\(431\) −6.15558e10 −0.0859253 −0.0429626 0.999077i \(-0.513680\pi\)
−0.0429626 + 0.999077i \(0.513680\pi\)
\(432\) 1.67956e11 0.232016
\(433\) −3.99697e11 −0.546431 −0.273216 0.961953i \(-0.588087\pi\)
−0.273216 + 0.961953i \(0.588087\pi\)
\(434\) −1.02118e12 −1.38166
\(435\) −3.03570e11 −0.406497
\(436\) −2.94696e11 −0.390558
\(437\) −1.87380e11 −0.245786
\(438\) −2.51015e11 −0.325886
\(439\) −9.24508e11 −1.18801 −0.594006 0.804461i \(-0.702454\pi\)
−0.594006 + 0.804461i \(0.702454\pi\)
\(440\) 4.56711e10 0.0580904
\(441\) −8.32200e10 −0.104774
\(442\) −1.01462e11 −0.126445
\(443\) −3.47428e11 −0.428596 −0.214298 0.976768i \(-0.568746\pi\)
−0.214298 + 0.976768i \(0.568746\pi\)
\(444\) 2.12404e10 0.0259381
\(445\) 4.71896e10 0.0570462
\(446\) 3.18962e11 0.381709
\(447\) −6.78181e11 −0.803455
\(448\) −2.55578e11 −0.299759
\(449\) −4.16089e11 −0.483145 −0.241573 0.970383i \(-0.577663\pi\)
−0.241573 + 0.970383i \(0.577663\pi\)
\(450\) 7.58502e10 0.0871967
\(451\) −2.54807e11 −0.290012
\(452\) 2.95141e11 0.332588
\(453\) 2.58034e11 0.287895
\(454\) −9.92726e11 −1.09668
\(455\) 2.89234e11 0.316372
\(456\) −4.62690e10 −0.0501127
\(457\) 1.83365e12 1.96650 0.983248 0.182272i \(-0.0583452\pi\)
0.983248 + 0.182272i \(0.0583452\pi\)
\(458\) −1.65214e12 −1.75450
\(459\) 2.07092e10 0.0217774
\(460\) 3.27015e11 0.340531
\(461\) 2.92228e11 0.301347 0.150674 0.988584i \(-0.451856\pi\)
0.150674 + 0.988584i \(0.451856\pi\)
\(462\) 2.10225e11 0.214682
\(463\) −7.89652e11 −0.798585 −0.399292 0.916824i \(-0.630744\pi\)
−0.399292 + 0.916824i \(0.630744\pi\)
\(464\) −1.89511e12 −1.89803
\(465\) 3.32079e11 0.329384
\(466\) −3.24302e11 −0.318576
\(467\) −4.14792e11 −0.403557 −0.201778 0.979431i \(-0.564672\pi\)
−0.201778 + 0.979431i \(0.564672\pi\)
\(468\) 2.10047e11 0.202400
\(469\) 1.20731e12 1.15224
\(470\) −4.45123e11 −0.420765
\(471\) −6.73101e11 −0.630211
\(472\) 9.64648e10 0.0894602
\(473\) −8.76585e10 −0.0805228
\(474\) −1.09217e12 −0.993776
\(475\) −5.09066e10 −0.0458831
\(476\) −7.45912e10 −0.0665972
\(477\) 3.93621e11 0.348134
\(478\) −2.19700e12 −1.92488
\(479\) −1.02167e12 −0.886753 −0.443377 0.896335i \(-0.646220\pi\)
−0.443377 + 0.896335i \(0.646220\pi\)
\(480\) 3.59900e11 0.309454
\(481\) −6.33966e10 −0.0540024
\(482\) −2.35155e12 −1.98446
\(483\) −6.12625e11 −0.512192
\(484\) −7.56911e11 −0.626961
\(485\) −1.68883e11 −0.138596
\(486\) −1.03193e11 −0.0839051
\(487\) 1.46586e12 1.18090 0.590450 0.807074i \(-0.298950\pi\)
0.590450 + 0.807074i \(0.298950\pi\)
\(488\) 6.84207e11 0.546133
\(489\) −5.28520e11 −0.417996
\(490\) −2.34620e11 −0.183858
\(491\) −1.46210e12 −1.13530 −0.567648 0.823271i \(-0.692146\pi\)
−0.567648 + 0.823271i \(0.692146\pi\)
\(492\) −4.50509e11 −0.346625
\(493\) −2.33669e11 −0.178152
\(494\) −3.39320e11 −0.256353
\(495\) −6.83630e10 −0.0511797
\(496\) 2.07308e12 1.53797
\(497\) 1.51395e12 1.11303
\(498\) 1.16040e11 0.0845426
\(499\) −6.11177e10 −0.0441281 −0.0220640 0.999757i \(-0.507024\pi\)
−0.0220640 + 0.999757i \(0.507024\pi\)
\(500\) 8.88420e10 0.0635702
\(501\) −5.84342e11 −0.414379
\(502\) 8.16399e11 0.573767
\(503\) −1.16995e12 −0.814911 −0.407455 0.913225i \(-0.633584\pi\)
−0.407455 + 0.913225i \(0.633584\pi\)
\(504\) −1.51273e11 −0.104430
\(505\) −2.51794e11 −0.172279
\(506\) −7.09425e11 −0.481093
\(507\) 2.32031e11 0.155959
\(508\) 1.66723e12 1.11073
\(509\) −1.28470e12 −0.848345 −0.424172 0.905582i \(-0.639435\pi\)
−0.424172 + 0.905582i \(0.639435\pi\)
\(510\) 5.83847e10 0.0382150
\(511\) 5.50793e11 0.357351
\(512\) 1.53751e12 0.988786
\(513\) 6.92579e10 0.0441511
\(514\) 1.82785e12 1.15506
\(515\) 1.28136e12 0.802674
\(516\) −1.54984e11 −0.0962415
\(517\) 4.01185e11 0.246966
\(518\) −1.12183e11 −0.0684608
\(519\) 1.76859e12 1.06998
\(520\) −2.41012e11 −0.144552
\(521\) −3.01378e12 −1.79202 −0.896008 0.444037i \(-0.853546\pi\)
−0.896008 + 0.444037i \(0.853546\pi\)
\(522\) 1.16437e12 0.686393
\(523\) −2.73739e12 −1.59985 −0.799923 0.600102i \(-0.795127\pi\)
−0.799923 + 0.600102i \(0.795127\pi\)
\(524\) 1.43108e12 0.829228
\(525\) −1.66436e11 −0.0956157
\(526\) −1.25519e12 −0.714946
\(527\) 2.55613e11 0.144356
\(528\) −4.26772e11 −0.238970
\(529\) 2.66215e11 0.147803
\(530\) 1.10972e12 0.610905
\(531\) −1.44394e11 −0.0788176
\(532\) −2.49456e11 −0.135018
\(533\) 1.34465e12 0.721665
\(534\) −1.81000e11 −0.0963257
\(535\) 7.35953e11 0.388381
\(536\) −1.00602e12 −0.526462
\(537\) 1.03710e12 0.538193
\(538\) 2.28418e12 1.17547
\(539\) 2.11460e11 0.107914
\(540\) −1.20869e11 −0.0611704
\(541\) 5.49896e9 0.00275990 0.00137995 0.999999i \(-0.499561\pi\)
0.00137995 + 0.999999i \(0.499561\pi\)
\(542\) 3.86842e11 0.192547
\(543\) −1.85930e12 −0.917805
\(544\) 2.77029e11 0.135622
\(545\) −5.06147e11 −0.245749
\(546\) −1.10938e12 −0.534212
\(547\) 2.60625e12 1.24473 0.622363 0.782729i \(-0.286173\pi\)
0.622363 + 0.782729i \(0.286173\pi\)
\(548\) 1.41961e12 0.672442
\(549\) −1.02416e12 −0.481162
\(550\) −1.92734e11 −0.0898102
\(551\) −7.81463e11 −0.361182
\(552\) 5.10486e11 0.234023
\(553\) 2.39652e12 1.08973
\(554\) −9.15284e11 −0.412821
\(555\) 3.64807e10 0.0163209
\(556\) 2.51209e12 1.11480
\(557\) 1.20429e12 0.530132 0.265066 0.964230i \(-0.414606\pi\)
0.265066 + 0.964230i \(0.414606\pi\)
\(558\) −1.27372e12 −0.556184
\(559\) 4.62584e11 0.200372
\(560\) −1.03901e12 −0.446452
\(561\) −5.26216e10 −0.0224301
\(562\) 5.84940e12 2.47342
\(563\) −1.72761e12 −0.724700 −0.362350 0.932042i \(-0.618025\pi\)
−0.362350 + 0.932042i \(0.618025\pi\)
\(564\) 7.09312e11 0.295176
\(565\) 5.06911e11 0.209273
\(566\) 6.95503e10 0.0284856
\(567\) 2.26434e11 0.0920063
\(568\) −1.26154e12 −0.508549
\(569\) −1.64332e12 −0.657229 −0.328615 0.944464i \(-0.606582\pi\)
−0.328615 + 0.944464i \(0.606582\pi\)
\(570\) 1.95257e11 0.0774763
\(571\) 1.14332e12 0.450097 0.225048 0.974348i \(-0.427746\pi\)
0.225048 + 0.974348i \(0.427746\pi\)
\(572\) −5.33725e11 −0.208466
\(573\) 2.32580e12 0.901314
\(574\) 2.37940e12 0.914879
\(575\) 5.61654e11 0.214271
\(576\) −3.18781e11 −0.120668
\(577\) 4.41190e12 1.65704 0.828522 0.559956i \(-0.189182\pi\)
0.828522 + 0.559956i \(0.189182\pi\)
\(578\) −3.46473e12 −1.29120
\(579\) −1.47611e12 −0.545838
\(580\) 1.36381e12 0.500410
\(581\) −2.54623e11 −0.0927054
\(582\) 6.47767e11 0.234027
\(583\) −1.00018e12 −0.358568
\(584\) −4.58963e11 −0.163275
\(585\) 3.60760e11 0.127355
\(586\) −5.62190e12 −1.96945
\(587\) −1.28967e12 −0.448338 −0.224169 0.974550i \(-0.571967\pi\)
−0.224169 + 0.974550i \(0.571967\pi\)
\(588\) 3.73871e11 0.128980
\(589\) 8.54851e11 0.292665
\(590\) −4.07085e11 −0.138309
\(591\) −4.73916e11 −0.159793
\(592\) 2.27739e11 0.0762062
\(593\) 3.18276e12 1.05696 0.528479 0.848946i \(-0.322762\pi\)
0.528479 + 0.848946i \(0.322762\pi\)
\(594\) 2.62212e11 0.0864199
\(595\) −1.28112e11 −0.0419047
\(596\) 3.04677e12 0.989079
\(597\) 1.33380e12 0.429739
\(598\) 3.74372e12 1.19715
\(599\) −2.55801e12 −0.811860 −0.405930 0.913904i \(-0.633052\pi\)
−0.405930 + 0.913904i \(0.633052\pi\)
\(600\) 1.38687e11 0.0436873
\(601\) −1.36893e12 −0.428003 −0.214001 0.976833i \(-0.568650\pi\)
−0.214001 + 0.976833i \(0.568650\pi\)
\(602\) 8.18560e11 0.254019
\(603\) 1.50587e12 0.463832
\(604\) −1.15923e12 −0.354408
\(605\) −1.30001e12 −0.394500
\(606\) 9.65776e11 0.290904
\(607\) −8.14502e11 −0.243525 −0.121762 0.992559i \(-0.538855\pi\)
−0.121762 + 0.992559i \(0.538855\pi\)
\(608\) 9.26469e11 0.274957
\(609\) −2.55494e12 −0.752666
\(610\) −2.88738e12 −0.844344
\(611\) −2.11710e12 −0.614549
\(612\) −9.30371e10 −0.0268087
\(613\) 5.83933e12 1.67029 0.835143 0.550033i \(-0.185385\pi\)
0.835143 + 0.550033i \(0.185385\pi\)
\(614\) −5.44266e12 −1.54544
\(615\) −7.73757e11 −0.218106
\(616\) 3.84382e11 0.107560
\(617\) −3.61192e12 −1.00335 −0.501677 0.865055i \(-0.667283\pi\)
−0.501677 + 0.865055i \(0.667283\pi\)
\(618\) −4.91477e12 −1.35536
\(619\) 5.35038e11 0.146479 0.0732397 0.997314i \(-0.476666\pi\)
0.0732397 + 0.997314i \(0.476666\pi\)
\(620\) −1.49188e12 −0.405482
\(621\) −7.64124e11 −0.206182
\(622\) 4.35933e12 1.16778
\(623\) 3.97162e11 0.105626
\(624\) 2.25213e12 0.594651
\(625\) 1.52588e11 0.0400000
\(626\) 8.87026e12 2.30862
\(627\) −1.75983e11 −0.0454744
\(628\) 3.02394e12 0.775810
\(629\) 2.80806e10 0.00715283
\(630\) 6.38378e11 0.161453
\(631\) 5.79758e12 1.45584 0.727922 0.685660i \(-0.240486\pi\)
0.727922 + 0.685660i \(0.240486\pi\)
\(632\) −1.99696e12 −0.497901
\(633\) −1.92495e12 −0.476545
\(634\) −4.88439e12 −1.20063
\(635\) 2.86350e12 0.698900
\(636\) −1.76837e12 −0.428564
\(637\) −1.11590e12 −0.268533
\(638\) −2.95864e12 −0.706966
\(639\) 1.88834e12 0.448049
\(640\) 1.37619e12 0.324242
\(641\) −2.92898e12 −0.685259 −0.342630 0.939471i \(-0.611318\pi\)
−0.342630 + 0.939471i \(0.611318\pi\)
\(642\) −2.82281e12 −0.655803
\(643\) 6.45660e12 1.48955 0.744774 0.667317i \(-0.232557\pi\)
0.744774 + 0.667317i \(0.232557\pi\)
\(644\) 2.75225e12 0.630525
\(645\) −2.66188e11 −0.0605577
\(646\) 1.50296e11 0.0339549
\(647\) −3.54280e11 −0.0794835 −0.0397417 0.999210i \(-0.512654\pi\)
−0.0397417 + 0.999210i \(0.512654\pi\)
\(648\) −1.88682e11 −0.0420381
\(649\) 3.66902e11 0.0811799
\(650\) 1.01708e12 0.223483
\(651\) 2.79487e12 0.609885
\(652\) 2.37441e12 0.514566
\(653\) 3.28963e12 0.708007 0.354003 0.935244i \(-0.384820\pi\)
0.354003 + 0.935244i \(0.384820\pi\)
\(654\) 1.94137e12 0.414962
\(655\) 2.45791e12 0.521772
\(656\) −4.83036e12 −1.01839
\(657\) 6.87001e11 0.143851
\(658\) −3.74629e12 −0.779085
\(659\) 3.73744e12 0.771951 0.385976 0.922509i \(-0.373865\pi\)
0.385976 + 0.922509i \(0.373865\pi\)
\(660\) 3.07125e11 0.0630039
\(661\) −6.49443e11 −0.132323 −0.0661613 0.997809i \(-0.521075\pi\)
−0.0661613 + 0.997809i \(0.521075\pi\)
\(662\) 3.34170e12 0.676248
\(663\) 2.77690e11 0.0558149
\(664\) 2.12171e11 0.0423575
\(665\) −4.28445e11 −0.0849568
\(666\) −1.39925e11 −0.0275588
\(667\) 8.62189e12 1.68669
\(668\) 2.62519e12 0.510113
\(669\) −8.72967e11 −0.168492
\(670\) 4.24546e12 0.813932
\(671\) 2.60236e12 0.495584
\(672\) 3.02903e12 0.572982
\(673\) −5.14852e12 −0.967419 −0.483709 0.875229i \(-0.660711\pi\)
−0.483709 + 0.875229i \(0.660711\pi\)
\(674\) −3.22583e12 −0.602105
\(675\) −2.07594e11 −0.0384900
\(676\) −1.04241e12 −0.191991
\(677\) 8.32214e11 0.152260 0.0761300 0.997098i \(-0.475744\pi\)
0.0761300 + 0.997098i \(0.475744\pi\)
\(678\) −1.94430e12 −0.353370
\(679\) −1.42137e12 −0.256622
\(680\) 1.06753e11 0.0191464
\(681\) 2.71699e12 0.484090
\(682\) 3.23649e12 0.572854
\(683\) −4.67046e12 −0.821233 −0.410616 0.911808i \(-0.634686\pi\)
−0.410616 + 0.911808i \(0.634686\pi\)
\(684\) −3.11145e11 −0.0543514
\(685\) 2.43820e12 0.423118
\(686\) −8.25680e12 −1.42349
\(687\) 4.52174e12 0.774463
\(688\) −1.66174e12 −0.282758
\(689\) 5.27809e12 0.892258
\(690\) −2.15427e12 −0.361809
\(691\) 3.89265e12 0.649523 0.324761 0.945796i \(-0.394716\pi\)
0.324761 + 0.945796i \(0.394716\pi\)
\(692\) −7.94550e12 −1.31718
\(693\) −5.75364e11 −0.0947639
\(694\) −2.80738e12 −0.459392
\(695\) 4.31456e12 0.701463
\(696\) 2.12897e12 0.343896
\(697\) −5.95590e11 −0.0955873
\(698\) −5.67557e12 −0.905024
\(699\) 8.87581e11 0.140624
\(700\) 7.47721e11 0.117706
\(701\) 3.75867e12 0.587900 0.293950 0.955821i \(-0.405030\pi\)
0.293950 + 0.955821i \(0.405030\pi\)
\(702\) −1.38372e12 −0.215047
\(703\) 9.39102e10 0.0145015
\(704\) 8.10015e11 0.124284
\(705\) 1.21826e12 0.185732
\(706\) 2.21039e12 0.334848
\(707\) −2.11917e12 −0.318991
\(708\) 6.48697e11 0.0970270
\(709\) 6.21551e12 0.923780 0.461890 0.886937i \(-0.347171\pi\)
0.461890 + 0.886937i \(0.347171\pi\)
\(710\) 5.32373e12 0.786237
\(711\) 2.98916e12 0.438668
\(712\) −3.30946e11 −0.0482611
\(713\) −9.43159e12 −1.36673
\(714\) 4.91383e11 0.0707585
\(715\) −9.16683e11 −0.131172
\(716\) −4.65925e12 −0.662533
\(717\) 6.01296e12 0.849673
\(718\) 7.62798e12 1.07115
\(719\) 5.09419e12 0.710878 0.355439 0.934699i \(-0.384331\pi\)
0.355439 + 0.934699i \(0.384331\pi\)
\(720\) −1.29595e12 −0.179719
\(721\) 1.07843e13 1.48622
\(722\) 5.02638e11 0.0688395
\(723\) 6.43594e12 0.875971
\(724\) 8.35301e12 1.12985
\(725\) 2.34236e12 0.314871
\(726\) 4.98629e12 0.666136
\(727\) −9.82717e12 −1.30474 −0.652370 0.757901i \(-0.726225\pi\)
−0.652370 + 0.757901i \(0.726225\pi\)
\(728\) −2.02843e12 −0.267651
\(729\) 2.82430e11 0.0370370
\(730\) 1.93684e12 0.252430
\(731\) −2.04895e11 −0.0265401
\(732\) 4.60109e12 0.592326
\(733\) −2.57361e12 −0.329287 −0.164644 0.986353i \(-0.552647\pi\)
−0.164644 + 0.986353i \(0.552647\pi\)
\(734\) 1.80537e13 2.29580
\(735\) 6.42130e11 0.0811577
\(736\) −1.02218e13 −1.28403
\(737\) −3.82639e12 −0.477734
\(738\) 2.96781e12 0.368284
\(739\) 2.03828e12 0.251400 0.125700 0.992068i \(-0.459882\pi\)
0.125700 + 0.992068i \(0.459882\pi\)
\(740\) −1.63892e11 −0.0200916
\(741\) 9.28683e11 0.113158
\(742\) 9.33978e12 1.13115
\(743\) 1.31950e13 1.58840 0.794202 0.607654i \(-0.207889\pi\)
0.794202 + 0.607654i \(0.207889\pi\)
\(744\) −2.32890e12 −0.278659
\(745\) 5.23288e12 0.622354
\(746\) −1.31090e13 −1.54969
\(747\) −3.17590e11 −0.0373185
\(748\) 2.36406e11 0.0276122
\(749\) 6.19400e12 0.719122
\(750\) −5.85264e11 −0.0675423
\(751\) −2.43761e12 −0.279631 −0.139815 0.990178i \(-0.544651\pi\)
−0.139815 + 0.990178i \(0.544651\pi\)
\(752\) 7.60525e12 0.867228
\(753\) −2.23440e12 −0.253270
\(754\) 1.56131e13 1.75921
\(755\) −1.99100e12 −0.223003
\(756\) −1.01727e12 −0.113263
\(757\) −8.60187e12 −0.952054 −0.476027 0.879431i \(-0.657924\pi\)
−0.476027 + 0.879431i \(0.657924\pi\)
\(758\) −1.25836e13 −1.38450
\(759\) 1.94162e12 0.212362
\(760\) 3.57014e11 0.0388171
\(761\) −1.60647e13 −1.73636 −0.868182 0.496245i \(-0.834712\pi\)
−0.868182 + 0.496245i \(0.834712\pi\)
\(762\) −1.09832e13 −1.18013
\(763\) −4.25988e12 −0.455027
\(764\) −1.04488e13 −1.10955
\(765\) −1.59793e11 −0.0168687
\(766\) 1.05235e13 1.10441
\(767\) −1.93618e12 −0.202008
\(768\) −7.29352e12 −0.756505
\(769\) −1.72667e13 −1.78050 −0.890250 0.455473i \(-0.849470\pi\)
−0.890250 + 0.455473i \(0.849470\pi\)
\(770\) −1.62211e12 −0.166292
\(771\) −5.00262e12 −0.509863
\(772\) 6.63149e12 0.671944
\(773\) 6.52549e12 0.657364 0.328682 0.944441i \(-0.393396\pi\)
0.328682 + 0.944441i \(0.393396\pi\)
\(774\) 1.02098e12 0.102255
\(775\) −2.56234e12 −0.255140
\(776\) 1.18440e12 0.117252
\(777\) 3.07032e11 0.0302197
\(778\) −1.12809e13 −1.10391
\(779\) −1.99184e12 −0.193792
\(780\) −1.62073e12 −0.156778
\(781\) −4.79823e12 −0.461478
\(782\) −1.65822e12 −0.158567
\(783\) −3.18676e12 −0.302985
\(784\) 4.00864e12 0.378944
\(785\) 5.19368e12 0.488159
\(786\) −9.42753e12 −0.881041
\(787\) −2.21013e12 −0.205367 −0.102684 0.994714i \(-0.532743\pi\)
−0.102684 + 0.994714i \(0.532743\pi\)
\(788\) 2.12909e12 0.196710
\(789\) 3.43532e12 0.315588
\(790\) 8.42725e12 0.769776
\(791\) 4.26631e12 0.387488
\(792\) 4.79437e11 0.0432981
\(793\) −1.37330e13 −1.23321
\(794\) −3.85398e12 −0.344125
\(795\) −3.03720e12 −0.269663
\(796\) −5.99216e12 −0.529023
\(797\) −7.85507e12 −0.689585 −0.344792 0.938679i \(-0.612051\pi\)
−0.344792 + 0.938679i \(0.612051\pi\)
\(798\) 1.64334e12 0.143454
\(799\) 9.37738e11 0.0813994
\(800\) −2.77701e12 −0.239702
\(801\) 4.95378e11 0.0425197
\(802\) −1.18953e13 −1.01529
\(803\) −1.74566e12 −0.148163
\(804\) −6.76522e12 −0.570992
\(805\) 4.72705e12 0.396742
\(806\) −1.70793e13 −1.42549
\(807\) −6.25157e12 −0.518870
\(808\) 1.76586e12 0.145748
\(809\) −2.06218e12 −0.169261 −0.0846306 0.996412i \(-0.526971\pi\)
−0.0846306 + 0.996412i \(0.526971\pi\)
\(810\) 7.96245e11 0.0649926
\(811\) 1.38445e13 1.12379 0.561894 0.827209i \(-0.310073\pi\)
0.561894 + 0.827209i \(0.310073\pi\)
\(812\) 1.14782e13 0.926555
\(813\) −1.05875e12 −0.0849933
\(814\) 3.55546e11 0.0283848
\(815\) 4.07809e12 0.323778
\(816\) −9.97545e11 −0.0787638
\(817\) −6.85231e11 −0.0538069
\(818\) 5.39083e11 0.0420984
\(819\) 3.03626e12 0.235810
\(820\) 3.47615e12 0.268495
\(821\) −1.45310e13 −1.11622 −0.558110 0.829767i \(-0.688473\pi\)
−0.558110 + 0.829767i \(0.688473\pi\)
\(822\) −9.35192e12 −0.714459
\(823\) 2.32460e12 0.176623 0.0883117 0.996093i \(-0.471853\pi\)
0.0883117 + 0.996093i \(0.471853\pi\)
\(824\) −8.98632e12 −0.679062
\(825\) 5.27493e11 0.0396436
\(826\) −3.42615e12 −0.256092
\(827\) −2.05883e12 −0.153054 −0.0765272 0.997067i \(-0.524383\pi\)
−0.0765272 + 0.997067i \(0.524383\pi\)
\(828\) 3.43287e12 0.253817
\(829\) 1.36524e13 1.00395 0.501976 0.864881i \(-0.332607\pi\)
0.501976 + 0.864881i \(0.332607\pi\)
\(830\) −8.95371e11 −0.0654864
\(831\) 2.50504e12 0.182226
\(832\) −4.27455e12 −0.309268
\(833\) 4.94272e11 0.0355683
\(834\) −1.65489e13 −1.18446
\(835\) 4.50881e12 0.320976
\(836\) 7.90613e11 0.0559804
\(837\) 3.48603e12 0.245508
\(838\) −4.18384e12 −0.293074
\(839\) −4.85609e11 −0.0338344 −0.0169172 0.999857i \(-0.505385\pi\)
−0.0169172 + 0.999857i \(0.505385\pi\)
\(840\) 1.16723e12 0.0808909
\(841\) 2.14502e13 1.47860
\(842\) −5.29325e12 −0.362926
\(843\) −1.60092e13 −1.09181
\(844\) 8.64796e12 0.586642
\(845\) −1.79037e12 −0.120805
\(846\) −4.67273e12 −0.313620
\(847\) −1.09413e13 −0.730452
\(848\) −1.89604e13 −1.25912
\(849\) −1.90352e11 −0.0125740
\(850\) −4.50500e11 −0.0296012
\(851\) −1.03611e12 −0.0677211
\(852\) −8.48346e12 −0.551563
\(853\) 1.53349e13 0.991769 0.495885 0.868388i \(-0.334844\pi\)
0.495885 + 0.868388i \(0.334844\pi\)
\(854\) −2.43010e13 −1.56338
\(855\) −5.34398e11 −0.0341993
\(856\) −5.16131e12 −0.328570
\(857\) 1.97939e13 1.25348 0.626741 0.779227i \(-0.284388\pi\)
0.626741 + 0.779227i \(0.284388\pi\)
\(858\) 3.51602e12 0.221492
\(859\) 2.23583e13 1.40110 0.700552 0.713601i \(-0.252937\pi\)
0.700552 + 0.713601i \(0.252937\pi\)
\(860\) 1.19586e12 0.0745484
\(861\) −6.51217e12 −0.403842
\(862\) −1.82178e12 −0.112386
\(863\) 1.95758e13 1.20135 0.600677 0.799491i \(-0.294898\pi\)
0.600677 + 0.799491i \(0.294898\pi\)
\(864\) 3.77809e12 0.230653
\(865\) −1.36465e13 −0.828801
\(866\) −1.18293e13 −0.714705
\(867\) 9.48262e12 0.569957
\(868\) −1.25561e13 −0.750787
\(869\) −7.59540e12 −0.451816
\(870\) −8.98432e12 −0.531678
\(871\) 2.01923e13 1.18879
\(872\) 3.54966e12 0.207904
\(873\) −1.77287e12 −0.103303
\(874\) −5.54562e12 −0.321476
\(875\) 1.28423e12 0.0740636
\(876\) −3.08639e12 −0.177085
\(877\) −1.67759e13 −0.957610 −0.478805 0.877921i \(-0.658930\pi\)
−0.478805 + 0.877921i \(0.658930\pi\)
\(878\) −2.73613e13 −1.55386
\(879\) 1.53866e13 0.869345
\(880\) 3.29299e12 0.185105
\(881\) −3.98822e12 −0.223043 −0.111521 0.993762i \(-0.535572\pi\)
−0.111521 + 0.993762i \(0.535572\pi\)
\(882\) −2.46294e12 −0.137039
\(883\) 3.81379e12 0.211122 0.105561 0.994413i \(-0.466336\pi\)
0.105561 + 0.994413i \(0.466336\pi\)
\(884\) −1.24754e12 −0.0687099
\(885\) 1.11415e12 0.0610519
\(886\) −1.02823e13 −0.560583
\(887\) −1.33479e13 −0.724030 −0.362015 0.932172i \(-0.617911\pi\)
−0.362015 + 0.932172i \(0.617911\pi\)
\(888\) −2.55843e11 −0.0138075
\(889\) 2.41001e13 1.29408
\(890\) 1.39660e12 0.0746136
\(891\) −7.17648e11 −0.0381471
\(892\) 3.92185e12 0.207419
\(893\) 3.13609e12 0.165028
\(894\) −2.00711e13 −1.05088
\(895\) −8.00235e12 −0.416883
\(896\) 1.15825e13 0.600364
\(897\) −1.02462e13 −0.528440
\(898\) −1.23144e13 −0.631931
\(899\) −3.93341e13 −2.00840
\(900\) 9.32628e11 0.0473824
\(901\) −2.33785e12 −0.118183
\(902\) −7.54115e12 −0.379322
\(903\) −2.24031e12 −0.112128
\(904\) −3.55502e12 −0.177045
\(905\) 1.43465e13 0.710928
\(906\) 7.63665e12 0.376553
\(907\) −3.70231e12 −0.181652 −0.0908259 0.995867i \(-0.528951\pi\)
−0.0908259 + 0.995867i \(0.528951\pi\)
\(908\) −1.22062e13 −0.595930
\(909\) −2.64323e12 −0.128410
\(910\) 8.56004e12 0.413799
\(911\) 1.63023e13 0.784180 0.392090 0.919927i \(-0.371752\pi\)
0.392090 + 0.919927i \(0.371752\pi\)
\(912\) −3.33610e12 −0.159684
\(913\) 8.06989e11 0.0384370
\(914\) 5.42678e13 2.57208
\(915\) 7.90245e12 0.372707
\(916\) −2.03142e13 −0.953388
\(917\) 2.06865e13 0.966107
\(918\) 6.12900e11 0.0284838
\(919\) 2.82000e13 1.30416 0.652078 0.758152i \(-0.273897\pi\)
0.652078 + 0.758152i \(0.273897\pi\)
\(920\) −3.93894e12 −0.181273
\(921\) 1.48960e13 0.682184
\(922\) 8.64864e12 0.394147
\(923\) 2.53208e13 1.14834
\(924\) 2.58485e12 0.116657
\(925\) −2.81487e11 −0.0126421
\(926\) −2.33702e13 −1.04451
\(927\) 1.34512e13 0.598278
\(928\) −4.26295e13 −1.88688
\(929\) 2.39572e13 1.05527 0.527637 0.849470i \(-0.323078\pi\)
0.527637 + 0.849470i \(0.323078\pi\)
\(930\) 9.82805e12 0.430818
\(931\) 1.65300e12 0.0721105
\(932\) −3.98751e12 −0.173113
\(933\) −1.19310e13 −0.515479
\(934\) −1.22760e13 −0.527832
\(935\) 4.06031e11 0.0173743
\(936\) −2.53005e12 −0.107743
\(937\) 3.25022e13 1.37748 0.688739 0.725009i \(-0.258165\pi\)
0.688739 + 0.725009i \(0.258165\pi\)
\(938\) 3.57311e13 1.50707
\(939\) −2.42770e13 −1.01906
\(940\) −5.47309e12 −0.228643
\(941\) 1.61244e12 0.0670394 0.0335197 0.999438i \(-0.489328\pi\)
0.0335197 + 0.999438i \(0.489328\pi\)
\(942\) −1.99208e13 −0.824285
\(943\) 2.19760e13 0.904995
\(944\) 6.95534e12 0.285065
\(945\) −1.74717e12 −0.0712678
\(946\) −2.59430e12 −0.105320
\(947\) 1.29935e13 0.524989 0.262494 0.964933i \(-0.415455\pi\)
0.262494 + 0.964933i \(0.415455\pi\)
\(948\) −1.34290e13 −0.540015
\(949\) 9.21204e12 0.368687
\(950\) −1.50661e12 −0.0600129
\(951\) 1.33681e13 0.529976
\(952\) 8.98461e11 0.0354514
\(953\) −3.92521e13 −1.54150 −0.770752 0.637135i \(-0.780119\pi\)
−0.770752 + 0.637135i \(0.780119\pi\)
\(954\) 1.16494e13 0.455342
\(955\) −1.79460e13 −0.698155
\(956\) −2.70136e13 −1.04597
\(957\) 8.09748e12 0.312066
\(958\) −3.02370e13 −1.15983
\(959\) 2.05206e13 0.783441
\(960\) 2.45973e12 0.0934688
\(961\) 1.65884e13 0.627409
\(962\) −1.87626e12 −0.0706326
\(963\) 7.72574e12 0.289482
\(964\) −2.89138e13 −1.07835
\(965\) 1.13897e13 0.422804
\(966\) −1.81310e13 −0.669922
\(967\) −2.88812e13 −1.06218 −0.531088 0.847317i \(-0.678217\pi\)
−0.531088 + 0.847317i \(0.678217\pi\)
\(968\) 9.11709e12 0.333747
\(969\) −4.11346e11 −0.0149882
\(970\) −4.99820e12 −0.181276
\(971\) 5.10843e12 0.184417 0.0922084 0.995740i \(-0.470607\pi\)
0.0922084 + 0.995740i \(0.470607\pi\)
\(972\) −1.26883e12 −0.0455938
\(973\) 3.63126e13 1.29882
\(974\) 4.33831e13 1.54456
\(975\) −2.78364e12 −0.0986489
\(976\) 4.93329e13 1.74025
\(977\) −5.21936e13 −1.83270 −0.916351 0.400377i \(-0.868879\pi\)
−0.916351 + 0.400377i \(0.868879\pi\)
\(978\) −1.56419e13 −0.546718
\(979\) −1.25874e12 −0.0437941
\(980\) −2.88480e12 −0.0999077
\(981\) −5.31333e12 −0.183171
\(982\) −4.32715e13 −1.48491
\(983\) −4.44000e13 −1.51667 −0.758337 0.651862i \(-0.773988\pi\)
−0.758337 + 0.651862i \(0.773988\pi\)
\(984\) 5.42644e12 0.184517
\(985\) 3.65676e12 0.123775
\(986\) −6.91557e12 −0.233014
\(987\) 1.02532e13 0.343901
\(988\) −4.17216e12 −0.139301
\(989\) 7.56017e12 0.251274
\(990\) −2.02324e12 −0.0669406
\(991\) 3.75510e13 1.23677 0.618387 0.785874i \(-0.287786\pi\)
0.618387 + 0.785874i \(0.287786\pi\)
\(992\) 4.66329e13 1.52894
\(993\) −9.14588e12 −0.298506
\(994\) 4.48061e13 1.45579
\(995\) −1.02916e13 −0.332875
\(996\) 1.42679e12 0.0459402
\(997\) −4.47382e13 −1.43400 −0.717002 0.697072i \(-0.754486\pi\)
−0.717002 + 0.697072i \(0.754486\pi\)
\(998\) −1.80881e12 −0.0577173
\(999\) 3.82960e11 0.0121649
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.10.a.h.1.13 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.10.a.h.1.13 15 1.1 even 1 trivial