Properties

Label 285.10.a.h.1.12
Level $285$
Weight $10$
Character 285.1
Self dual yes
Analytic conductor $146.785$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.785213307\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 2 x^{14} - 6356 x^{13} + 18436 x^{12} + 15858707 x^{11} - 49616078 x^{10} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{6}\cdot 5^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(-28.5474\) of defining polynomial
Character \(\chi\) \(=\) 285.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+27.5474 q^{2} -81.0000 q^{3} +246.858 q^{4} +625.000 q^{5} -2231.34 q^{6} -1319.66 q^{7} -7303.96 q^{8} +6561.00 q^{9} +O(q^{10})\) \(q+27.5474 q^{2} -81.0000 q^{3} +246.858 q^{4} +625.000 q^{5} -2231.34 q^{6} -1319.66 q^{7} -7303.96 q^{8} +6561.00 q^{9} +17217.1 q^{10} +50065.5 q^{11} -19995.5 q^{12} -18562.8 q^{13} -36353.2 q^{14} -50625.0 q^{15} -327596. q^{16} +32059.3 q^{17} +180738. q^{18} -130321. q^{19} +154286. q^{20} +106892. q^{21} +1.37917e6 q^{22} -1.36828e6 q^{23} +591621. q^{24} +390625. q^{25} -511358. q^{26} -531441. q^{27} -325769. q^{28} +2.58189e6 q^{29} -1.39459e6 q^{30} +9.87277e6 q^{31} -5.28480e6 q^{32} -4.05531e6 q^{33} +883149. q^{34} -824787. q^{35} +1.61964e6 q^{36} -1.40978e7 q^{37} -3.59000e6 q^{38} +1.50359e6 q^{39} -4.56498e6 q^{40} +6.18561e6 q^{41} +2.94461e6 q^{42} -2.30968e7 q^{43} +1.23591e7 q^{44} +4.10062e6 q^{45} -3.76925e7 q^{46} +2.84732e7 q^{47} +2.65353e7 q^{48} -3.86121e7 q^{49} +1.07607e7 q^{50} -2.59680e6 q^{51} -4.58239e6 q^{52} -3.05223e7 q^{53} -1.46398e7 q^{54} +3.12909e7 q^{55} +9.63875e6 q^{56} +1.05560e7 q^{57} +7.11243e7 q^{58} +2.45284e6 q^{59} -1.24972e7 q^{60} +2.03472e8 q^{61} +2.71969e8 q^{62} -8.65829e6 q^{63} +2.21471e7 q^{64} -1.16018e7 q^{65} -1.11713e8 q^{66} +5.42642e7 q^{67} +7.91409e6 q^{68} +1.10831e8 q^{69} -2.27207e7 q^{70} +1.26761e8 q^{71} -4.79213e7 q^{72} +3.31775e8 q^{73} -3.88357e8 q^{74} -3.16406e7 q^{75} -3.21708e7 q^{76} -6.60694e7 q^{77} +4.14200e7 q^{78} -3.42977e8 q^{79} -2.04748e8 q^{80} +4.30467e7 q^{81} +1.70397e8 q^{82} +4.85752e8 q^{83} +2.63873e7 q^{84} +2.00370e7 q^{85} -6.36256e8 q^{86} -2.09133e8 q^{87} -3.65676e8 q^{88} +1.00562e9 q^{89} +1.12961e8 q^{90} +2.44966e7 q^{91} -3.37771e8 q^{92} -7.99694e8 q^{93} +7.84362e8 q^{94} -8.14506e7 q^{95} +4.28068e8 q^{96} -3.79501e8 q^{97} -1.06366e9 q^{98} +3.28480e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9} - 10625 q^{10} + 138230 q^{11} - 409455 q^{12} - 176712 q^{13} - 555994 q^{14} - 759375 q^{15} + 1695731 q^{16} - 274992 q^{17} - 111537 q^{18} - 1954815 q^{19} + 3159375 q^{20} - 109512 q^{21} - 1031106 q^{22} + 1714212 q^{23} + 291357 q^{24} + 5859375 q^{25} + 9500004 q^{26} - 7971615 q^{27} + 14545598 q^{28} + 1754340 q^{29} + 860625 q^{30} + 8442914 q^{31} + 35638859 q^{32} - 11196630 q^{33} + 47218266 q^{34} + 845000 q^{35} + 33165855 q^{36} + 2956096 q^{37} + 2215457 q^{38} + 14313672 q^{39} - 2248125 q^{40} - 38550502 q^{41} + 45035514 q^{42} + 50753570 q^{43} + 212125630 q^{44} + 61509375 q^{45} - 117130008 q^{46} - 40252876 q^{47} - 137354211 q^{48} + 110123035 q^{49} - 6640625 q^{50} + 22274352 q^{51} - 87136648 q^{52} + 65532542 q^{53} + 9034497 q^{54} + 86393750 q^{55} - 377288898 q^{56} + 158340015 q^{57} + 211630876 q^{58} + 175407418 q^{59} - 255909375 q^{60} + 151231854 q^{61} - 30983940 q^{62} + 8870472 q^{63} + 836879575 q^{64} - 110445000 q^{65} + 83519586 q^{66} + 40009476 q^{67} - 124850430 q^{68} - 138851172 q^{69} - 347496250 q^{70} + 87578500 q^{71} - 23599917 q^{72} - 360657638 q^{73} + 1373397084 q^{74} - 474609375 q^{75} - 658772655 q^{76} - 304618172 q^{77} - 769500324 q^{78} + 205798286 q^{79} + 1059831875 q^{80} + 645700815 q^{81} - 2327138772 q^{82} - 63321462 q^{83} - 1178193438 q^{84} - 171870000 q^{85} - 848405762 q^{86} - 142101540 q^{87} - 3211126502 q^{88} - 381069174 q^{89} - 69710625 q^{90} + 1476892872 q^{91} - 2382818588 q^{92} - 683876034 q^{93} - 5137318040 q^{94} - 1221759375 q^{95} - 2886747579 q^{96} - 3915268828 q^{97} - 8273557437 q^{98} + 906927030 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 27.5474 1.21743 0.608717 0.793388i \(-0.291685\pi\)
0.608717 + 0.793388i \(0.291685\pi\)
\(3\) −81.0000 −0.577350
\(4\) 246.858 0.482145
\(5\) 625.000 0.447214
\(6\) −2231.34 −0.702886
\(7\) −1319.66 −0.207740 −0.103870 0.994591i \(-0.533123\pi\)
−0.103870 + 0.994591i \(0.533123\pi\)
\(8\) −7303.96 −0.630454
\(9\) 6561.00 0.333333
\(10\) 17217.1 0.544453
\(11\) 50065.5 1.03103 0.515515 0.856880i \(-0.327601\pi\)
0.515515 + 0.856880i \(0.327601\pi\)
\(12\) −19995.5 −0.278367
\(13\) −18562.8 −0.180260 −0.0901300 0.995930i \(-0.528728\pi\)
−0.0901300 + 0.995930i \(0.528728\pi\)
\(14\) −36353.2 −0.252910
\(15\) −50625.0 −0.258199
\(16\) −327596. −1.24968
\(17\) 32059.3 0.0930965 0.0465482 0.998916i \(-0.485178\pi\)
0.0465482 + 0.998916i \(0.485178\pi\)
\(18\) 180738. 0.405811
\(19\) −130321. −0.229416
\(20\) 154286. 0.215622
\(21\) 106892. 0.119939
\(22\) 1.37917e6 1.25521
\(23\) −1.36828e6 −1.01953 −0.509765 0.860314i \(-0.670267\pi\)
−0.509765 + 0.860314i \(0.670267\pi\)
\(24\) 591621. 0.363993
\(25\) 390625. 0.200000
\(26\) −511358. −0.219455
\(27\) −531441. −0.192450
\(28\) −325769. −0.100161
\(29\) 2.58189e6 0.677870 0.338935 0.940810i \(-0.389933\pi\)
0.338935 + 0.940810i \(0.389933\pi\)
\(30\) −1.39459e6 −0.314340
\(31\) 9.87277e6 1.92005 0.960023 0.279923i \(-0.0903088\pi\)
0.960023 + 0.279923i \(0.0903088\pi\)
\(32\) −5.28480e6 −0.890950
\(33\) −4.05531e6 −0.595266
\(34\) 883149. 0.113339
\(35\) −824787. −0.0929043
\(36\) 1.61964e6 0.160715
\(37\) −1.40978e7 −1.23664 −0.618320 0.785927i \(-0.712186\pi\)
−0.618320 + 0.785927i \(0.712186\pi\)
\(38\) −3.59000e6 −0.279298
\(39\) 1.50359e6 0.104073
\(40\) −4.56498e6 −0.281948
\(41\) 6.18561e6 0.341865 0.170933 0.985283i \(-0.445322\pi\)
0.170933 + 0.985283i \(0.445322\pi\)
\(42\) 2.94461e6 0.146018
\(43\) −2.30968e7 −1.03025 −0.515126 0.857114i \(-0.672255\pi\)
−0.515126 + 0.857114i \(0.672255\pi\)
\(44\) 1.23591e7 0.497106
\(45\) 4.10062e6 0.149071
\(46\) −3.76925e7 −1.24121
\(47\) 2.84732e7 0.851130 0.425565 0.904928i \(-0.360075\pi\)
0.425565 + 0.904928i \(0.360075\pi\)
\(48\) 2.65353e7 0.721504
\(49\) −3.86121e7 −0.956844
\(50\) 1.07607e7 0.243487
\(51\) −2.59680e6 −0.0537493
\(52\) −4.58239e6 −0.0869114
\(53\) −3.05223e7 −0.531343 −0.265672 0.964064i \(-0.585594\pi\)
−0.265672 + 0.964064i \(0.585594\pi\)
\(54\) −1.46398e7 −0.234295
\(55\) 3.12909e7 0.461091
\(56\) 9.63875e6 0.130971
\(57\) 1.05560e7 0.132453
\(58\) 7.11243e7 0.825262
\(59\) 2.45284e6 0.0263533 0.0131766 0.999913i \(-0.495806\pi\)
0.0131766 + 0.999913i \(0.495806\pi\)
\(60\) −1.24972e7 −0.124489
\(61\) 2.03472e8 1.88157 0.940787 0.338999i \(-0.110088\pi\)
0.940787 + 0.338999i \(0.110088\pi\)
\(62\) 2.71969e8 2.33753
\(63\) −8.65829e6 −0.0692468
\(64\) 2.21471e7 0.165009
\(65\) −1.16018e7 −0.0806147
\(66\) −1.11713e8 −0.724697
\(67\) 5.42642e7 0.328985 0.164493 0.986378i \(-0.447401\pi\)
0.164493 + 0.986378i \(0.447401\pi\)
\(68\) 7.91409e6 0.0448860
\(69\) 1.10831e8 0.588625
\(70\) −2.27207e7 −0.113105
\(71\) 1.26761e8 0.592001 0.296001 0.955188i \(-0.404347\pi\)
0.296001 + 0.955188i \(0.404347\pi\)
\(72\) −4.79213e7 −0.210151
\(73\) 3.31775e8 1.36738 0.683692 0.729771i \(-0.260373\pi\)
0.683692 + 0.729771i \(0.260373\pi\)
\(74\) −3.88357e8 −1.50553
\(75\) −3.16406e7 −0.115470
\(76\) −3.21708e7 −0.110612
\(77\) −6.60694e7 −0.214187
\(78\) 4.14200e7 0.126702
\(79\) −3.42977e8 −0.990701 −0.495351 0.868693i \(-0.664960\pi\)
−0.495351 + 0.868693i \(0.664960\pi\)
\(80\) −2.04748e8 −0.558874
\(81\) 4.30467e7 0.111111
\(82\) 1.70397e8 0.416198
\(83\) 4.85752e8 1.12347 0.561737 0.827316i \(-0.310133\pi\)
0.561737 + 0.827316i \(0.310133\pi\)
\(84\) 2.63873e7 0.0578280
\(85\) 2.00370e7 0.0416340
\(86\) −6.36256e8 −1.25426
\(87\) −2.09133e8 −0.391369
\(88\) −3.65676e8 −0.650017
\(89\) 1.00562e9 1.69894 0.849471 0.527635i \(-0.176921\pi\)
0.849471 + 0.527635i \(0.176921\pi\)
\(90\) 1.12961e8 0.181484
\(91\) 2.44966e7 0.0374473
\(92\) −3.37771e8 −0.491561
\(93\) −7.99694e8 −1.10854
\(94\) 7.84362e8 1.03619
\(95\) −8.14506e7 −0.102598
\(96\) 4.28068e8 0.514390
\(97\) −3.79501e8 −0.435251 −0.217625 0.976032i \(-0.569831\pi\)
−0.217625 + 0.976032i \(0.569831\pi\)
\(98\) −1.06366e9 −1.16489
\(99\) 3.28480e8 0.343677
\(100\) 9.64290e7 0.0964290
\(101\) 1.53209e9 1.46500 0.732500 0.680767i \(-0.238353\pi\)
0.732500 + 0.680767i \(0.238353\pi\)
\(102\) −7.15350e7 −0.0654362
\(103\) 1.36874e9 1.19827 0.599135 0.800648i \(-0.295511\pi\)
0.599135 + 0.800648i \(0.295511\pi\)
\(104\) 1.35582e8 0.113646
\(105\) 6.68078e7 0.0536383
\(106\) −8.40808e8 −0.646875
\(107\) −1.99214e9 −1.46924 −0.734619 0.678480i \(-0.762639\pi\)
−0.734619 + 0.678480i \(0.762639\pi\)
\(108\) −1.31191e8 −0.0927888
\(109\) 1.80152e9 1.22242 0.611209 0.791469i \(-0.290683\pi\)
0.611209 + 0.791469i \(0.290683\pi\)
\(110\) 8.61983e8 0.561348
\(111\) 1.14192e9 0.713974
\(112\) 4.32316e8 0.259609
\(113\) −9.20512e8 −0.531100 −0.265550 0.964097i \(-0.585554\pi\)
−0.265550 + 0.964097i \(0.585554\pi\)
\(114\) 2.90790e8 0.161253
\(115\) −8.55175e8 −0.455947
\(116\) 6.37360e8 0.326832
\(117\) −1.21791e8 −0.0600866
\(118\) 6.75692e7 0.0320833
\(119\) −4.23073e7 −0.0193399
\(120\) 3.69763e8 0.162783
\(121\) 1.48606e8 0.0630236
\(122\) 5.60513e9 2.29069
\(123\) −5.01034e8 −0.197376
\(124\) 2.43717e9 0.925740
\(125\) 2.44141e8 0.0894427
\(126\) −2.38513e8 −0.0843034
\(127\) 7.87032e7 0.0268458 0.0134229 0.999910i \(-0.495727\pi\)
0.0134229 + 0.999910i \(0.495727\pi\)
\(128\) 3.31591e9 1.09184
\(129\) 1.87084e9 0.594816
\(130\) −3.19598e8 −0.0981431
\(131\) 5.16785e9 1.53317 0.766583 0.642145i \(-0.221955\pi\)
0.766583 + 0.642145i \(0.221955\pi\)
\(132\) −1.00109e9 −0.287004
\(133\) 1.71979e8 0.0476589
\(134\) 1.49484e9 0.400518
\(135\) −3.32151e8 −0.0860663
\(136\) −2.34160e8 −0.0586931
\(137\) −1.27849e9 −0.310066 −0.155033 0.987909i \(-0.549548\pi\)
−0.155033 + 0.987909i \(0.549548\pi\)
\(138\) 3.05309e9 0.716612
\(139\) −2.67710e9 −0.608271 −0.304136 0.952629i \(-0.598368\pi\)
−0.304136 + 0.952629i \(0.598368\pi\)
\(140\) −2.03606e8 −0.0447933
\(141\) −2.30633e9 −0.491400
\(142\) 3.49193e9 0.720722
\(143\) −9.29358e8 −0.185853
\(144\) −2.14936e9 −0.416560
\(145\) 1.61368e9 0.303153
\(146\) 9.13952e9 1.66470
\(147\) 3.12758e9 0.552434
\(148\) −3.48015e9 −0.596239
\(149\) −8.18570e8 −0.136056 −0.0680280 0.997683i \(-0.521671\pi\)
−0.0680280 + 0.997683i \(0.521671\pi\)
\(150\) −8.71616e8 −0.140577
\(151\) 1.24493e10 1.94871 0.974356 0.225011i \(-0.0722418\pi\)
0.974356 + 0.225011i \(0.0722418\pi\)
\(152\) 9.51860e8 0.144636
\(153\) 2.10341e8 0.0310322
\(154\) −1.82004e9 −0.260758
\(155\) 6.17048e9 0.858670
\(156\) 3.71173e8 0.0501783
\(157\) 1.04321e10 1.37032 0.685159 0.728394i \(-0.259733\pi\)
0.685159 + 0.728394i \(0.259733\pi\)
\(158\) −9.44811e9 −1.20611
\(159\) 2.47230e9 0.306771
\(160\) −3.30300e9 −0.398445
\(161\) 1.80566e9 0.211797
\(162\) 1.18582e9 0.135270
\(163\) 2.01106e8 0.0223142 0.0111571 0.999938i \(-0.496449\pi\)
0.0111571 + 0.999938i \(0.496449\pi\)
\(164\) 1.52697e9 0.164829
\(165\) −2.53457e9 −0.266211
\(166\) 1.33812e10 1.36776
\(167\) 7.71273e8 0.0767333 0.0383667 0.999264i \(-0.487785\pi\)
0.0383667 + 0.999264i \(0.487785\pi\)
\(168\) −7.80738e8 −0.0756160
\(169\) −1.02599e10 −0.967506
\(170\) 5.51968e8 0.0506867
\(171\) −8.55036e8 −0.0764719
\(172\) −5.70163e9 −0.496731
\(173\) 1.92165e10 1.63105 0.815526 0.578720i \(-0.196448\pi\)
0.815526 + 0.578720i \(0.196448\pi\)
\(174\) −5.76107e9 −0.476465
\(175\) −5.15492e8 −0.0415481
\(176\) −1.64013e10 −1.28846
\(177\) −1.98680e8 −0.0152151
\(178\) 2.77022e10 2.06835
\(179\) 2.41022e10 1.75476 0.877380 0.479796i \(-0.159289\pi\)
0.877380 + 0.479796i \(0.159289\pi\)
\(180\) 1.01227e9 0.0718739
\(181\) −5.95422e9 −0.412355 −0.206178 0.978515i \(-0.566102\pi\)
−0.206178 + 0.978515i \(0.566102\pi\)
\(182\) 6.74818e8 0.0455896
\(183\) −1.64813e10 −1.08633
\(184\) 9.99386e9 0.642766
\(185\) −8.81111e9 −0.553042
\(186\) −2.20295e10 −1.34957
\(187\) 1.60506e9 0.0959853
\(188\) 7.02884e9 0.410368
\(189\) 7.01321e8 0.0399796
\(190\) −2.24375e9 −0.124906
\(191\) 3.53262e10 1.92064 0.960322 0.278892i \(-0.0899673\pi\)
0.960322 + 0.278892i \(0.0899673\pi\)
\(192\) −1.79391e9 −0.0952678
\(193\) 2.46605e9 0.127936 0.0639682 0.997952i \(-0.479624\pi\)
0.0639682 + 0.997952i \(0.479624\pi\)
\(194\) −1.04542e10 −0.529889
\(195\) 9.39744e8 0.0465429
\(196\) −9.53172e9 −0.461338
\(197\) −2.91701e10 −1.37988 −0.689938 0.723868i \(-0.742362\pi\)
−0.689938 + 0.723868i \(0.742362\pi\)
\(198\) 9.04876e9 0.418404
\(199\) −2.44383e10 −1.10467 −0.552335 0.833622i \(-0.686263\pi\)
−0.552335 + 0.833622i \(0.686263\pi\)
\(200\) −2.85311e9 −0.126091
\(201\) −4.39540e9 −0.189940
\(202\) 4.22050e10 1.78354
\(203\) −3.40721e9 −0.140821
\(204\) −6.41041e8 −0.0259149
\(205\) 3.86600e9 0.152887
\(206\) 3.77053e10 1.45881
\(207\) −8.97728e9 −0.339843
\(208\) 6.08112e9 0.225267
\(209\) −6.52459e9 −0.236535
\(210\) 1.84038e9 0.0653011
\(211\) 1.61453e10 0.560759 0.280380 0.959889i \(-0.409540\pi\)
0.280380 + 0.959889i \(0.409540\pi\)
\(212\) −7.53467e9 −0.256185
\(213\) −1.02676e10 −0.341792
\(214\) −5.48781e10 −1.78870
\(215\) −1.44355e10 −0.460743
\(216\) 3.88162e9 0.121331
\(217\) −1.30287e10 −0.398871
\(218\) 4.96272e10 1.48821
\(219\) −2.68737e10 −0.789459
\(220\) 7.72443e9 0.222313
\(221\) −5.95111e8 −0.0167816
\(222\) 3.14569e10 0.869216
\(223\) −3.97635e10 −1.07674 −0.538372 0.842708i \(-0.680960\pi\)
−0.538372 + 0.842708i \(0.680960\pi\)
\(224\) 6.97413e9 0.185086
\(225\) 2.56289e9 0.0666667
\(226\) −2.53577e10 −0.646579
\(227\) −4.34660e10 −1.08651 −0.543255 0.839568i \(-0.682808\pi\)
−0.543255 + 0.839568i \(0.682808\pi\)
\(228\) 2.60584e9 0.0638617
\(229\) −4.13939e10 −0.994665 −0.497333 0.867560i \(-0.665687\pi\)
−0.497333 + 0.867560i \(0.665687\pi\)
\(230\) −2.35578e10 −0.555086
\(231\) 5.35162e9 0.123661
\(232\) −1.88580e10 −0.427366
\(233\) 5.25068e10 1.16712 0.583558 0.812071i \(-0.301660\pi\)
0.583558 + 0.812071i \(0.301660\pi\)
\(234\) −3.35502e9 −0.0731515
\(235\) 1.77957e10 0.380637
\(236\) 6.05503e8 0.0127061
\(237\) 2.77811e10 0.571982
\(238\) −1.16546e9 −0.0235450
\(239\) 3.18065e9 0.0630559 0.0315279 0.999503i \(-0.489963\pi\)
0.0315279 + 0.999503i \(0.489963\pi\)
\(240\) 1.65846e10 0.322666
\(241\) 1.62484e10 0.310265 0.155132 0.987894i \(-0.450420\pi\)
0.155132 + 0.987894i \(0.450420\pi\)
\(242\) 4.09372e9 0.0767271
\(243\) −3.48678e9 −0.0641500
\(244\) 5.02288e10 0.907191
\(245\) −2.41326e10 −0.427914
\(246\) −1.38022e10 −0.240292
\(247\) 2.41913e9 0.0413545
\(248\) −7.21103e10 −1.21050
\(249\) −3.93459e10 −0.648638
\(250\) 6.72543e9 0.108891
\(251\) −3.97913e10 −0.632786 −0.316393 0.948628i \(-0.602472\pi\)
−0.316393 + 0.948628i \(0.602472\pi\)
\(252\) −2.13737e9 −0.0333870
\(253\) −6.85036e10 −1.05117
\(254\) 2.16807e9 0.0326829
\(255\) −1.62300e9 −0.0240374
\(256\) 8.00053e10 1.16423
\(257\) 2.01723e9 0.0288440 0.0144220 0.999896i \(-0.495409\pi\)
0.0144220 + 0.999896i \(0.495409\pi\)
\(258\) 5.15367e10 0.724149
\(259\) 1.86043e10 0.256900
\(260\) −2.86399e9 −0.0388680
\(261\) 1.69398e10 0.225957
\(262\) 1.42361e11 1.86653
\(263\) 8.63610e10 1.11305 0.556527 0.830829i \(-0.312133\pi\)
0.556527 + 0.830829i \(0.312133\pi\)
\(264\) 2.96198e10 0.375288
\(265\) −1.90764e10 −0.237624
\(266\) 4.73758e9 0.0580216
\(267\) −8.14552e10 −0.980885
\(268\) 1.33956e10 0.158619
\(269\) 9.14697e10 1.06510 0.532552 0.846397i \(-0.321233\pi\)
0.532552 + 0.846397i \(0.321233\pi\)
\(270\) −9.14988e9 −0.104780
\(271\) 9.92649e10 1.11798 0.558990 0.829174i \(-0.311189\pi\)
0.558990 + 0.829174i \(0.311189\pi\)
\(272\) −1.05025e10 −0.116341
\(273\) −1.98423e9 −0.0216202
\(274\) −3.52190e10 −0.377485
\(275\) 1.95568e10 0.206206
\(276\) 2.73595e10 0.283803
\(277\) 1.06737e11 1.08932 0.544658 0.838658i \(-0.316659\pi\)
0.544658 + 0.838658i \(0.316659\pi\)
\(278\) −7.37470e10 −0.740530
\(279\) 6.47753e10 0.640015
\(280\) 6.02422e9 0.0585719
\(281\) 1.92405e10 0.184093 0.0920465 0.995755i \(-0.470659\pi\)
0.0920465 + 0.995755i \(0.470659\pi\)
\(282\) −6.35333e10 −0.598247
\(283\) −1.48095e10 −0.137247 −0.0686235 0.997643i \(-0.521861\pi\)
−0.0686235 + 0.997643i \(0.521861\pi\)
\(284\) 3.12920e10 0.285430
\(285\) 6.59750e9 0.0592349
\(286\) −2.56014e10 −0.226264
\(287\) −8.16290e9 −0.0710192
\(288\) −3.46735e10 −0.296983
\(289\) −1.17560e11 −0.991333
\(290\) 4.44527e10 0.369068
\(291\) 3.07395e10 0.251292
\(292\) 8.19013e10 0.659277
\(293\) 1.15726e11 0.917332 0.458666 0.888609i \(-0.348327\pi\)
0.458666 + 0.888609i \(0.348327\pi\)
\(294\) 8.61567e10 0.672552
\(295\) 1.53302e9 0.0117855
\(296\) 1.02970e11 0.779644
\(297\) −2.66069e10 −0.198422
\(298\) −2.25495e10 −0.165639
\(299\) 2.53991e10 0.183780
\(300\) −7.81075e9 −0.0556733
\(301\) 3.04799e10 0.214025
\(302\) 3.42945e11 2.37243
\(303\) −1.24099e11 −0.845818
\(304\) 4.26927e10 0.286697
\(305\) 1.27170e11 0.841465
\(306\) 5.79434e9 0.0377796
\(307\) −1.54764e11 −0.994369 −0.497185 0.867645i \(-0.665633\pi\)
−0.497185 + 0.867645i \(0.665633\pi\)
\(308\) −1.63098e10 −0.103269
\(309\) −1.10868e11 −0.691821
\(310\) 1.69981e11 1.04537
\(311\) −2.75794e11 −1.67172 −0.835858 0.548945i \(-0.815030\pi\)
−0.835858 + 0.548945i \(0.815030\pi\)
\(312\) −1.09822e10 −0.0656133
\(313\) −3.16982e11 −1.86675 −0.933374 0.358906i \(-0.883150\pi\)
−0.933374 + 0.358906i \(0.883150\pi\)
\(314\) 2.87376e11 1.66827
\(315\) −5.41143e9 −0.0309681
\(316\) −8.46666e10 −0.477662
\(317\) 3.13022e11 1.74104 0.870518 0.492137i \(-0.163784\pi\)
0.870518 + 0.492137i \(0.163784\pi\)
\(318\) 6.81055e10 0.373474
\(319\) 1.29264e11 0.698905
\(320\) 1.38419e10 0.0737941
\(321\) 1.61363e11 0.848265
\(322\) 4.97413e10 0.257849
\(323\) −4.17799e9 −0.0213578
\(324\) 1.06264e10 0.0535717
\(325\) −7.25111e9 −0.0360520
\(326\) 5.53996e9 0.0271661
\(327\) −1.45923e11 −0.705763
\(328\) −4.51794e10 −0.215530
\(329\) −3.75749e10 −0.176814
\(330\) −6.98207e10 −0.324094
\(331\) −3.10022e11 −1.41960 −0.709802 0.704401i \(-0.751215\pi\)
−0.709802 + 0.704401i \(0.751215\pi\)
\(332\) 1.19912e11 0.541678
\(333\) −9.24955e10 −0.412213
\(334\) 2.12465e10 0.0934177
\(335\) 3.39151e10 0.147127
\(336\) −3.50176e10 −0.149885
\(337\) −4.14276e11 −1.74967 −0.874833 0.484425i \(-0.839029\pi\)
−0.874833 + 0.484425i \(0.839029\pi\)
\(338\) −2.82634e11 −1.17787
\(339\) 7.45614e10 0.306631
\(340\) 4.94631e9 0.0200736
\(341\) 4.94285e11 1.97962
\(342\) −2.35540e10 −0.0930995
\(343\) 1.04208e11 0.406515
\(344\) 1.68698e11 0.649527
\(345\) 6.92692e10 0.263241
\(346\) 5.29365e11 1.98570
\(347\) 2.17610e11 0.805744 0.402872 0.915256i \(-0.368012\pi\)
0.402872 + 0.915256i \(0.368012\pi\)
\(348\) −5.16262e10 −0.188696
\(349\) 2.23783e11 0.807444 0.403722 0.914882i \(-0.367716\pi\)
0.403722 + 0.914882i \(0.367716\pi\)
\(350\) −1.42005e10 −0.0505820
\(351\) 9.86505e9 0.0346910
\(352\) −2.64586e11 −0.918596
\(353\) 9.61990e10 0.329750 0.164875 0.986315i \(-0.447278\pi\)
0.164875 + 0.986315i \(0.447278\pi\)
\(354\) −5.47310e9 −0.0185233
\(355\) 7.92255e10 0.264751
\(356\) 2.48245e11 0.819137
\(357\) 3.42689e9 0.0111659
\(358\) 6.63952e11 2.13630
\(359\) −5.18159e11 −1.64641 −0.823205 0.567744i \(-0.807816\pi\)
−0.823205 + 0.567744i \(0.807816\pi\)
\(360\) −2.99508e10 −0.0939826
\(361\) 1.69836e10 0.0526316
\(362\) −1.64023e11 −0.502015
\(363\) −1.20371e10 −0.0363867
\(364\) 6.04719e9 0.0180550
\(365\) 2.07359e11 0.611512
\(366\) −4.54016e11 −1.32253
\(367\) 3.39605e11 0.977184 0.488592 0.872512i \(-0.337511\pi\)
0.488592 + 0.872512i \(0.337511\pi\)
\(368\) 4.48244e11 1.27409
\(369\) 4.05838e10 0.113955
\(370\) −2.42723e11 −0.673292
\(371\) 4.02790e10 0.110381
\(372\) −1.97411e11 −0.534476
\(373\) −5.92743e11 −1.58554 −0.792769 0.609522i \(-0.791362\pi\)
−0.792769 + 0.609522i \(0.791362\pi\)
\(374\) 4.42153e10 0.116856
\(375\) −1.97754e10 −0.0516398
\(376\) −2.07967e11 −0.536598
\(377\) −4.79272e10 −0.122193
\(378\) 1.93196e10 0.0486726
\(379\) −5.77352e11 −1.43736 −0.718678 0.695343i \(-0.755253\pi\)
−0.718678 + 0.695343i \(0.755253\pi\)
\(380\) −2.01068e10 −0.0494670
\(381\) −6.37496e9 −0.0154994
\(382\) 9.73145e11 2.33826
\(383\) −2.19148e11 −0.520407 −0.260203 0.965554i \(-0.583790\pi\)
−0.260203 + 0.965554i \(0.583790\pi\)
\(384\) −2.68589e11 −0.630372
\(385\) −4.12934e10 −0.0957872
\(386\) 6.79333e10 0.155754
\(387\) −1.51538e11 −0.343417
\(388\) −9.36828e10 −0.209854
\(389\) 1.97665e10 0.0437679 0.0218839 0.999761i \(-0.493034\pi\)
0.0218839 + 0.999761i \(0.493034\pi\)
\(390\) 2.58875e10 0.0566629
\(391\) −4.38660e10 −0.0949146
\(392\) 2.82021e11 0.603246
\(393\) −4.18596e11 −0.885174
\(394\) −8.03560e11 −1.67991
\(395\) −2.14360e11 −0.443055
\(396\) 8.10879e10 0.165702
\(397\) 2.63814e11 0.533016 0.266508 0.963833i \(-0.414130\pi\)
0.266508 + 0.963833i \(0.414130\pi\)
\(398\) −6.73212e11 −1.34486
\(399\) −1.39303e10 −0.0275159
\(400\) −1.27967e11 −0.249936
\(401\) 2.72694e10 0.0526655 0.0263327 0.999653i \(-0.491617\pi\)
0.0263327 + 0.999653i \(0.491617\pi\)
\(402\) −1.21082e11 −0.231239
\(403\) −1.83267e11 −0.346107
\(404\) 3.78209e11 0.706342
\(405\) 2.69042e10 0.0496904
\(406\) −9.38599e10 −0.171440
\(407\) −7.05812e11 −1.27501
\(408\) 1.89669e10 0.0338865
\(409\) −9.77950e11 −1.72807 −0.864035 0.503431i \(-0.832071\pi\)
−0.864035 + 0.503431i \(0.832071\pi\)
\(410\) 1.06498e11 0.186130
\(411\) 1.03558e11 0.179017
\(412\) 3.37886e11 0.577740
\(413\) −3.23691e9 −0.00547463
\(414\) −2.47301e11 −0.413736
\(415\) 3.03595e11 0.502433
\(416\) 9.81008e10 0.160603
\(417\) 2.16845e11 0.351186
\(418\) −1.79735e11 −0.287965
\(419\) 6.52847e9 0.0103478 0.00517390 0.999987i \(-0.498353\pi\)
0.00517390 + 0.999987i \(0.498353\pi\)
\(420\) 1.64921e10 0.0258614
\(421\) 4.11617e10 0.0638592 0.0319296 0.999490i \(-0.489835\pi\)
0.0319296 + 0.999490i \(0.489835\pi\)
\(422\) 4.44762e11 0.682687
\(423\) 1.86813e11 0.283710
\(424\) 2.22933e11 0.334988
\(425\) 1.25231e10 0.0186193
\(426\) −2.82846e11 −0.416109
\(427\) −2.68514e11 −0.390879
\(428\) −4.91775e11 −0.708385
\(429\) 7.52780e10 0.107303
\(430\) −3.97660e11 −0.560924
\(431\) 9.29056e11 1.29686 0.648432 0.761273i \(-0.275425\pi\)
0.648432 + 0.761273i \(0.275425\pi\)
\(432\) 1.74098e11 0.240501
\(433\) −5.31386e11 −0.726465 −0.363233 0.931698i \(-0.618327\pi\)
−0.363233 + 0.931698i \(0.618327\pi\)
\(434\) −3.58907e11 −0.485599
\(435\) −1.30708e11 −0.175025
\(436\) 4.44720e11 0.589383
\(437\) 1.78316e11 0.233896
\(438\) −7.40301e11 −0.961114
\(439\) 1.97454e11 0.253732 0.126866 0.991920i \(-0.459508\pi\)
0.126866 + 0.991920i \(0.459508\pi\)
\(440\) −2.28548e11 −0.290697
\(441\) −2.53334e11 −0.318948
\(442\) −1.63937e10 −0.0204304
\(443\) −2.34277e11 −0.289010 −0.144505 0.989504i \(-0.546159\pi\)
−0.144505 + 0.989504i \(0.546159\pi\)
\(444\) 2.81892e11 0.344239
\(445\) 6.28512e11 0.759790
\(446\) −1.09538e12 −1.31086
\(447\) 6.63042e10 0.0785520
\(448\) −2.92266e10 −0.0342790
\(449\) −1.15248e12 −1.33821 −0.669105 0.743167i \(-0.733323\pi\)
−0.669105 + 0.743167i \(0.733323\pi\)
\(450\) 7.06009e10 0.0811623
\(451\) 3.09686e11 0.352473
\(452\) −2.27236e11 −0.256067
\(453\) −1.00839e12 −1.12509
\(454\) −1.19737e12 −1.32275
\(455\) 1.53104e10 0.0167469
\(456\) −7.71006e10 −0.0835057
\(457\) −9.72558e10 −0.104302 −0.0521510 0.998639i \(-0.516608\pi\)
−0.0521510 + 0.998639i \(0.516608\pi\)
\(458\) −1.14029e12 −1.21094
\(459\) −1.70376e10 −0.0179164
\(460\) −2.11107e11 −0.219833
\(461\) −1.92816e12 −1.98833 −0.994166 0.107861i \(-0.965600\pi\)
−0.994166 + 0.107861i \(0.965600\pi\)
\(462\) 1.47423e11 0.150549
\(463\) −1.06915e12 −1.08124 −0.540621 0.841266i \(-0.681811\pi\)
−0.540621 + 0.841266i \(0.681811\pi\)
\(464\) −8.45818e11 −0.847122
\(465\) −4.99809e11 −0.495754
\(466\) 1.44643e12 1.42089
\(467\) 5.91512e11 0.575490 0.287745 0.957707i \(-0.407094\pi\)
0.287745 + 0.957707i \(0.407094\pi\)
\(468\) −3.00651e10 −0.0289705
\(469\) −7.16102e10 −0.0683435
\(470\) 4.90226e11 0.463400
\(471\) −8.44996e11 −0.791153
\(472\) −1.79154e10 −0.0166145
\(473\) −1.15635e12 −1.06222
\(474\) 7.65297e11 0.696350
\(475\) −5.09066e10 −0.0458831
\(476\) −1.04439e10 −0.00932463
\(477\) −2.00257e11 −0.177114
\(478\) 8.76186e10 0.0767664
\(479\) 9.48329e10 0.0823093 0.0411547 0.999153i \(-0.486896\pi\)
0.0411547 + 0.999153i \(0.486896\pi\)
\(480\) 2.67543e11 0.230042
\(481\) 2.61695e11 0.222916
\(482\) 4.47600e11 0.377727
\(483\) −1.46259e11 −0.122281
\(484\) 3.66847e10 0.0303865
\(485\) −2.37188e11 −0.194650
\(486\) −9.60518e10 −0.0780984
\(487\) 4.72490e11 0.380638 0.190319 0.981722i \(-0.439048\pi\)
0.190319 + 0.981722i \(0.439048\pi\)
\(488\) −1.48615e12 −1.18625
\(489\) −1.62896e10 −0.0128831
\(490\) −6.64789e11 −0.520956
\(491\) −2.25196e11 −0.174861 −0.0874307 0.996171i \(-0.527866\pi\)
−0.0874307 + 0.996171i \(0.527866\pi\)
\(492\) −1.23684e11 −0.0951639
\(493\) 8.27734e10 0.0631073
\(494\) 6.66406e10 0.0503463
\(495\) 2.05300e11 0.153697
\(496\) −3.23428e12 −2.39944
\(497\) −1.67281e11 −0.122983
\(498\) −1.08388e12 −0.789674
\(499\) 1.32909e12 0.959627 0.479813 0.877371i \(-0.340704\pi\)
0.479813 + 0.877371i \(0.340704\pi\)
\(500\) 6.02681e10 0.0431244
\(501\) −6.24731e10 −0.0443020
\(502\) −1.09615e12 −0.770375
\(503\) 1.54733e12 1.07777 0.538885 0.842379i \(-0.318846\pi\)
0.538885 + 0.842379i \(0.318846\pi\)
\(504\) 6.32398e10 0.0436569
\(505\) 9.57555e11 0.655168
\(506\) −1.88709e12 −1.27972
\(507\) 8.31054e11 0.558590
\(508\) 1.94285e10 0.0129435
\(509\) −1.47488e12 −0.973928 −0.486964 0.873422i \(-0.661896\pi\)
−0.486964 + 0.873422i \(0.661896\pi\)
\(510\) −4.47094e10 −0.0292640
\(511\) −4.37830e11 −0.284061
\(512\) 5.06191e11 0.325537
\(513\) 6.92579e10 0.0441511
\(514\) 5.55693e10 0.0351157
\(515\) 8.55465e11 0.535882
\(516\) 4.61832e11 0.286788
\(517\) 1.42552e12 0.877541
\(518\) 5.12499e11 0.312759
\(519\) −1.55654e12 −0.941688
\(520\) 8.47389e10 0.0508239
\(521\) −4.37468e10 −0.0260121 −0.0130061 0.999915i \(-0.504140\pi\)
−0.0130061 + 0.999915i \(0.504140\pi\)
\(522\) 4.66646e11 0.275087
\(523\) 1.88419e12 1.10120 0.550601 0.834769i \(-0.314399\pi\)
0.550601 + 0.834769i \(0.314399\pi\)
\(524\) 1.27573e12 0.739208
\(525\) 4.17549e10 0.0239878
\(526\) 2.37902e12 1.35507
\(527\) 3.16514e11 0.178749
\(528\) 1.32850e12 0.743892
\(529\) 7.10365e10 0.0394395
\(530\) −5.25505e11 −0.289291
\(531\) 1.60931e10 0.00878442
\(532\) 4.24545e10 0.0229785
\(533\) −1.14822e11 −0.0616246
\(534\) −2.24388e12 −1.19416
\(535\) −1.24509e12 −0.657063
\(536\) −3.96343e11 −0.207410
\(537\) −1.95228e12 −1.01311
\(538\) 2.51975e12 1.29669
\(539\) −1.93313e12 −0.986535
\(540\) −8.19941e10 −0.0414964
\(541\) −1.85676e12 −0.931899 −0.465950 0.884811i \(-0.654287\pi\)
−0.465950 + 0.884811i \(0.654287\pi\)
\(542\) 2.73449e12 1.36107
\(543\) 4.82292e11 0.238073
\(544\) −1.69427e11 −0.0829443
\(545\) 1.12595e12 0.546682
\(546\) −5.46603e10 −0.0263211
\(547\) 2.83450e12 1.35374 0.676868 0.736104i \(-0.263337\pi\)
0.676868 + 0.736104i \(0.263337\pi\)
\(548\) −3.15606e11 −0.149497
\(549\) 1.33498e12 0.627191
\(550\) 5.38740e11 0.251042
\(551\) −3.36474e11 −0.155514
\(552\) −8.09503e11 −0.371101
\(553\) 4.52613e11 0.205809
\(554\) 2.94031e12 1.32617
\(555\) 7.13700e11 0.319299
\(556\) −6.60863e11 −0.293275
\(557\) −1.81103e12 −0.797218 −0.398609 0.917121i \(-0.630507\pi\)
−0.398609 + 0.917121i \(0.630507\pi\)
\(558\) 1.78439e12 0.779176
\(559\) 4.28742e11 0.185713
\(560\) 2.70197e11 0.116101
\(561\) −1.30010e11 −0.0554171
\(562\) 5.30024e11 0.224121
\(563\) −6.01090e11 −0.252146 −0.126073 0.992021i \(-0.540237\pi\)
−0.126073 + 0.992021i \(0.540237\pi\)
\(564\) −5.69336e11 −0.236926
\(565\) −5.75320e11 −0.237515
\(566\) −4.07964e11 −0.167089
\(567\) −5.68070e10 −0.0230823
\(568\) −9.25856e11 −0.373230
\(569\) 2.86845e12 1.14721 0.573605 0.819132i \(-0.305545\pi\)
0.573605 + 0.819132i \(0.305545\pi\)
\(570\) 1.81744e11 0.0721146
\(571\) 4.07751e12 1.60521 0.802605 0.596510i \(-0.203447\pi\)
0.802605 + 0.596510i \(0.203447\pi\)
\(572\) −2.29420e11 −0.0896083
\(573\) −2.86142e12 −1.10888
\(574\) −2.24866e11 −0.0864612
\(575\) −5.34484e11 −0.203906
\(576\) 1.45307e11 0.0550029
\(577\) 4.03404e12 1.51513 0.757564 0.652761i \(-0.226389\pi\)
0.757564 + 0.652761i \(0.226389\pi\)
\(578\) −3.23847e12 −1.20688
\(579\) −1.99750e11 −0.0738641
\(580\) 3.98350e11 0.146164
\(581\) −6.41028e11 −0.233391
\(582\) 8.46794e11 0.305932
\(583\) −1.52811e12 −0.547831
\(584\) −2.42327e12 −0.862073
\(585\) −7.61192e10 −0.0268716
\(586\) 3.18795e12 1.11679
\(587\) −2.38576e12 −0.829382 −0.414691 0.909962i \(-0.636110\pi\)
−0.414691 + 0.909962i \(0.636110\pi\)
\(588\) 7.72069e11 0.266353
\(589\) −1.28663e12 −0.440489
\(590\) 4.22307e10 0.0143481
\(591\) 2.36278e12 0.796672
\(592\) 4.61838e12 1.54540
\(593\) 5.79734e11 0.192523 0.0962614 0.995356i \(-0.469312\pi\)
0.0962614 + 0.995356i \(0.469312\pi\)
\(594\) −7.32949e11 −0.241566
\(595\) −2.64421e10 −0.00864907
\(596\) −2.02071e11 −0.0655987
\(597\) 1.97950e12 0.637782
\(598\) 6.99680e11 0.223740
\(599\) −2.98994e12 −0.948948 −0.474474 0.880270i \(-0.657362\pi\)
−0.474474 + 0.880270i \(0.657362\pi\)
\(600\) 2.31102e11 0.0727986
\(601\) 6.58051e11 0.205743 0.102871 0.994695i \(-0.467197\pi\)
0.102871 + 0.994695i \(0.467197\pi\)
\(602\) 8.39642e11 0.260561
\(603\) 3.56027e11 0.109662
\(604\) 3.07321e12 0.939562
\(605\) 9.28790e10 0.0281850
\(606\) −3.41861e12 −1.02973
\(607\) 4.24840e12 1.27021 0.635107 0.772425i \(-0.280956\pi\)
0.635107 + 0.772425i \(0.280956\pi\)
\(608\) 6.88720e11 0.204398
\(609\) 2.75984e11 0.0813030
\(610\) 3.50321e12 1.02443
\(611\) −5.28543e11 −0.153425
\(612\) 5.19244e10 0.0149620
\(613\) 2.46446e12 0.704935 0.352467 0.935824i \(-0.385343\pi\)
0.352467 + 0.935824i \(0.385343\pi\)
\(614\) −4.26335e12 −1.21058
\(615\) −3.13146e11 −0.0882692
\(616\) 4.82569e11 0.135035
\(617\) 5.98845e12 1.66353 0.831766 0.555126i \(-0.187330\pi\)
0.831766 + 0.555126i \(0.187330\pi\)
\(618\) −3.05413e12 −0.842247
\(619\) 1.42181e12 0.389255 0.194628 0.980877i \(-0.437650\pi\)
0.194628 + 0.980877i \(0.437650\pi\)
\(620\) 1.52323e12 0.414004
\(621\) 7.27160e11 0.196208
\(622\) −7.59740e12 −2.03520
\(623\) −1.32708e12 −0.352939
\(624\) −4.92571e11 −0.130058
\(625\) 1.52588e11 0.0400000
\(626\) −8.73204e12 −2.27264
\(627\) 5.28491e11 0.136563
\(628\) 2.57524e12 0.660692
\(629\) −4.51964e11 −0.115127
\(630\) −1.49071e11 −0.0377016
\(631\) −3.80034e12 −0.954313 −0.477156 0.878818i \(-0.658332\pi\)
−0.477156 + 0.878818i \(0.658332\pi\)
\(632\) 2.50509e12 0.624592
\(633\) −1.30777e12 −0.323754
\(634\) 8.62292e12 2.11960
\(635\) 4.91895e10 0.0120058
\(636\) 6.10308e11 0.147908
\(637\) 7.16750e11 0.172481
\(638\) 3.56087e12 0.850870
\(639\) 8.31678e11 0.197334
\(640\) 2.07244e12 0.488284
\(641\) −2.56410e12 −0.599892 −0.299946 0.953956i \(-0.596969\pi\)
−0.299946 + 0.953956i \(0.596969\pi\)
\(642\) 4.44513e12 1.03271
\(643\) −1.76871e12 −0.408044 −0.204022 0.978966i \(-0.565401\pi\)
−0.204022 + 0.978966i \(0.565401\pi\)
\(644\) 4.45743e11 0.102117
\(645\) 1.16927e12 0.266010
\(646\) −1.15093e11 −0.0260017
\(647\) 3.55382e12 0.797309 0.398655 0.917101i \(-0.369477\pi\)
0.398655 + 0.917101i \(0.369477\pi\)
\(648\) −3.14412e11 −0.0700505
\(649\) 1.22802e11 0.0271710
\(650\) −1.99749e11 −0.0438909
\(651\) 1.05532e12 0.230288
\(652\) 4.96448e10 0.0107587
\(653\) −6.38549e12 −1.37431 −0.687156 0.726510i \(-0.741141\pi\)
−0.687156 + 0.726510i \(0.741141\pi\)
\(654\) −4.01980e12 −0.859220
\(655\) 3.22991e12 0.685653
\(656\) −2.02638e12 −0.427223
\(657\) 2.17677e12 0.455794
\(658\) −1.03509e12 −0.215259
\(659\) −4.11478e12 −0.849889 −0.424945 0.905219i \(-0.639706\pi\)
−0.424945 + 0.905219i \(0.639706\pi\)
\(660\) −6.25678e11 −0.128352
\(661\) 4.87343e12 0.992951 0.496476 0.868051i \(-0.334627\pi\)
0.496476 + 0.868051i \(0.334627\pi\)
\(662\) −8.54030e12 −1.72827
\(663\) 4.82040e10 0.00968884
\(664\) −3.54792e12 −0.708299
\(665\) 1.07487e11 0.0213137
\(666\) −2.54801e12 −0.501842
\(667\) −3.53275e12 −0.691108
\(668\) 1.90395e11 0.0369966
\(669\) 3.22084e12 0.621658
\(670\) 9.34272e11 0.179117
\(671\) 1.01869e13 1.93996
\(672\) −5.64905e11 −0.106860
\(673\) 6.29501e12 1.18285 0.591423 0.806361i \(-0.298566\pi\)
0.591423 + 0.806361i \(0.298566\pi\)
\(674\) −1.14122e13 −2.13010
\(675\) −2.07594e11 −0.0384900
\(676\) −2.53275e12 −0.466478
\(677\) 2.20875e12 0.404108 0.202054 0.979374i \(-0.435238\pi\)
0.202054 + 0.979374i \(0.435238\pi\)
\(678\) 2.05397e12 0.373303
\(679\) 5.00812e11 0.0904192
\(680\) −1.46350e11 −0.0262483
\(681\) 3.52075e12 0.627296
\(682\) 1.36163e13 2.41006
\(683\) 1.06996e13 1.88138 0.940688 0.339274i \(-0.110181\pi\)
0.940688 + 0.339274i \(0.110181\pi\)
\(684\) −2.11073e11 −0.0368705
\(685\) −7.99056e11 −0.138666
\(686\) 2.87065e12 0.494906
\(687\) 3.35291e12 0.574270
\(688\) 7.56642e12 1.28749
\(689\) 5.66580e11 0.0957799
\(690\) 1.90818e12 0.320479
\(691\) 5.88997e12 0.982793 0.491396 0.870936i \(-0.336487\pi\)
0.491396 + 0.870936i \(0.336487\pi\)
\(692\) 4.74376e12 0.786404
\(693\) −4.33482e11 −0.0713955
\(694\) 5.99460e12 0.980940
\(695\) −1.67319e12 −0.272027
\(696\) 1.52750e12 0.246740
\(697\) 1.98306e11 0.0318265
\(698\) 6.16463e12 0.983010
\(699\) −4.25305e12 −0.673835
\(700\) −1.27253e11 −0.0200322
\(701\) −1.07320e13 −1.67861 −0.839305 0.543661i \(-0.817038\pi\)
−0.839305 + 0.543661i \(0.817038\pi\)
\(702\) 2.71756e11 0.0422340
\(703\) 1.83724e12 0.283704
\(704\) 1.10881e12 0.170129
\(705\) −1.44146e12 −0.219761
\(706\) 2.65003e12 0.401448
\(707\) −2.02184e12 −0.304340
\(708\) −4.90457e10 −0.00733586
\(709\) 7.06857e12 1.05057 0.525283 0.850927i \(-0.323959\pi\)
0.525283 + 0.850927i \(0.323959\pi\)
\(710\) 2.18246e12 0.322317
\(711\) −2.25027e12 −0.330234
\(712\) −7.34501e12 −1.07111
\(713\) −1.35087e13 −1.95754
\(714\) 9.44019e10 0.0135937
\(715\) −5.80848e11 −0.0831162
\(716\) 5.94982e12 0.846049
\(717\) −2.57633e11 −0.0364053
\(718\) −1.42739e13 −2.00439
\(719\) 5.67130e12 0.791412 0.395706 0.918377i \(-0.370500\pi\)
0.395706 + 0.918377i \(0.370500\pi\)
\(720\) −1.34335e12 −0.186291
\(721\) −1.80628e12 −0.248929
\(722\) 4.67853e11 0.0640755
\(723\) −1.31612e12 −0.179132
\(724\) −1.46985e12 −0.198815
\(725\) 1.00855e12 0.135574
\(726\) −3.31591e11 −0.0442984
\(727\) 1.22356e13 1.62450 0.812252 0.583307i \(-0.198241\pi\)
0.812252 + 0.583307i \(0.198241\pi\)
\(728\) −1.78922e11 −0.0236088
\(729\) 2.82430e11 0.0370370
\(730\) 5.71220e12 0.744476
\(731\) −7.40466e11 −0.0959129
\(732\) −4.06854e12 −0.523767
\(733\) −7.93868e12 −1.01573 −0.507867 0.861435i \(-0.669566\pi\)
−0.507867 + 0.861435i \(0.669566\pi\)
\(734\) 9.35522e12 1.18966
\(735\) 1.95474e12 0.247056
\(736\) 7.23108e12 0.908349
\(737\) 2.71676e12 0.339194
\(738\) 1.11798e12 0.138733
\(739\) −6.25783e12 −0.771834 −0.385917 0.922534i \(-0.626115\pi\)
−0.385917 + 0.922534i \(0.626115\pi\)
\(740\) −2.17510e12 −0.266646
\(741\) −1.95949e11 −0.0238760
\(742\) 1.10958e12 0.134382
\(743\) 1.48294e13 1.78514 0.892572 0.450906i \(-0.148899\pi\)
0.892572 + 0.450906i \(0.148899\pi\)
\(744\) 5.84094e12 0.698883
\(745\) −5.11606e11 −0.0608461
\(746\) −1.63285e13 −1.93029
\(747\) 3.18702e12 0.374492
\(748\) 3.96223e11 0.0462788
\(749\) 2.62894e12 0.305220
\(750\) −5.44760e11 −0.0628680
\(751\) 8.61490e12 0.988258 0.494129 0.869389i \(-0.335487\pi\)
0.494129 + 0.869389i \(0.335487\pi\)
\(752\) −9.32771e12 −1.06364
\(753\) 3.22310e12 0.365339
\(754\) −1.32027e12 −0.148762
\(755\) 7.78080e12 0.871491
\(756\) 1.73127e11 0.0192760
\(757\) 2.67843e12 0.296448 0.148224 0.988954i \(-0.452644\pi\)
0.148224 + 0.988954i \(0.452644\pi\)
\(758\) −1.59045e13 −1.74989
\(759\) 5.54879e12 0.606891
\(760\) 5.94912e11 0.0646832
\(761\) −1.74929e13 −1.89073 −0.945367 0.326009i \(-0.894296\pi\)
−0.945367 + 0.326009i \(0.894296\pi\)
\(762\) −1.75613e11 −0.0188695
\(763\) −2.37739e12 −0.253946
\(764\) 8.72057e12 0.926029
\(765\) 1.31463e11 0.0138780
\(766\) −6.03695e12 −0.633561
\(767\) −4.55316e10 −0.00475044
\(768\) −6.48043e12 −0.672169
\(769\) 3.89757e12 0.401907 0.200953 0.979601i \(-0.435596\pi\)
0.200953 + 0.979601i \(0.435596\pi\)
\(770\) −1.13752e12 −0.116615
\(771\) −1.63395e11 −0.0166531
\(772\) 6.08765e11 0.0616839
\(773\) −7.28811e11 −0.0734188 −0.0367094 0.999326i \(-0.511688\pi\)
−0.0367094 + 0.999326i \(0.511688\pi\)
\(774\) −4.17448e12 −0.418088
\(775\) 3.85655e12 0.384009
\(776\) 2.77186e12 0.274406
\(777\) −1.50695e12 −0.148321
\(778\) 5.44514e11 0.0532845
\(779\) −8.06115e11 −0.0784293
\(780\) 2.31983e11 0.0224404
\(781\) 6.34634e12 0.610371
\(782\) −1.20839e12 −0.115552
\(783\) −1.37212e12 −0.130456
\(784\) 1.26492e13 1.19575
\(785\) 6.52003e12 0.612825
\(786\) −1.15312e13 −1.07764
\(787\) −1.08845e13 −1.01140 −0.505699 0.862710i \(-0.668765\pi\)
−0.505699 + 0.862710i \(0.668765\pi\)
\(788\) −7.20088e12 −0.665301
\(789\) −6.99524e12 −0.642623
\(790\) −5.90507e12 −0.539390
\(791\) 1.21476e12 0.110331
\(792\) −2.39920e12 −0.216672
\(793\) −3.77702e12 −0.339172
\(794\) 7.26738e12 0.648912
\(795\) 1.54519e12 0.137192
\(796\) −6.03280e12 −0.532611
\(797\) −1.13763e13 −0.998710 −0.499355 0.866398i \(-0.666430\pi\)
−0.499355 + 0.866398i \(0.666430\pi\)
\(798\) −3.83744e11 −0.0334988
\(799\) 9.12829e11 0.0792372
\(800\) −2.06437e12 −0.178190
\(801\) 6.59787e12 0.566314
\(802\) 7.51201e11 0.0641167
\(803\) 1.66105e13 1.40981
\(804\) −1.08504e12 −0.0915785
\(805\) 1.12854e12 0.0947186
\(806\) −5.04852e12 −0.421363
\(807\) −7.40905e12 −0.614938
\(808\) −1.11903e13 −0.923615
\(809\) 1.01146e13 0.830191 0.415096 0.909778i \(-0.363748\pi\)
0.415096 + 0.909778i \(0.363748\pi\)
\(810\) 7.41140e11 0.0604948
\(811\) 4.69805e11 0.0381350 0.0190675 0.999818i \(-0.493930\pi\)
0.0190675 + 0.999818i \(0.493930\pi\)
\(812\) −8.41099e11 −0.0678961
\(813\) −8.04046e12 −0.645466
\(814\) −1.94433e13 −1.55224
\(815\) 1.25692e11 0.00997922
\(816\) 8.50702e11 0.0671695
\(817\) 3.01000e12 0.236356
\(818\) −2.69399e13 −2.10381
\(819\) 1.60722e11 0.0124824
\(820\) 9.54355e11 0.0737136
\(821\) −4.95067e11 −0.0380294 −0.0190147 0.999819i \(-0.506053\pi\)
−0.0190147 + 0.999819i \(0.506053\pi\)
\(822\) 2.85274e12 0.217941
\(823\) 6.93184e12 0.526683 0.263342 0.964703i \(-0.415175\pi\)
0.263342 + 0.964703i \(0.415175\pi\)
\(824\) −9.99725e12 −0.755454
\(825\) −1.58410e12 −0.119053
\(826\) −8.91683e10 −0.00666500
\(827\) −2.30832e13 −1.71602 −0.858008 0.513636i \(-0.828298\pi\)
−0.858008 + 0.513636i \(0.828298\pi\)
\(828\) −2.21612e12 −0.163854
\(829\) 1.92635e13 1.41658 0.708288 0.705924i \(-0.249468\pi\)
0.708288 + 0.705924i \(0.249468\pi\)
\(830\) 8.36325e12 0.611679
\(831\) −8.64566e12 −0.628917
\(832\) −4.11113e11 −0.0297445
\(833\) −1.23788e12 −0.0890788
\(834\) 5.97351e12 0.427545
\(835\) 4.82046e11 0.0343162
\(836\) −1.61065e12 −0.114044
\(837\) −5.24680e12 −0.369513
\(838\) 1.79842e11 0.0125978
\(839\) −1.60655e13 −1.11935 −0.559674 0.828713i \(-0.689074\pi\)
−0.559674 + 0.828713i \(0.689074\pi\)
\(840\) −4.87961e11 −0.0338165
\(841\) −7.84100e12 −0.540492
\(842\) 1.13390e12 0.0777443
\(843\) −1.55848e12 −0.106286
\(844\) 3.98561e12 0.270367
\(845\) −6.41245e12 −0.432682
\(846\) 5.14620e12 0.345398
\(847\) −1.96110e11 −0.0130926
\(848\) 9.99898e12 0.664010
\(849\) 1.19957e12 0.0792395
\(850\) 3.44980e11 0.0226678
\(851\) 1.92897e13 1.26079
\(852\) −2.53465e12 −0.164793
\(853\) −1.84899e12 −0.119581 −0.0597906 0.998211i \(-0.519043\pi\)
−0.0597906 + 0.998211i \(0.519043\pi\)
\(854\) −7.39687e12 −0.475869
\(855\) −5.34398e11 −0.0341993
\(856\) 1.45505e13 0.926287
\(857\) −3.75898e11 −0.0238044 −0.0119022 0.999929i \(-0.503789\pi\)
−0.0119022 + 0.999929i \(0.503789\pi\)
\(858\) 2.07371e12 0.130634
\(859\) 1.72280e13 1.07960 0.539802 0.841792i \(-0.318499\pi\)
0.539802 + 0.841792i \(0.318499\pi\)
\(860\) −3.56352e12 −0.222145
\(861\) 6.61195e11 0.0410030
\(862\) 2.55931e13 1.57885
\(863\) −2.08298e13 −1.27831 −0.639157 0.769076i \(-0.720717\pi\)
−0.639157 + 0.769076i \(0.720717\pi\)
\(864\) 2.80856e12 0.171463
\(865\) 1.20103e13 0.729429
\(866\) −1.46383e13 −0.884424
\(867\) 9.52237e12 0.572346
\(868\) −3.21624e12 −0.192314
\(869\) −1.71713e13 −1.02144
\(870\) −3.60067e12 −0.213082
\(871\) −1.00730e12 −0.0593029
\(872\) −1.31582e13 −0.770679
\(873\) −2.48990e12 −0.145084
\(874\) 4.91213e12 0.284753
\(875\) −3.22183e11 −0.0185809
\(876\) −6.63401e12 −0.380634
\(877\) −2.46003e12 −0.140425 −0.0702123 0.997532i \(-0.522368\pi\)
−0.0702123 + 0.997532i \(0.522368\pi\)
\(878\) 5.43933e12 0.308902
\(879\) −9.37380e12 −0.529622
\(880\) −1.02508e13 −0.576217
\(881\) 2.14787e13 1.20120 0.600602 0.799548i \(-0.294928\pi\)
0.600602 + 0.799548i \(0.294928\pi\)
\(882\) −6.97869e12 −0.388298
\(883\) −1.08514e13 −0.600708 −0.300354 0.953828i \(-0.597105\pi\)
−0.300354 + 0.953828i \(0.597105\pi\)
\(884\) −1.46908e11 −0.00809115
\(885\) −1.24175e11 −0.00680438
\(886\) −6.45372e12 −0.351851
\(887\) 8.57667e12 0.465224 0.232612 0.972570i \(-0.425273\pi\)
0.232612 + 0.972570i \(0.425273\pi\)
\(888\) −8.34054e12 −0.450128
\(889\) −1.03861e11 −0.00557695
\(890\) 1.73139e13 0.924994
\(891\) 2.15516e12 0.114559
\(892\) −9.81594e12 −0.519146
\(893\) −3.71065e12 −0.195263
\(894\) 1.82651e12 0.0956318
\(895\) 1.50639e13 0.784752
\(896\) −4.37587e12 −0.226819
\(897\) −2.05733e12 −0.106106
\(898\) −3.17478e13 −1.62918
\(899\) 2.54904e13 1.30154
\(900\) 6.32671e11 0.0321430
\(901\) −9.78521e11 −0.0494662
\(902\) 8.53103e12 0.429113
\(903\) −2.46887e12 −0.123567
\(904\) 6.72338e12 0.334834
\(905\) −3.72139e12 −0.184411
\(906\) −2.77785e13 −1.36972
\(907\) −2.30212e13 −1.12952 −0.564761 0.825255i \(-0.691031\pi\)
−0.564761 + 0.825255i \(0.691031\pi\)
\(908\) −1.07299e13 −0.523855
\(909\) 1.00520e13 0.488333
\(910\) 4.21761e11 0.0203883
\(911\) −2.29352e13 −1.10324 −0.551620 0.834095i \(-0.685990\pi\)
−0.551620 + 0.834095i \(0.685990\pi\)
\(912\) −3.45811e12 −0.165524
\(913\) 2.43194e13 1.15834
\(914\) −2.67914e12 −0.126981
\(915\) −1.03008e13 −0.485820
\(916\) −1.02184e13 −0.479573
\(917\) −6.81980e12 −0.318500
\(918\) −4.69341e11 −0.0218121
\(919\) −6.40818e12 −0.296357 −0.148179 0.988961i \(-0.547341\pi\)
−0.148179 + 0.988961i \(0.547341\pi\)
\(920\) 6.24616e12 0.287454
\(921\) 1.25359e13 0.574099
\(922\) −5.31158e13 −2.42066
\(923\) −2.35304e12 −0.106714
\(924\) 1.32109e12 0.0596224
\(925\) −5.50695e12 −0.247328
\(926\) −2.94522e13 −1.31634
\(927\) 8.98033e12 0.399423
\(928\) −1.36448e13 −0.603948
\(929\) 1.54448e13 0.680317 0.340159 0.940368i \(-0.389519\pi\)
0.340159 + 0.940368i \(0.389519\pi\)
\(930\) −1.37684e13 −0.603547
\(931\) 5.03197e12 0.219515
\(932\) 1.29617e13 0.562719
\(933\) 2.23393e13 0.965166
\(934\) 1.62946e13 0.700621
\(935\) 1.00316e12 0.0429259
\(936\) 8.89555e11 0.0378819
\(937\) −1.31601e13 −0.557737 −0.278868 0.960329i \(-0.589959\pi\)
−0.278868 + 0.960329i \(0.589959\pi\)
\(938\) −1.97267e12 −0.0832037
\(939\) 2.56756e13 1.07777
\(940\) 4.39303e12 0.183522
\(941\) 2.34164e13 0.973569 0.486784 0.873522i \(-0.338170\pi\)
0.486784 + 0.873522i \(0.338170\pi\)
\(942\) −2.32774e13 −0.963177
\(943\) −8.46364e12 −0.348542
\(944\) −8.03540e11 −0.0329332
\(945\) 4.38326e11 0.0178794
\(946\) −3.18545e13 −1.29318
\(947\) 2.63169e13 1.06331 0.531655 0.846961i \(-0.321570\pi\)
0.531655 + 0.846961i \(0.321570\pi\)
\(948\) 6.85800e12 0.275778
\(949\) −6.15868e12 −0.246484
\(950\) −1.40234e12 −0.0558597
\(951\) −2.53547e13 −1.00519
\(952\) 3.09011e11 0.0121929
\(953\) 3.50206e13 1.37533 0.687663 0.726030i \(-0.258636\pi\)
0.687663 + 0.726030i \(0.258636\pi\)
\(954\) −5.51654e12 −0.215625
\(955\) 2.20789e13 0.858938
\(956\) 7.85170e11 0.0304021
\(957\) −1.04703e13 −0.403513
\(958\) 2.61240e12 0.100206
\(959\) 1.68717e12 0.0644133
\(960\) −1.12120e12 −0.0426051
\(961\) 7.10320e13 2.68657
\(962\) 7.20901e12 0.271386
\(963\) −1.30704e13 −0.489746
\(964\) 4.01104e12 0.149593
\(965\) 1.54128e12 0.0572149
\(966\) −4.02905e12 −0.148869
\(967\) 4.39674e13 1.61701 0.808503 0.588492i \(-0.200278\pi\)
0.808503 + 0.588492i \(0.200278\pi\)
\(968\) −1.08542e12 −0.0397335
\(969\) 3.38418e11 0.0123309
\(970\) −6.53390e12 −0.236974
\(971\) 6.89918e12 0.249064 0.124532 0.992216i \(-0.460257\pi\)
0.124532 + 0.992216i \(0.460257\pi\)
\(972\) −8.60741e11 −0.0309296
\(973\) 3.53286e12 0.126363
\(974\) 1.30159e13 0.463402
\(975\) 5.87340e11 0.0208146
\(976\) −6.66568e13 −2.35137
\(977\) −1.33531e13 −0.468875 −0.234437 0.972131i \(-0.575325\pi\)
−0.234437 + 0.972131i \(0.575325\pi\)
\(978\) −4.48736e11 −0.0156843
\(979\) 5.03469e13 1.75166
\(980\) −5.95732e12 −0.206316
\(981\) 1.18198e13 0.407473
\(982\) −6.20356e12 −0.212882
\(983\) 1.03447e13 0.353366 0.176683 0.984268i \(-0.443463\pi\)
0.176683 + 0.984268i \(0.443463\pi\)
\(984\) 3.65953e12 0.124437
\(985\) −1.82313e13 −0.617100
\(986\) 2.28019e12 0.0768290
\(987\) 3.04357e12 0.102084
\(988\) 5.97181e11 0.0199388
\(989\) 3.16029e13 1.05037
\(990\) 5.65547e12 0.187116
\(991\) −5.94249e12 −0.195721 −0.0978604 0.995200i \(-0.531200\pi\)
−0.0978604 + 0.995200i \(0.531200\pi\)
\(992\) −5.21756e13 −1.71066
\(993\) 2.51118e13 0.819608
\(994\) −4.60816e12 −0.149723
\(995\) −1.52740e13 −0.494024
\(996\) −9.71287e12 −0.312738
\(997\) −2.36160e13 −0.756969 −0.378484 0.925608i \(-0.623555\pi\)
−0.378484 + 0.925608i \(0.623555\pi\)
\(998\) 3.66130e13 1.16828
\(999\) 7.49214e12 0.237991
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.10.a.h.1.12 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.10.a.h.1.12 15 1.1 even 1 trivial