Properties

Label 285.10.a.h.1.10
Level $285$
Weight $10$
Character 285.1
Self dual yes
Analytic conductor $146.785$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.785213307\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 2 x^{14} - 6356 x^{13} + 18436 x^{12} + 15858707 x^{11} - 49616078 x^{10} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{6}\cdot 5^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-14.0251\) of defining polynomial
Character \(\chi\) \(=\) 285.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+13.0251 q^{2} -81.0000 q^{3} -342.346 q^{4} +625.000 q^{5} -1055.03 q^{6} -10702.7 q^{7} -11128.0 q^{8} +6561.00 q^{9} +O(q^{10})\) \(q+13.0251 q^{2} -81.0000 q^{3} -342.346 q^{4} +625.000 q^{5} -1055.03 q^{6} -10702.7 q^{7} -11128.0 q^{8} +6561.00 q^{9} +8140.70 q^{10} +54651.2 q^{11} +27730.0 q^{12} -13720.8 q^{13} -139403. q^{14} -50625.0 q^{15} +30338.2 q^{16} -469454. q^{17} +85457.8 q^{18} -130321. q^{19} -213966. q^{20} +866916. q^{21} +711839. q^{22} -2.04664e6 q^{23} +901365. q^{24} +390625. q^{25} -178715. q^{26} -531441. q^{27} +3.66402e6 q^{28} -6.55370e6 q^{29} -659397. q^{30} -5.06147e6 q^{31} +6.09268e6 q^{32} -4.42675e6 q^{33} -6.11469e6 q^{34} -6.68916e6 q^{35} -2.24613e6 q^{36} +1.12068e7 q^{37} -1.69745e6 q^{38} +1.11138e6 q^{39} -6.95498e6 q^{40} -3.09118e7 q^{41} +1.12917e7 q^{42} -4.21335e7 q^{43} -1.87096e7 q^{44} +4.10062e6 q^{45} -2.66577e7 q^{46} -5.75921e7 q^{47} -2.45740e6 q^{48} +7.41934e7 q^{49} +5.08794e6 q^{50} +3.80258e7 q^{51} +4.69726e6 q^{52} +7.56828e7 q^{53} -6.92208e6 q^{54} +3.41570e7 q^{55} +1.19099e8 q^{56} +1.05560e7 q^{57} -8.53627e7 q^{58} +1.46811e8 q^{59} +1.73313e7 q^{60} -1.52549e8 q^{61} -6.59262e7 q^{62} -7.02202e7 q^{63} +6.38247e7 q^{64} -8.57550e6 q^{65} -5.76590e7 q^{66} +1.67895e8 q^{67} +1.60716e8 q^{68} +1.65778e8 q^{69} -8.71272e7 q^{70} +2.88477e8 q^{71} -7.30106e7 q^{72} -1.42189e8 q^{73} +1.45970e8 q^{74} -3.16406e7 q^{75} +4.46149e7 q^{76} -5.84914e8 q^{77} +1.44759e7 q^{78} +2.22508e8 q^{79} +1.89614e7 q^{80} +4.30467e7 q^{81} -4.02630e8 q^{82} -4.96541e8 q^{83} -2.96785e8 q^{84} -2.93409e8 q^{85} -5.48794e8 q^{86} +5.30850e8 q^{87} -6.08157e8 q^{88} -2.96115e7 q^{89} +5.34111e7 q^{90} +1.46849e8 q^{91} +7.00659e8 q^{92} +4.09979e8 q^{93} -7.50144e8 q^{94} -8.14506e7 q^{95} -4.93507e8 q^{96} -4.04851e8 q^{97} +9.66378e8 q^{98} +3.58567e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9} - 10625 q^{10} + 138230 q^{11} - 409455 q^{12} - 176712 q^{13} - 555994 q^{14} - 759375 q^{15} + 1695731 q^{16} - 274992 q^{17} - 111537 q^{18} - 1954815 q^{19} + 3159375 q^{20} - 109512 q^{21} - 1031106 q^{22} + 1714212 q^{23} + 291357 q^{24} + 5859375 q^{25} + 9500004 q^{26} - 7971615 q^{27} + 14545598 q^{28} + 1754340 q^{29} + 860625 q^{30} + 8442914 q^{31} + 35638859 q^{32} - 11196630 q^{33} + 47218266 q^{34} + 845000 q^{35} + 33165855 q^{36} + 2956096 q^{37} + 2215457 q^{38} + 14313672 q^{39} - 2248125 q^{40} - 38550502 q^{41} + 45035514 q^{42} + 50753570 q^{43} + 212125630 q^{44} + 61509375 q^{45} - 117130008 q^{46} - 40252876 q^{47} - 137354211 q^{48} + 110123035 q^{49} - 6640625 q^{50} + 22274352 q^{51} - 87136648 q^{52} + 65532542 q^{53} + 9034497 q^{54} + 86393750 q^{55} - 377288898 q^{56} + 158340015 q^{57} + 211630876 q^{58} + 175407418 q^{59} - 255909375 q^{60} + 151231854 q^{61} - 30983940 q^{62} + 8870472 q^{63} + 836879575 q^{64} - 110445000 q^{65} + 83519586 q^{66} + 40009476 q^{67} - 124850430 q^{68} - 138851172 q^{69} - 347496250 q^{70} + 87578500 q^{71} - 23599917 q^{72} - 360657638 q^{73} + 1373397084 q^{74} - 474609375 q^{75} - 658772655 q^{76} - 304618172 q^{77} - 769500324 q^{78} + 205798286 q^{79} + 1059831875 q^{80} + 645700815 q^{81} - 2327138772 q^{82} - 63321462 q^{83} - 1178193438 q^{84} - 171870000 q^{85} - 848405762 q^{86} - 142101540 q^{87} - 3211126502 q^{88} - 381069174 q^{89} - 69710625 q^{90} + 1476892872 q^{91} - 2382818588 q^{92} - 683876034 q^{93} - 5137318040 q^{94} - 1221759375 q^{95} - 2886747579 q^{96} - 3915268828 q^{97} - 8273557437 q^{98} + 906927030 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 13.0251 0.575634 0.287817 0.957685i \(-0.407070\pi\)
0.287817 + 0.957685i \(0.407070\pi\)
\(3\) −81.0000 −0.577350
\(4\) −342.346 −0.668645
\(5\) 625.000 0.447214
\(6\) −1055.03 −0.332343
\(7\) −10702.7 −1.68481 −0.842405 0.538846i \(-0.818861\pi\)
−0.842405 + 0.538846i \(0.818861\pi\)
\(8\) −11128.0 −0.960529
\(9\) 6561.00 0.333333
\(10\) 8140.70 0.257432
\(11\) 54651.2 1.12547 0.562734 0.826638i \(-0.309750\pi\)
0.562734 + 0.826638i \(0.309750\pi\)
\(12\) 27730.0 0.386042
\(13\) −13720.8 −0.133240 −0.0666199 0.997778i \(-0.521222\pi\)
−0.0666199 + 0.997778i \(0.521222\pi\)
\(14\) −139403. −0.969834
\(15\) −50625.0 −0.258199
\(16\) 30338.2 0.115731
\(17\) −469454. −1.36324 −0.681621 0.731706i \(-0.738725\pi\)
−0.681621 + 0.731706i \(0.738725\pi\)
\(18\) 85457.8 0.191878
\(19\) −130321. −0.229416
\(20\) −213966. −0.299027
\(21\) 866916. 0.972725
\(22\) 711839. 0.647858
\(23\) −2.04664e6 −1.52499 −0.762493 0.646996i \(-0.776025\pi\)
−0.762493 + 0.646996i \(0.776025\pi\)
\(24\) 901365. 0.554562
\(25\) 390625. 0.200000
\(26\) −178715. −0.0766975
\(27\) −531441. −0.192450
\(28\) 3.66402e6 1.12654
\(29\) −6.55370e6 −1.72066 −0.860331 0.509736i \(-0.829743\pi\)
−0.860331 + 0.509736i \(0.829743\pi\)
\(30\) −659397. −0.148628
\(31\) −5.06147e6 −0.984348 −0.492174 0.870497i \(-0.663798\pi\)
−0.492174 + 0.870497i \(0.663798\pi\)
\(32\) 6.09268e6 1.02715
\(33\) −4.42675e6 −0.649789
\(34\) −6.11469e6 −0.784729
\(35\) −6.68916e6 −0.753470
\(36\) −2.24613e6 −0.222882
\(37\) 1.12068e7 0.983047 0.491523 0.870864i \(-0.336440\pi\)
0.491523 + 0.870864i \(0.336440\pi\)
\(38\) −1.69745e6 −0.132060
\(39\) 1.11138e6 0.0769261
\(40\) −6.95498e6 −0.429562
\(41\) −3.09118e7 −1.70843 −0.854215 0.519919i \(-0.825962\pi\)
−0.854215 + 0.519919i \(0.825962\pi\)
\(42\) 1.12917e7 0.559934
\(43\) −4.21335e7 −1.87940 −0.939701 0.341998i \(-0.888896\pi\)
−0.939701 + 0.341998i \(0.888896\pi\)
\(44\) −1.87096e7 −0.752538
\(45\) 4.10062e6 0.149071
\(46\) −2.66577e7 −0.877835
\(47\) −5.75921e7 −1.72156 −0.860781 0.508975i \(-0.830024\pi\)
−0.860781 + 0.508975i \(0.830024\pi\)
\(48\) −2.45740e6 −0.0668174
\(49\) 7.41934e7 1.83858
\(50\) 5.08794e6 0.115127
\(51\) 3.80258e7 0.787068
\(52\) 4.69726e6 0.0890902
\(53\) 7.56828e7 1.31752 0.658758 0.752355i \(-0.271082\pi\)
0.658758 + 0.752355i \(0.271082\pi\)
\(54\) −6.92208e6 −0.110781
\(55\) 3.41570e7 0.503324
\(56\) 1.19099e8 1.61831
\(57\) 1.05560e7 0.132453
\(58\) −8.53627e7 −0.990472
\(59\) 1.46811e8 1.57734 0.788669 0.614818i \(-0.210771\pi\)
0.788669 + 0.614818i \(0.210771\pi\)
\(60\) 1.73313e7 0.172643
\(61\) −1.52549e8 −1.41067 −0.705335 0.708874i \(-0.749203\pi\)
−0.705335 + 0.708874i \(0.749203\pi\)
\(62\) −6.59262e7 −0.566625
\(63\) −7.02202e7 −0.561603
\(64\) 6.38247e7 0.475531
\(65\) −8.57550e6 −0.0595867
\(66\) −5.76590e7 −0.374041
\(67\) 1.67895e8 1.01789 0.508945 0.860799i \(-0.330036\pi\)
0.508945 + 0.860799i \(0.330036\pi\)
\(68\) 1.60716e8 0.911525
\(69\) 1.65778e8 0.880451
\(70\) −8.71272e7 −0.433723
\(71\) 2.88477e8 1.34725 0.673626 0.739072i \(-0.264736\pi\)
0.673626 + 0.739072i \(0.264736\pi\)
\(72\) −7.30106e7 −0.320176
\(73\) −1.42189e8 −0.586019 −0.293010 0.956109i \(-0.594657\pi\)
−0.293010 + 0.956109i \(0.594657\pi\)
\(74\) 1.45970e8 0.565876
\(75\) −3.16406e7 −0.115470
\(76\) 4.46149e7 0.153398
\(77\) −5.84914e8 −1.89620
\(78\) 1.44759e7 0.0442813
\(79\) 2.22508e8 0.642722 0.321361 0.946957i \(-0.395860\pi\)
0.321361 + 0.946957i \(0.395860\pi\)
\(80\) 1.89614e7 0.0517566
\(81\) 4.30467e7 0.111111
\(82\) −4.02630e8 −0.983432
\(83\) −4.96541e8 −1.14843 −0.574214 0.818705i \(-0.694692\pi\)
−0.574214 + 0.818705i \(0.694692\pi\)
\(84\) −2.96785e8 −0.650408
\(85\) −2.93409e8 −0.609660
\(86\) −5.48794e8 −1.08185
\(87\) 5.30850e8 0.993425
\(88\) −6.08157e8 −1.08104
\(89\) −2.96115e7 −0.0500271 −0.0250135 0.999687i \(-0.507963\pi\)
−0.0250135 + 0.999687i \(0.507963\pi\)
\(90\) 5.34111e7 0.0858105
\(91\) 1.46849e8 0.224484
\(92\) 7.00659e8 1.01967
\(93\) 4.09979e8 0.568314
\(94\) −7.50144e8 −0.990990
\(95\) −8.14506e7 −0.102598
\(96\) −4.93507e8 −0.593024
\(97\) −4.04851e8 −0.464326 −0.232163 0.972677i \(-0.574580\pi\)
−0.232163 + 0.972677i \(0.574580\pi\)
\(98\) 9.66378e8 1.05835
\(99\) 3.58567e8 0.375156
\(100\) −1.33729e8 −0.133729
\(101\) −7.95770e8 −0.760924 −0.380462 0.924796i \(-0.624235\pi\)
−0.380462 + 0.924796i \(0.624235\pi\)
\(102\) 4.95290e8 0.453063
\(103\) −3.17275e8 −0.277759 −0.138879 0.990309i \(-0.544350\pi\)
−0.138879 + 0.990309i \(0.544350\pi\)
\(104\) 1.52684e8 0.127981
\(105\) 5.41822e8 0.435016
\(106\) 9.85777e8 0.758407
\(107\) 1.87027e9 1.37936 0.689681 0.724113i \(-0.257751\pi\)
0.689681 + 0.724113i \(0.257751\pi\)
\(108\) 1.81937e8 0.128681
\(109\) 3.40824e8 0.231266 0.115633 0.993292i \(-0.463110\pi\)
0.115633 + 0.993292i \(0.463110\pi\)
\(110\) 4.44899e8 0.289731
\(111\) −9.07752e8 −0.567562
\(112\) −3.24700e8 −0.194985
\(113\) −9.98401e8 −0.576039 −0.288020 0.957624i \(-0.592997\pi\)
−0.288020 + 0.957624i \(0.592997\pi\)
\(114\) 1.37493e8 0.0762446
\(115\) −1.27915e9 −0.681995
\(116\) 2.24363e9 1.15051
\(117\) −9.00221e7 −0.0444133
\(118\) 1.91223e9 0.907970
\(119\) 5.02441e9 2.29680
\(120\) 5.63353e8 0.248008
\(121\) 6.28811e8 0.266677
\(122\) −1.98697e9 −0.812030
\(123\) 2.50386e9 0.986363
\(124\) 1.73277e9 0.658180
\(125\) 2.44141e8 0.0894427
\(126\) −9.14626e8 −0.323278
\(127\) −4.93580e8 −0.168361 −0.0841804 0.996451i \(-0.526827\pi\)
−0.0841804 + 0.996451i \(0.526827\pi\)
\(128\) −2.28813e9 −0.753416
\(129\) 3.41281e9 1.08507
\(130\) −1.11697e8 −0.0343001
\(131\) 4.41011e9 1.30836 0.654181 0.756338i \(-0.273013\pi\)
0.654181 + 0.756338i \(0.273013\pi\)
\(132\) 1.51548e9 0.434478
\(133\) 1.39478e9 0.386522
\(134\) 2.18685e9 0.585933
\(135\) −3.32151e8 −0.0860663
\(136\) 5.22407e9 1.30943
\(137\) −7.47731e8 −0.181344 −0.0906719 0.995881i \(-0.528901\pi\)
−0.0906719 + 0.995881i \(0.528901\pi\)
\(138\) 2.15928e9 0.506818
\(139\) −2.58949e9 −0.588366 −0.294183 0.955749i \(-0.595048\pi\)
−0.294183 + 0.955749i \(0.595048\pi\)
\(140\) 2.29001e9 0.503804
\(141\) 4.66496e9 0.993944
\(142\) 3.75745e9 0.775525
\(143\) −7.49859e8 −0.149957
\(144\) 1.99049e8 0.0385771
\(145\) −4.09606e9 −0.769503
\(146\) −1.85202e9 −0.337333
\(147\) −6.00967e9 −1.06151
\(148\) −3.83661e9 −0.657309
\(149\) 5.48111e9 0.911026 0.455513 0.890229i \(-0.349456\pi\)
0.455513 + 0.890229i \(0.349456\pi\)
\(150\) −4.12123e8 −0.0664685
\(151\) 6.79413e9 1.06350 0.531750 0.846901i \(-0.321534\pi\)
0.531750 + 0.846901i \(0.321534\pi\)
\(152\) 1.45021e9 0.220361
\(153\) −3.08009e9 −0.454414
\(154\) −7.61857e9 −1.09152
\(155\) −3.16342e9 −0.440214
\(156\) −3.80478e8 −0.0514362
\(157\) 5.97345e9 0.784652 0.392326 0.919826i \(-0.371671\pi\)
0.392326 + 0.919826i \(0.371671\pi\)
\(158\) 2.89819e9 0.369973
\(159\) −6.13031e9 −0.760668
\(160\) 3.80792e9 0.459355
\(161\) 2.19045e10 2.56931
\(162\) 5.60689e8 0.0639594
\(163\) 1.46276e9 0.162304 0.0811520 0.996702i \(-0.474140\pi\)
0.0811520 + 0.996702i \(0.474140\pi\)
\(164\) 1.05825e10 1.14233
\(165\) −2.76672e9 −0.290594
\(166\) −6.46751e9 −0.661075
\(167\) −1.54249e10 −1.53461 −0.767304 0.641283i \(-0.778402\pi\)
−0.767304 + 0.641283i \(0.778402\pi\)
\(168\) −9.64701e9 −0.934331
\(169\) −1.04162e10 −0.982247
\(170\) −3.82168e9 −0.350941
\(171\) −8.55036e8 −0.0764719
\(172\) 1.44242e10 1.25665
\(173\) −1.08344e10 −0.919597 −0.459798 0.888023i \(-0.652078\pi\)
−0.459798 + 0.888023i \(0.652078\pi\)
\(174\) 6.91438e9 0.571849
\(175\) −4.18073e9 −0.336962
\(176\) 1.65802e9 0.130252
\(177\) −1.18917e10 −0.910677
\(178\) −3.85693e8 −0.0287973
\(179\) 1.54813e10 1.12712 0.563558 0.826076i \(-0.309432\pi\)
0.563558 + 0.826076i \(0.309432\pi\)
\(180\) −1.40383e9 −0.0996757
\(181\) −2.71382e7 −0.00187944 −0.000939719 1.00000i \(-0.500299\pi\)
−0.000939719 1.00000i \(0.500299\pi\)
\(182\) 1.91273e9 0.129221
\(183\) 1.23565e10 0.814451
\(184\) 2.27749e10 1.46479
\(185\) 7.00426e9 0.439632
\(186\) 5.34002e9 0.327141
\(187\) −2.56562e10 −1.53428
\(188\) 1.97164e10 1.15111
\(189\) 5.68783e9 0.324242
\(190\) −1.06090e9 −0.0590588
\(191\) −1.20044e10 −0.652663 −0.326332 0.945255i \(-0.605813\pi\)
−0.326332 + 0.945255i \(0.605813\pi\)
\(192\) −5.16980e9 −0.274548
\(193\) 1.73597e9 0.0900606 0.0450303 0.998986i \(-0.485662\pi\)
0.0450303 + 0.998986i \(0.485662\pi\)
\(194\) −5.27324e9 −0.267282
\(195\) 6.94615e8 0.0344024
\(196\) −2.53998e10 −1.22936
\(197\) 1.41024e10 0.667105 0.333552 0.942732i \(-0.391753\pi\)
0.333552 + 0.942732i \(0.391753\pi\)
\(198\) 4.67038e9 0.215953
\(199\) 5.68299e9 0.256885 0.128442 0.991717i \(-0.459002\pi\)
0.128442 + 0.991717i \(0.459002\pi\)
\(200\) −4.34686e9 −0.192106
\(201\) −1.35995e10 −0.587679
\(202\) −1.03650e10 −0.438014
\(203\) 7.01420e10 2.89899
\(204\) −1.30180e10 −0.526269
\(205\) −1.93199e10 −0.764033
\(206\) −4.13254e9 −0.159888
\(207\) −1.34280e10 −0.508329
\(208\) −4.16265e8 −0.0154200
\(209\) −7.12221e9 −0.258200
\(210\) 7.05730e9 0.250410
\(211\) 1.21056e10 0.420451 0.210225 0.977653i \(-0.432580\pi\)
0.210225 + 0.977653i \(0.432580\pi\)
\(212\) −2.59097e10 −0.880950
\(213\) −2.33667e10 −0.777836
\(214\) 2.43605e10 0.794008
\(215\) −2.63334e10 −0.840494
\(216\) 5.91386e9 0.184854
\(217\) 5.41712e10 1.65844
\(218\) 4.43928e9 0.133124
\(219\) 1.15173e10 0.338339
\(220\) −1.16935e10 −0.336545
\(221\) 6.44128e9 0.181638
\(222\) −1.18236e10 −0.326708
\(223\) 6.70561e10 1.81579 0.907897 0.419194i \(-0.137687\pi\)
0.907897 + 0.419194i \(0.137687\pi\)
\(224\) −6.52079e10 −1.73055
\(225\) 2.56289e9 0.0666667
\(226\) −1.30043e10 −0.331588
\(227\) 5.15258e10 1.28798 0.643989 0.765035i \(-0.277278\pi\)
0.643989 + 0.765035i \(0.277278\pi\)
\(228\) −3.61381e9 −0.0885642
\(229\) 1.72210e10 0.413807 0.206903 0.978361i \(-0.433661\pi\)
0.206903 + 0.978361i \(0.433661\pi\)
\(230\) −1.66611e10 −0.392580
\(231\) 4.73780e10 1.09477
\(232\) 7.29293e10 1.65275
\(233\) −9.95803e9 −0.221346 −0.110673 0.993857i \(-0.535301\pi\)
−0.110673 + 0.993857i \(0.535301\pi\)
\(234\) −1.17255e9 −0.0255658
\(235\) −3.59951e10 −0.769906
\(236\) −5.02602e10 −1.05468
\(237\) −1.80231e10 −0.371076
\(238\) 6.54435e10 1.32212
\(239\) 3.75987e10 0.745388 0.372694 0.927954i \(-0.378434\pi\)
0.372694 + 0.927954i \(0.378434\pi\)
\(240\) −1.53587e9 −0.0298817
\(241\) 3.33208e10 0.636266 0.318133 0.948046i \(-0.396944\pi\)
0.318133 + 0.948046i \(0.396944\pi\)
\(242\) 8.19034e9 0.153509
\(243\) −3.48678e9 −0.0641500
\(244\) 5.22246e10 0.943238
\(245\) 4.63709e10 0.822239
\(246\) 3.26131e10 0.567784
\(247\) 1.78811e9 0.0305673
\(248\) 5.63238e10 0.945496
\(249\) 4.02198e10 0.663045
\(250\) 3.17996e9 0.0514863
\(251\) 3.32217e10 0.528312 0.264156 0.964480i \(-0.414907\pi\)
0.264156 + 0.964480i \(0.414907\pi\)
\(252\) 2.40396e10 0.375513
\(253\) −1.11851e11 −1.71632
\(254\) −6.42894e9 −0.0969143
\(255\) 2.37661e10 0.351988
\(256\) −6.24813e10 −0.909223
\(257\) 1.63588e9 0.0233912 0.0116956 0.999932i \(-0.496277\pi\)
0.0116956 + 0.999932i \(0.496277\pi\)
\(258\) 4.44523e10 0.624605
\(259\) −1.19943e11 −1.65625
\(260\) 2.93579e9 0.0398423
\(261\) −4.29988e10 −0.573554
\(262\) 5.74422e10 0.753139
\(263\) −8.99867e10 −1.15978 −0.579892 0.814693i \(-0.696905\pi\)
−0.579892 + 0.814693i \(0.696905\pi\)
\(264\) 4.92607e10 0.624142
\(265\) 4.73017e10 0.589211
\(266\) 1.81672e10 0.222495
\(267\) 2.39853e9 0.0288831
\(268\) −5.74782e10 −0.680607
\(269\) 1.42241e10 0.165630 0.0828152 0.996565i \(-0.473609\pi\)
0.0828152 + 0.996565i \(0.473609\pi\)
\(270\) −4.32630e9 −0.0495427
\(271\) −1.09867e11 −1.23739 −0.618696 0.785631i \(-0.712339\pi\)
−0.618696 + 0.785631i \(0.712339\pi\)
\(272\) −1.42424e10 −0.157770
\(273\) −1.18948e10 −0.129606
\(274\) −9.73929e9 −0.104388
\(275\) 2.13481e10 0.225094
\(276\) −5.67534e10 −0.588709
\(277\) 1.26787e11 1.29395 0.646973 0.762513i \(-0.276035\pi\)
0.646973 + 0.762513i \(0.276035\pi\)
\(278\) −3.37284e10 −0.338684
\(279\) −3.32083e10 −0.328116
\(280\) 7.44368e10 0.723730
\(281\) 3.90046e10 0.373196 0.186598 0.982436i \(-0.440254\pi\)
0.186598 + 0.982436i \(0.440254\pi\)
\(282\) 6.07617e10 0.572149
\(283\) −1.58751e11 −1.47122 −0.735611 0.677404i \(-0.763105\pi\)
−0.735611 + 0.677404i \(0.763105\pi\)
\(284\) −9.87591e10 −0.900834
\(285\) 6.59750e9 0.0592349
\(286\) −9.76700e9 −0.0863205
\(287\) 3.30839e11 2.87838
\(288\) 3.99740e10 0.342383
\(289\) 1.01799e11 0.858428
\(290\) −5.33517e10 −0.442953
\(291\) 3.27930e10 0.268079
\(292\) 4.86778e10 0.391839
\(293\) −1.89990e11 −1.50600 −0.753001 0.658019i \(-0.771394\pi\)
−0.753001 + 0.658019i \(0.771394\pi\)
\(294\) −7.82766e10 −0.611039
\(295\) 9.17569e10 0.705407
\(296\) −1.24709e11 −0.944246
\(297\) −2.90439e10 −0.216596
\(298\) 7.13922e10 0.524418
\(299\) 2.80815e10 0.203189
\(300\) 1.08320e10 0.0772085
\(301\) 4.50941e11 3.16643
\(302\) 8.84944e10 0.612188
\(303\) 6.44574e10 0.439320
\(304\) −3.95371e9 −0.0265506
\(305\) −9.53432e10 −0.630871
\(306\) −4.01185e10 −0.261576
\(307\) −2.41121e11 −1.54922 −0.774610 0.632440i \(-0.782054\pi\)
−0.774610 + 0.632440i \(0.782054\pi\)
\(308\) 2.00243e11 1.26788
\(309\) 2.56992e10 0.160364
\(310\) −4.12039e10 −0.253402
\(311\) −3.69301e10 −0.223851 −0.111926 0.993717i \(-0.535702\pi\)
−0.111926 + 0.993717i \(0.535702\pi\)
\(312\) −1.23674e10 −0.0738898
\(313\) −2.96718e11 −1.74741 −0.873705 0.486457i \(-0.838289\pi\)
−0.873705 + 0.486457i \(0.838289\pi\)
\(314\) 7.78049e10 0.451672
\(315\) −4.38876e10 −0.251157
\(316\) −7.61746e10 −0.429753
\(317\) 7.42422e10 0.412937 0.206469 0.978453i \(-0.433803\pi\)
0.206469 + 0.978453i \(0.433803\pi\)
\(318\) −7.98480e10 −0.437867
\(319\) −3.58168e11 −1.93655
\(320\) 3.98904e10 0.212664
\(321\) −1.51492e11 −0.796375
\(322\) 2.85309e11 1.47898
\(323\) 6.11797e10 0.312749
\(324\) −1.47369e10 −0.0742939
\(325\) −5.35969e9 −0.0266480
\(326\) 1.90526e10 0.0934277
\(327\) −2.76068e10 −0.133521
\(328\) 3.43986e11 1.64100
\(329\) 6.16389e11 2.90050
\(330\) −3.60369e10 −0.167276
\(331\) −3.14188e10 −0.143868 −0.0719339 0.997409i \(-0.522917\pi\)
−0.0719339 + 0.997409i \(0.522917\pi\)
\(332\) 1.69989e11 0.767891
\(333\) 7.35279e10 0.327682
\(334\) −2.00911e11 −0.883373
\(335\) 1.04934e11 0.455214
\(336\) 2.63007e10 0.112575
\(337\) 2.24854e11 0.949654 0.474827 0.880079i \(-0.342511\pi\)
0.474827 + 0.880079i \(0.342511\pi\)
\(338\) −1.35673e11 −0.565415
\(339\) 8.08705e10 0.332576
\(340\) 1.00447e11 0.407646
\(341\) −2.76615e11 −1.10785
\(342\) −1.11369e10 −0.0440199
\(343\) −3.62176e11 −1.41285
\(344\) 4.68860e11 1.80522
\(345\) 1.03611e11 0.393750
\(346\) −1.41119e11 −0.529352
\(347\) 8.96350e10 0.331891 0.165945 0.986135i \(-0.446932\pi\)
0.165945 + 0.986135i \(0.446932\pi\)
\(348\) −1.81734e11 −0.664248
\(349\) −2.70486e11 −0.975955 −0.487977 0.872856i \(-0.662265\pi\)
−0.487977 + 0.872856i \(0.662265\pi\)
\(350\) −5.44545e10 −0.193967
\(351\) 7.29179e9 0.0256420
\(352\) 3.32972e11 1.15602
\(353\) 1.89513e11 0.649610 0.324805 0.945781i \(-0.394701\pi\)
0.324805 + 0.945781i \(0.394701\pi\)
\(354\) −1.54891e11 −0.524217
\(355\) 1.80298e11 0.602510
\(356\) 1.01374e10 0.0334504
\(357\) −4.06977e11 −1.32606
\(358\) 2.01646e11 0.648807
\(359\) −9.99305e10 −0.317522 −0.158761 0.987317i \(-0.550750\pi\)
−0.158761 + 0.987317i \(0.550750\pi\)
\(360\) −4.56316e10 −0.143187
\(361\) 1.69836e10 0.0526316
\(362\) −3.53479e8 −0.00108187
\(363\) −5.09337e10 −0.153966
\(364\) −5.02732e10 −0.150100
\(365\) −8.88679e10 −0.262076
\(366\) 1.60945e11 0.468826
\(367\) −4.32090e10 −0.124330 −0.0621652 0.998066i \(-0.519801\pi\)
−0.0621652 + 0.998066i \(0.519801\pi\)
\(368\) −6.20914e10 −0.176489
\(369\) −2.02813e11 −0.569477
\(370\) 9.12313e10 0.253067
\(371\) −8.10007e11 −2.21976
\(372\) −1.40355e11 −0.380000
\(373\) −1.51936e11 −0.406415 −0.203208 0.979136i \(-0.565137\pi\)
−0.203208 + 0.979136i \(0.565137\pi\)
\(374\) −3.34176e11 −0.883187
\(375\) −1.97754e10 −0.0516398
\(376\) 6.40883e11 1.65361
\(377\) 8.99220e10 0.229261
\(378\) 7.40847e10 0.186645
\(379\) −8.58143e10 −0.213640 −0.106820 0.994278i \(-0.534067\pi\)
−0.106820 + 0.994278i \(0.534067\pi\)
\(380\) 2.78843e10 0.0686015
\(381\) 3.99800e10 0.0972032
\(382\) −1.56358e11 −0.375695
\(383\) 3.33456e11 0.791851 0.395926 0.918283i \(-0.370424\pi\)
0.395926 + 0.918283i \(0.370424\pi\)
\(384\) 1.85338e11 0.434985
\(385\) −3.65571e11 −0.848006
\(386\) 2.26112e10 0.0518420
\(387\) −2.76438e11 −0.626467
\(388\) 1.38599e11 0.310469
\(389\) 3.66903e11 0.812416 0.406208 0.913781i \(-0.366851\pi\)
0.406208 + 0.913781i \(0.366851\pi\)
\(390\) 9.04745e9 0.0198032
\(391\) 9.60803e11 2.07893
\(392\) −8.25621e11 −1.76601
\(393\) −3.57219e11 −0.755384
\(394\) 1.83685e11 0.384009
\(395\) 1.39067e11 0.287434
\(396\) −1.22754e11 −0.250846
\(397\) −7.25883e11 −1.46659 −0.733296 0.679910i \(-0.762019\pi\)
−0.733296 + 0.679910i \(0.762019\pi\)
\(398\) 7.40216e10 0.147872
\(399\) −1.12977e11 −0.223158
\(400\) 1.18509e10 0.0231462
\(401\) −2.95602e11 −0.570897 −0.285449 0.958394i \(-0.592143\pi\)
−0.285449 + 0.958394i \(0.592143\pi\)
\(402\) −1.77135e11 −0.338288
\(403\) 6.94474e10 0.131154
\(404\) 2.72429e11 0.508788
\(405\) 2.69042e10 0.0496904
\(406\) 9.13609e11 1.66876
\(407\) 6.12466e11 1.10639
\(408\) −4.23149e11 −0.756002
\(409\) 3.52400e11 0.622703 0.311351 0.950295i \(-0.399218\pi\)
0.311351 + 0.950295i \(0.399218\pi\)
\(410\) −2.51644e11 −0.439804
\(411\) 6.05662e10 0.104699
\(412\) 1.08618e11 0.185722
\(413\) −1.57127e12 −2.65751
\(414\) −1.74901e11 −0.292612
\(415\) −3.10338e11 −0.513593
\(416\) −8.35964e10 −0.136857
\(417\) 2.09749e11 0.339693
\(418\) −9.27676e10 −0.148629
\(419\) −9.92291e11 −1.57281 −0.786405 0.617712i \(-0.788060\pi\)
−0.786405 + 0.617712i \(0.788060\pi\)
\(420\) −1.85491e11 −0.290871
\(421\) 2.52840e11 0.392262 0.196131 0.980578i \(-0.437162\pi\)
0.196131 + 0.980578i \(0.437162\pi\)
\(422\) 1.57677e11 0.242026
\(423\) −3.77862e11 −0.573854
\(424\) −8.42195e11 −1.26551
\(425\) −1.83380e11 −0.272648
\(426\) −3.04353e11 −0.447749
\(427\) 1.63268e12 2.37671
\(428\) −6.40281e11 −0.922303
\(429\) 6.07385e10 0.0865778
\(430\) −3.42996e11 −0.483817
\(431\) 1.02662e12 1.43305 0.716525 0.697562i \(-0.245732\pi\)
0.716525 + 0.697562i \(0.245732\pi\)
\(432\) −1.61230e10 −0.0222725
\(433\) −1.02384e12 −1.39970 −0.699852 0.714288i \(-0.746751\pi\)
−0.699852 + 0.714288i \(0.746751\pi\)
\(434\) 7.05586e11 0.954655
\(435\) 3.31781e11 0.444273
\(436\) −1.16680e11 −0.154635
\(437\) 2.66720e11 0.349856
\(438\) 1.50014e11 0.194759
\(439\) −6.95374e11 −0.893568 −0.446784 0.894642i \(-0.647431\pi\)
−0.446784 + 0.894642i \(0.647431\pi\)
\(440\) −3.80098e11 −0.483458
\(441\) 4.86783e11 0.612861
\(442\) 8.38985e10 0.104557
\(443\) −6.40859e11 −0.790580 −0.395290 0.918556i \(-0.629356\pi\)
−0.395290 + 0.918556i \(0.629356\pi\)
\(444\) 3.10765e11 0.379498
\(445\) −1.85072e10 −0.0223728
\(446\) 8.73414e11 1.04523
\(447\) −4.43970e11 −0.525981
\(448\) −6.83094e11 −0.801179
\(449\) −1.02866e12 −1.19444 −0.597219 0.802078i \(-0.703728\pi\)
−0.597219 + 0.802078i \(0.703728\pi\)
\(450\) 3.33820e10 0.0383756
\(451\) −1.68937e12 −1.92278
\(452\) 3.41799e11 0.385166
\(453\) −5.50325e11 −0.614012
\(454\) 6.71130e11 0.741404
\(455\) 9.17807e10 0.100392
\(456\) −1.17467e11 −0.127225
\(457\) −1.04212e12 −1.11762 −0.558811 0.829295i \(-0.688742\pi\)
−0.558811 + 0.829295i \(0.688742\pi\)
\(458\) 2.24305e11 0.238202
\(459\) 2.49487e11 0.262356
\(460\) 4.37912e11 0.456012
\(461\) −1.83118e12 −1.88832 −0.944162 0.329483i \(-0.893126\pi\)
−0.944162 + 0.329483i \(0.893126\pi\)
\(462\) 6.17104e11 0.630188
\(463\) 1.83564e12 1.85640 0.928202 0.372077i \(-0.121354\pi\)
0.928202 + 0.372077i \(0.121354\pi\)
\(464\) −1.98828e11 −0.199134
\(465\) 2.56237e11 0.254158
\(466\) −1.29705e11 −0.127414
\(467\) 1.87594e12 1.82513 0.912563 0.408935i \(-0.134100\pi\)
0.912563 + 0.408935i \(0.134100\pi\)
\(468\) 3.08187e10 0.0296967
\(469\) −1.79692e12 −1.71495
\(470\) −4.68840e11 −0.443184
\(471\) −4.83849e11 −0.453019
\(472\) −1.63371e12 −1.51508
\(473\) −2.30265e12 −2.11521
\(474\) −2.34753e11 −0.213604
\(475\) −5.09066e10 −0.0458831
\(476\) −1.72009e12 −1.53575
\(477\) 4.96555e11 0.439172
\(478\) 4.89727e11 0.429071
\(479\) 3.43451e11 0.298095 0.149048 0.988830i \(-0.452379\pi\)
0.149048 + 0.988830i \(0.452379\pi\)
\(480\) −3.08442e11 −0.265209
\(481\) −1.53766e11 −0.130981
\(482\) 4.34007e11 0.366257
\(483\) −1.77426e12 −1.48339
\(484\) −2.15271e11 −0.178312
\(485\) −2.53032e11 −0.207653
\(486\) −4.54158e10 −0.0369270
\(487\) −1.08328e12 −0.872687 −0.436344 0.899780i \(-0.643727\pi\)
−0.436344 + 0.899780i \(0.643727\pi\)
\(488\) 1.69756e12 1.35499
\(489\) −1.18484e11 −0.0937062
\(490\) 6.03986e11 0.473309
\(491\) 5.78633e11 0.449300 0.224650 0.974440i \(-0.427876\pi\)
0.224650 + 0.974440i \(0.427876\pi\)
\(492\) −8.57187e11 −0.659527
\(493\) 3.07666e12 2.34568
\(494\) 2.32903e10 0.0175956
\(495\) 2.24104e11 0.167775
\(496\) −1.53556e11 −0.113920
\(497\) −3.08747e12 −2.26986
\(498\) 5.23868e11 0.381672
\(499\) −3.32237e11 −0.239881 −0.119941 0.992781i \(-0.538270\pi\)
−0.119941 + 0.992781i \(0.538270\pi\)
\(500\) −8.35806e10 −0.0598054
\(501\) 1.24941e12 0.886006
\(502\) 4.32717e11 0.304115
\(503\) −2.09166e12 −1.45692 −0.728460 0.685088i \(-0.759764\pi\)
−0.728460 + 0.685088i \(0.759764\pi\)
\(504\) 7.81407e11 0.539436
\(505\) −4.97356e11 −0.340296
\(506\) −1.45688e12 −0.987975
\(507\) 8.43715e11 0.567101
\(508\) 1.68975e11 0.112574
\(509\) 1.16894e11 0.0771901 0.0385951 0.999255i \(-0.487712\pi\)
0.0385951 + 0.999255i \(0.487712\pi\)
\(510\) 3.09556e11 0.202616
\(511\) 1.52180e12 0.987331
\(512\) 3.57694e11 0.230036
\(513\) 6.92579e10 0.0441511
\(514\) 2.13075e10 0.0134648
\(515\) −1.98297e11 −0.124218
\(516\) −1.16836e12 −0.725529
\(517\) −3.14748e12 −1.93756
\(518\) −1.56227e12 −0.953392
\(519\) 8.77586e11 0.530929
\(520\) 9.54278e10 0.0572348
\(521\) 2.75443e12 1.63780 0.818902 0.573933i \(-0.194583\pi\)
0.818902 + 0.573933i \(0.194583\pi\)
\(522\) −5.60065e11 −0.330157
\(523\) 1.86141e12 1.08789 0.543945 0.839121i \(-0.316930\pi\)
0.543945 + 0.839121i \(0.316930\pi\)
\(524\) −1.50978e12 −0.874830
\(525\) 3.38639e11 0.194545
\(526\) −1.17209e12 −0.667612
\(527\) 2.37613e12 1.34190
\(528\) −1.34300e11 −0.0752009
\(529\) 2.38758e12 1.32558
\(530\) 6.16111e11 0.339170
\(531\) 9.63228e11 0.525779
\(532\) −4.77498e11 −0.258446
\(533\) 4.24135e11 0.227631
\(534\) 3.12411e10 0.0166261
\(535\) 1.16892e12 0.616869
\(536\) −1.86833e12 −0.977714
\(537\) −1.25398e12 −0.650741
\(538\) 1.85271e11 0.0953426
\(539\) 4.05476e12 2.06926
\(540\) 1.13711e11 0.0575478
\(541\) −1.66506e12 −0.835683 −0.417842 0.908520i \(-0.637213\pi\)
−0.417842 + 0.908520i \(0.637213\pi\)
\(542\) −1.43104e12 −0.712285
\(543\) 2.19820e9 0.00108509
\(544\) −2.86023e12 −1.40025
\(545\) 2.13015e11 0.103425
\(546\) −1.54931e11 −0.0746055
\(547\) −3.77719e11 −0.180396 −0.0901979 0.995924i \(-0.528750\pi\)
−0.0901979 + 0.995924i \(0.528750\pi\)
\(548\) 2.55983e11 0.121255
\(549\) −1.00087e12 −0.470223
\(550\) 2.78062e11 0.129572
\(551\) 8.54085e11 0.394747
\(552\) −1.84477e12 −0.845700
\(553\) −2.38142e12 −1.08286
\(554\) 1.65142e12 0.744839
\(555\) −5.67345e11 −0.253822
\(556\) 8.86503e11 0.393408
\(557\) 2.62954e12 1.15753 0.578764 0.815495i \(-0.303535\pi\)
0.578764 + 0.815495i \(0.303535\pi\)
\(558\) −4.32542e11 −0.188875
\(559\) 5.78105e11 0.250411
\(560\) −2.02937e11 −0.0871999
\(561\) 2.07816e12 0.885820
\(562\) 5.08040e11 0.214825
\(563\) −8.10555e11 −0.340012 −0.170006 0.985443i \(-0.554379\pi\)
−0.170006 + 0.985443i \(0.554379\pi\)
\(564\) −1.59703e12 −0.664596
\(565\) −6.24001e11 −0.257613
\(566\) −2.06775e12 −0.846886
\(567\) −4.60715e11 −0.187201
\(568\) −3.21016e12 −1.29408
\(569\) −3.41767e12 −1.36686 −0.683432 0.730014i \(-0.739514\pi\)
−0.683432 + 0.730014i \(0.739514\pi\)
\(570\) 8.59332e10 0.0340976
\(571\) 1.77233e12 0.697720 0.348860 0.937175i \(-0.386569\pi\)
0.348860 + 0.937175i \(0.386569\pi\)
\(572\) 2.56711e11 0.100268
\(573\) 9.72354e11 0.376815
\(574\) 4.30922e12 1.65689
\(575\) −7.99468e11 −0.304997
\(576\) 4.18754e11 0.158510
\(577\) 3.79023e12 1.42356 0.711778 0.702404i \(-0.247890\pi\)
0.711778 + 0.702404i \(0.247890\pi\)
\(578\) 1.32595e12 0.494141
\(579\) −1.40614e11 −0.0519965
\(580\) 1.40227e12 0.514525
\(581\) 5.31431e12 1.93488
\(582\) 4.27132e11 0.154315
\(583\) 4.13616e12 1.48282
\(584\) 1.58227e12 0.562889
\(585\) −5.62638e10 −0.0198622
\(586\) −2.47464e12 −0.866907
\(587\) −2.61189e12 −0.907994 −0.453997 0.891003i \(-0.650002\pi\)
−0.453997 + 0.891003i \(0.650002\pi\)
\(588\) 2.05739e12 0.709770
\(589\) 6.59615e11 0.225825
\(590\) 1.19515e12 0.406057
\(591\) −1.14229e12 −0.385153
\(592\) 3.39995e11 0.113769
\(593\) 1.98827e12 0.660282 0.330141 0.943932i \(-0.392904\pi\)
0.330141 + 0.943932i \(0.392904\pi\)
\(594\) −3.78300e11 −0.124680
\(595\) 3.14026e12 1.02716
\(596\) −1.87644e12 −0.609153
\(597\) −4.60322e11 −0.148312
\(598\) 3.65765e11 0.116963
\(599\) 5.18573e12 1.64585 0.822923 0.568153i \(-0.192342\pi\)
0.822923 + 0.568153i \(0.192342\pi\)
\(600\) 3.52096e11 0.110912
\(601\) 4.67286e12 1.46099 0.730495 0.682918i \(-0.239289\pi\)
0.730495 + 0.682918i \(0.239289\pi\)
\(602\) 5.87356e12 1.82271
\(603\) 1.10156e12 0.339297
\(604\) −2.32595e12 −0.711104
\(605\) 3.93007e11 0.119262
\(606\) 8.39565e11 0.252888
\(607\) 3.92598e12 1.17381 0.586907 0.809654i \(-0.300345\pi\)
0.586907 + 0.809654i \(0.300345\pi\)
\(608\) −7.94004e11 −0.235644
\(609\) −5.68151e12 −1.67373
\(610\) −1.24186e12 −0.363151
\(611\) 7.90210e11 0.229381
\(612\) 1.05446e12 0.303842
\(613\) −3.63666e12 −1.04023 −0.520117 0.854095i \(-0.674112\pi\)
−0.520117 + 0.854095i \(0.674112\pi\)
\(614\) −3.14063e12 −0.891784
\(615\) 1.56491e12 0.441115
\(616\) 6.50890e12 1.82135
\(617\) 9.28779e10 0.0258006 0.0129003 0.999917i \(-0.495894\pi\)
0.0129003 + 0.999917i \(0.495894\pi\)
\(618\) 3.34736e11 0.0923111
\(619\) 1.34091e12 0.367105 0.183553 0.983010i \(-0.441240\pi\)
0.183553 + 0.983010i \(0.441240\pi\)
\(620\) 1.08298e12 0.294347
\(621\) 1.08767e12 0.293484
\(622\) −4.81020e11 −0.128856
\(623\) 3.16922e11 0.0842861
\(624\) 3.37174e10 0.00890275
\(625\) 1.52588e11 0.0400000
\(626\) −3.86479e12 −1.00587
\(627\) 5.76899e11 0.149072
\(628\) −2.04499e12 −0.524653
\(629\) −5.26108e12 −1.34013
\(630\) −5.71641e11 −0.144574
\(631\) 1.81580e12 0.455970 0.227985 0.973665i \(-0.426786\pi\)
0.227985 + 0.973665i \(0.426786\pi\)
\(632\) −2.47606e12 −0.617353
\(633\) −9.80554e11 −0.242747
\(634\) 9.67013e11 0.237701
\(635\) −3.08488e11 −0.0752933
\(636\) 2.09869e12 0.508617
\(637\) −1.01799e12 −0.244972
\(638\) −4.66518e12 −1.11474
\(639\) 1.89270e12 0.449084
\(640\) −1.43008e12 −0.336938
\(641\) −5.43389e12 −1.27131 −0.635653 0.771975i \(-0.719269\pi\)
−0.635653 + 0.771975i \(0.719269\pi\)
\(642\) −1.97320e12 −0.458421
\(643\) 9.87680e11 0.227859 0.113930 0.993489i \(-0.463656\pi\)
0.113930 + 0.993489i \(0.463656\pi\)
\(644\) −7.49892e12 −1.71796
\(645\) 2.13301e12 0.485259
\(646\) 7.96873e11 0.180029
\(647\) −4.48367e12 −1.00592 −0.502961 0.864309i \(-0.667756\pi\)
−0.502961 + 0.864309i \(0.667756\pi\)
\(648\) −4.79022e11 −0.106725
\(649\) 8.02341e12 1.77524
\(650\) −6.98105e10 −0.0153395
\(651\) −4.38787e12 −0.957500
\(652\) −5.00771e11 −0.108524
\(653\) −5.75374e12 −1.23834 −0.619172 0.785256i \(-0.712532\pi\)
−0.619172 + 0.785256i \(0.712532\pi\)
\(654\) −3.59581e11 −0.0768595
\(655\) 2.75632e12 0.585118
\(656\) −9.37810e11 −0.197719
\(657\) −9.32900e11 −0.195340
\(658\) 8.02854e12 1.66963
\(659\) −1.50077e12 −0.309978 −0.154989 0.987916i \(-0.549534\pi\)
−0.154989 + 0.987916i \(0.549534\pi\)
\(660\) 9.47176e11 0.194305
\(661\) −1.76135e11 −0.0358871 −0.0179436 0.999839i \(-0.505712\pi\)
−0.0179436 + 0.999839i \(0.505712\pi\)
\(662\) −4.09234e11 −0.0828153
\(663\) −5.21744e11 −0.104869
\(664\) 5.52549e12 1.10310
\(665\) 8.71739e11 0.172858
\(666\) 9.57709e11 0.188625
\(667\) 1.34131e13 2.62399
\(668\) 5.28065e12 1.02611
\(669\) −5.43154e12 −1.04835
\(670\) 1.36678e12 0.262037
\(671\) −8.33700e12 −1.58766
\(672\) 5.28184e12 0.999133
\(673\) 5.47516e12 1.02880 0.514398 0.857552i \(-0.328015\pi\)
0.514398 + 0.857552i \(0.328015\pi\)
\(674\) 2.92874e12 0.546653
\(675\) −2.07594e11 −0.0384900
\(676\) 3.56596e12 0.656775
\(677\) 4.80501e12 0.879115 0.439557 0.898215i \(-0.355135\pi\)
0.439557 + 0.898215i \(0.355135\pi\)
\(678\) 1.05335e12 0.191442
\(679\) 4.33299e12 0.782300
\(680\) 3.26504e12 0.585597
\(681\) −4.17359e12 −0.743614
\(682\) −3.60295e12 −0.637718
\(683\) −3.52399e12 −0.619643 −0.309821 0.950795i \(-0.600269\pi\)
−0.309821 + 0.950795i \(0.600269\pi\)
\(684\) 2.92718e11 0.0511326
\(685\) −4.67332e11 −0.0810994
\(686\) −4.71739e12 −0.813285
\(687\) −1.39490e12 −0.238912
\(688\) −1.27826e12 −0.217505
\(689\) −1.03843e12 −0.175546
\(690\) 1.34955e12 0.226656
\(691\) −4.02229e12 −0.671155 −0.335577 0.942013i \(-0.608931\pi\)
−0.335577 + 0.942013i \(0.608931\pi\)
\(692\) 3.70912e12 0.614884
\(693\) −3.83762e12 −0.632066
\(694\) 1.16751e12 0.191048
\(695\) −1.61843e12 −0.263125
\(696\) −5.90728e12 −0.954214
\(697\) 1.45117e13 2.32900
\(698\) −3.52311e12 −0.561793
\(699\) 8.06601e11 0.127794
\(700\) 1.43126e12 0.225308
\(701\) −7.62157e12 −1.19210 −0.596051 0.802947i \(-0.703264\pi\)
−0.596051 + 0.802947i \(0.703264\pi\)
\(702\) 9.49765e10 0.0147604
\(703\) −1.46048e12 −0.225526
\(704\) 3.48810e12 0.535194
\(705\) 2.91560e12 0.444505
\(706\) 2.46843e12 0.373938
\(707\) 8.51686e12 1.28201
\(708\) 4.07108e12 0.608919
\(709\) 3.63365e12 0.540052 0.270026 0.962853i \(-0.412968\pi\)
0.270026 + 0.962853i \(0.412968\pi\)
\(710\) 2.34841e12 0.346825
\(711\) 1.45987e12 0.214241
\(712\) 3.29515e11 0.0480525
\(713\) 1.03590e13 1.50112
\(714\) −5.30093e12 −0.763325
\(715\) −4.68662e11 −0.0670629
\(716\) −5.29996e12 −0.753641
\(717\) −3.04549e12 −0.430350
\(718\) −1.30161e12 −0.182776
\(719\) 1.05067e12 0.146618 0.0733088 0.997309i \(-0.476644\pi\)
0.0733088 + 0.997309i \(0.476644\pi\)
\(720\) 1.24406e11 0.0172522
\(721\) 3.39568e12 0.467971
\(722\) 2.21213e11 0.0302965
\(723\) −2.69898e12 −0.367348
\(724\) 9.29067e9 0.00125668
\(725\) −2.56004e12 −0.344132
\(726\) −6.63417e11 −0.0886282
\(727\) −1.22082e12 −0.162087 −0.0810435 0.996711i \(-0.525825\pi\)
−0.0810435 + 0.996711i \(0.525825\pi\)
\(728\) −1.63413e12 −0.215623
\(729\) 2.82430e11 0.0370370
\(730\) −1.15752e12 −0.150860
\(731\) 1.97797e13 2.56208
\(732\) −4.23019e12 −0.544578
\(733\) −4.05937e12 −0.519387 −0.259694 0.965691i \(-0.583622\pi\)
−0.259694 + 0.965691i \(0.583622\pi\)
\(734\) −5.62803e11 −0.0715688
\(735\) −3.75604e12 −0.474720
\(736\) −1.24695e13 −1.56639
\(737\) 9.17567e12 1.14560
\(738\) −2.64166e12 −0.327811
\(739\) −6.87940e12 −0.848497 −0.424249 0.905546i \(-0.639462\pi\)
−0.424249 + 0.905546i \(0.639462\pi\)
\(740\) −2.39788e12 −0.293958
\(741\) −1.44837e11 −0.0176481
\(742\) −1.05504e13 −1.27777
\(743\) −1.05856e13 −1.27429 −0.637143 0.770745i \(-0.719884\pi\)
−0.637143 + 0.770745i \(0.719884\pi\)
\(744\) −4.56223e12 −0.545882
\(745\) 3.42570e12 0.407423
\(746\) −1.97898e12 −0.233946
\(747\) −3.25781e12 −0.382809
\(748\) 8.78332e12 1.02589
\(749\) −2.00169e13 −2.32396
\(750\) −2.57577e11 −0.0297256
\(751\) 3.47000e12 0.398061 0.199031 0.979993i \(-0.436221\pi\)
0.199031 + 0.979993i \(0.436221\pi\)
\(752\) −1.74724e12 −0.199238
\(753\) −2.69096e12 −0.305021
\(754\) 1.17124e12 0.131970
\(755\) 4.24633e12 0.475612
\(756\) −1.94721e12 −0.216803
\(757\) 9.52204e12 1.05390 0.526949 0.849897i \(-0.323336\pi\)
0.526949 + 0.849897i \(0.323336\pi\)
\(758\) −1.11774e12 −0.122979
\(759\) 9.05996e12 0.990920
\(760\) 9.06379e11 0.0985482
\(761\) 6.84268e12 0.739597 0.369798 0.929112i \(-0.379427\pi\)
0.369798 + 0.929112i \(0.379427\pi\)
\(762\) 5.20744e11 0.0559535
\(763\) −3.64773e12 −0.389639
\(764\) 4.10965e12 0.436400
\(765\) −1.92505e12 −0.203220
\(766\) 4.34330e12 0.455817
\(767\) −2.01436e12 −0.210164
\(768\) 5.06099e12 0.524940
\(769\) 1.40901e12 0.145294 0.0726468 0.997358i \(-0.476855\pi\)
0.0726468 + 0.997358i \(0.476855\pi\)
\(770\) −4.76161e12 −0.488141
\(771\) −1.32506e11 −0.0135049
\(772\) −5.94303e11 −0.0602185
\(773\) −6.28642e12 −0.633280 −0.316640 0.948546i \(-0.602555\pi\)
−0.316640 + 0.948546i \(0.602555\pi\)
\(774\) −3.60064e12 −0.360616
\(775\) −1.97714e12 −0.196870
\(776\) 4.50517e12 0.445999
\(777\) 9.71536e12 0.956234
\(778\) 4.77896e12 0.467655
\(779\) 4.02846e12 0.391941
\(780\) −2.37799e11 −0.0230030
\(781\) 1.57656e13 1.51629
\(782\) 1.25146e13 1.19670
\(783\) 3.48290e12 0.331142
\(784\) 2.25090e12 0.212781
\(785\) 3.73341e12 0.350907
\(786\) −4.65282e12 −0.434825
\(787\) −2.29630e12 −0.213375 −0.106687 0.994293i \(-0.534024\pi\)
−0.106687 + 0.994293i \(0.534024\pi\)
\(788\) −4.82789e12 −0.446056
\(789\) 7.28892e12 0.669602
\(790\) 1.81137e12 0.165457
\(791\) 1.06856e13 0.970516
\(792\) −3.99012e12 −0.360348
\(793\) 2.09310e12 0.187958
\(794\) −9.45471e12 −0.844220
\(795\) −3.83144e12 −0.340181
\(796\) −1.94555e12 −0.171765
\(797\) −2.26453e13 −1.98799 −0.993997 0.109403i \(-0.965106\pi\)
−0.993997 + 0.109403i \(0.965106\pi\)
\(798\) −1.47154e12 −0.128458
\(799\) 2.70369e13 2.34691
\(800\) 2.37995e12 0.205430
\(801\) −1.94281e11 −0.0166757
\(802\) −3.85025e12 −0.328628
\(803\) −7.77079e12 −0.659546
\(804\) 4.65573e12 0.392949
\(805\) 1.36903e13 1.14903
\(806\) 9.04560e11 0.0754970
\(807\) −1.15215e12 −0.0956268
\(808\) 8.85530e12 0.730890
\(809\) 8.32955e12 0.683681 0.341840 0.939758i \(-0.388950\pi\)
0.341840 + 0.939758i \(0.388950\pi\)
\(810\) 3.50430e11 0.0286035
\(811\) −1.41864e13 −1.15154 −0.575768 0.817613i \(-0.695297\pi\)
−0.575768 + 0.817613i \(0.695297\pi\)
\(812\) −2.40129e13 −1.93839
\(813\) 8.89926e12 0.714408
\(814\) 7.97744e12 0.636875
\(815\) 9.14225e11 0.0725845
\(816\) 1.15363e12 0.0910883
\(817\) 5.49088e12 0.431164
\(818\) 4.59005e12 0.358449
\(819\) 9.63477e11 0.0748279
\(820\) 6.61409e12 0.510867
\(821\) 1.72936e13 1.32844 0.664221 0.747537i \(-0.268764\pi\)
0.664221 + 0.747537i \(0.268764\pi\)
\(822\) 7.88882e11 0.0602683
\(823\) −9.54184e12 −0.724991 −0.362496 0.931985i \(-0.618075\pi\)
−0.362496 + 0.931985i \(0.618075\pi\)
\(824\) 3.53062e12 0.266796
\(825\) −1.72920e12 −0.129958
\(826\) −2.04660e13 −1.52976
\(827\) 1.14789e13 0.853346 0.426673 0.904406i \(-0.359685\pi\)
0.426673 + 0.904406i \(0.359685\pi\)
\(828\) 4.59703e12 0.339892
\(829\) −1.36358e13 −1.00274 −0.501368 0.865234i \(-0.667170\pi\)
−0.501368 + 0.865234i \(0.667170\pi\)
\(830\) −4.04219e12 −0.295642
\(831\) −1.02698e13 −0.747060
\(832\) −8.75725e11 −0.0633597
\(833\) −3.48304e13 −2.50643
\(834\) 2.73200e12 0.195539
\(835\) −9.64055e12 −0.686298
\(836\) 2.43826e12 0.172644
\(837\) 2.68987e12 0.189438
\(838\) −1.29247e13 −0.905363
\(839\) 1.95966e13 1.36537 0.682686 0.730712i \(-0.260812\pi\)
0.682686 + 0.730712i \(0.260812\pi\)
\(840\) −6.02938e12 −0.417846
\(841\) 2.84438e13 1.96068
\(842\) 3.29327e12 0.225800
\(843\) −3.15937e12 −0.215465
\(844\) −4.14431e12 −0.281132
\(845\) −6.51015e12 −0.439274
\(846\) −4.92170e12 −0.330330
\(847\) −6.72995e12 −0.449300
\(848\) 2.29608e12 0.152478
\(849\) 1.28589e13 0.849411
\(850\) −2.38855e12 −0.156946
\(851\) −2.29363e13 −1.49913
\(852\) 7.99949e12 0.520096
\(853\) −2.57539e12 −0.166561 −0.0832804 0.996526i \(-0.526540\pi\)
−0.0832804 + 0.996526i \(0.526540\pi\)
\(854\) 2.12659e13 1.36812
\(855\) −5.34398e11 −0.0341993
\(856\) −2.08123e13 −1.32492
\(857\) −5.83052e12 −0.369227 −0.184614 0.982811i \(-0.559103\pi\)
−0.184614 + 0.982811i \(0.559103\pi\)
\(858\) 7.91127e11 0.0498372
\(859\) 7.54040e12 0.472526 0.236263 0.971689i \(-0.424077\pi\)
0.236263 + 0.971689i \(0.424077\pi\)
\(860\) 9.01515e12 0.561992
\(861\) −2.67980e13 −1.66183
\(862\) 1.33718e13 0.824913
\(863\) 2.75410e13 1.69017 0.845086 0.534631i \(-0.179549\pi\)
0.845086 + 0.534631i \(0.179549\pi\)
\(864\) −3.23790e12 −0.197675
\(865\) −6.77150e12 −0.411256
\(866\) −1.33356e13 −0.805717
\(867\) −8.24573e12 −0.495614
\(868\) −1.85453e13 −1.10891
\(869\) 1.21603e13 0.723362
\(870\) 4.32149e12 0.255739
\(871\) −2.30365e12 −0.135624
\(872\) −3.79268e12 −0.222138
\(873\) −2.65623e12 −0.154775
\(874\) 3.47406e12 0.201389
\(875\) −2.61296e12 −0.150694
\(876\) −3.94290e12 −0.226228
\(877\) −1.48201e13 −0.845966 −0.422983 0.906138i \(-0.639017\pi\)
−0.422983 + 0.906138i \(0.639017\pi\)
\(878\) −9.05732e12 −0.514369
\(879\) 1.53892e13 0.869491
\(880\) 1.03626e12 0.0582503
\(881\) −3.36423e13 −1.88146 −0.940729 0.339159i \(-0.889857\pi\)
−0.940729 + 0.339159i \(0.889857\pi\)
\(882\) 6.34041e12 0.352784
\(883\) 1.14669e13 0.634778 0.317389 0.948295i \(-0.397194\pi\)
0.317389 + 0.948295i \(0.397194\pi\)
\(884\) −2.20515e12 −0.121451
\(885\) −7.43231e12 −0.407267
\(886\) −8.34727e12 −0.455085
\(887\) −1.44925e12 −0.0786114 −0.0393057 0.999227i \(-0.512515\pi\)
−0.0393057 + 0.999227i \(0.512515\pi\)
\(888\) 1.01014e13 0.545160
\(889\) 5.28262e12 0.283656
\(890\) −2.41058e11 −0.0128785
\(891\) 2.35256e12 0.125052
\(892\) −2.29564e13 −1.21412
\(893\) 7.50546e12 0.394953
\(894\) −5.78277e12 −0.302773
\(895\) 9.67581e12 0.504062
\(896\) 2.44890e13 1.26936
\(897\) −2.27460e12 −0.117311
\(898\) −1.33984e13 −0.687560
\(899\) 3.31713e13 1.69373
\(900\) −8.77396e11 −0.0445763
\(901\) −3.55296e13 −1.79609
\(902\) −2.20042e13 −1.10682
\(903\) −3.65262e13 −1.82814
\(904\) 1.11102e13 0.553303
\(905\) −1.69614e10 −0.000840510 0
\(906\) −7.16805e12 −0.353447
\(907\) 1.17411e13 0.576071 0.288035 0.957620i \(-0.406998\pi\)
0.288035 + 0.957620i \(0.406998\pi\)
\(908\) −1.76397e13 −0.861200
\(909\) −5.22105e12 −0.253641
\(910\) 1.19545e12 0.0577892
\(911\) 2.23131e12 0.107331 0.0536656 0.998559i \(-0.482909\pi\)
0.0536656 + 0.998559i \(0.482909\pi\)
\(912\) 3.20250e11 0.0153290
\(913\) −2.71366e13 −1.29252
\(914\) −1.35737e13 −0.643341
\(915\) 7.72280e12 0.364233
\(916\) −5.89553e12 −0.276690
\(917\) −4.71999e13 −2.20434
\(918\) 3.24960e12 0.151021
\(919\) 7.33394e12 0.339170 0.169585 0.985516i \(-0.445757\pi\)
0.169585 + 0.985516i \(0.445757\pi\)
\(920\) 1.42343e13 0.655076
\(921\) 1.95308e13 0.894442
\(922\) −2.38513e13 −1.08698
\(923\) −3.95814e12 −0.179508
\(924\) −1.62197e13 −0.732013
\(925\) 4.37766e12 0.196609
\(926\) 2.39094e13 1.06861
\(927\) −2.08164e12 −0.0925863
\(928\) −3.99296e13 −1.76738
\(929\) −1.92035e13 −0.845881 −0.422941 0.906157i \(-0.639002\pi\)
−0.422941 + 0.906157i \(0.639002\pi\)
\(930\) 3.33751e12 0.146302
\(931\) −9.66896e12 −0.421800
\(932\) 3.40910e12 0.148002
\(933\) 2.99134e12 0.129240
\(934\) 2.44343e13 1.05061
\(935\) −1.60352e13 −0.686153
\(936\) 1.00176e12 0.0426603
\(937\) 3.80847e13 1.61407 0.807035 0.590504i \(-0.201071\pi\)
0.807035 + 0.590504i \(0.201071\pi\)
\(938\) −2.34051e13 −0.987185
\(939\) 2.40342e13 1.00887
\(940\) 1.23228e13 0.514794
\(941\) −1.75227e13 −0.728530 −0.364265 0.931295i \(-0.618680\pi\)
−0.364265 + 0.931295i \(0.618680\pi\)
\(942\) −6.30220e12 −0.260773
\(943\) 6.32654e13 2.60533
\(944\) 4.45399e12 0.182547
\(945\) 3.55490e12 0.145005
\(946\) −2.99923e13 −1.21758
\(947\) −1.13923e13 −0.460296 −0.230148 0.973156i \(-0.573921\pi\)
−0.230148 + 0.973156i \(0.573921\pi\)
\(948\) 6.17015e12 0.248118
\(949\) 1.95094e12 0.0780812
\(950\) −6.63065e11 −0.0264119
\(951\) −6.01361e12 −0.238409
\(952\) −5.59114e13 −2.20615
\(953\) −1.35556e13 −0.532354 −0.266177 0.963924i \(-0.585761\pi\)
−0.266177 + 0.963924i \(0.585761\pi\)
\(954\) 6.46769e12 0.252802
\(955\) −7.50273e12 −0.291880
\(956\) −1.28718e13 −0.498400
\(957\) 2.90116e13 1.11807
\(958\) 4.47349e12 0.171594
\(959\) 8.00271e12 0.305530
\(960\) −3.23112e12 −0.122782
\(961\) −8.21171e11 −0.0310583
\(962\) −2.00283e12 −0.0753972
\(963\) 1.22709e13 0.459787
\(964\) −1.14073e13 −0.425436
\(965\) 1.08498e12 0.0402763
\(966\) −2.31100e13 −0.853892
\(967\) −1.13041e12 −0.0415736 −0.0207868 0.999784i \(-0.506617\pi\)
−0.0207868 + 0.999784i \(0.506617\pi\)
\(968\) −6.99739e12 −0.256151
\(969\) −4.95556e12 −0.180566
\(970\) −3.29577e12 −0.119532
\(971\) 3.95571e13 1.42803 0.714016 0.700130i \(-0.246874\pi\)
0.714016 + 0.700130i \(0.246874\pi\)
\(972\) 1.19369e12 0.0428936
\(973\) 2.77145e13 0.991285
\(974\) −1.41098e13 −0.502349
\(975\) 4.34135e11 0.0153852
\(976\) −4.62807e12 −0.163259
\(977\) 1.59270e12 0.0559253 0.0279626 0.999609i \(-0.491098\pi\)
0.0279626 + 0.999609i \(0.491098\pi\)
\(978\) −1.54326e12 −0.0539405
\(979\) −1.61830e12 −0.0563038
\(980\) −1.58749e13 −0.549786
\(981\) 2.23615e12 0.0770886
\(982\) 7.53676e12 0.258632
\(983\) 3.35787e13 1.14702 0.573512 0.819197i \(-0.305581\pi\)
0.573512 + 0.819197i \(0.305581\pi\)
\(984\) −2.78628e13 −0.947431
\(985\) 8.81398e12 0.298338
\(986\) 4.00739e13 1.35025
\(987\) −4.99275e13 −1.67461
\(988\) −6.12152e11 −0.0204387
\(989\) 8.62321e13 2.86606
\(990\) 2.91898e12 0.0965769
\(991\) −1.83632e12 −0.0604809 −0.0302404 0.999543i \(-0.509627\pi\)
−0.0302404 + 0.999543i \(0.509627\pi\)
\(992\) −3.08379e13 −1.01107
\(993\) 2.54492e12 0.0830621
\(994\) −4.02147e13 −1.30661
\(995\) 3.55187e12 0.114882
\(996\) −1.37691e13 −0.443342
\(997\) 2.91194e13 0.933372 0.466686 0.884423i \(-0.345448\pi\)
0.466686 + 0.884423i \(0.345448\pi\)
\(998\) −4.32743e12 −0.138084
\(999\) −5.95576e12 −0.189187
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.10.a.h.1.10 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.10.a.h.1.10 15 1.1 even 1 trivial