Properties

Label 285.10.a.h.1.1
Level $285$
Weight $10$
Character 285.1
Self dual yes
Analytic conductor $146.785$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.785213307\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 2 x^{14} - 6356 x^{13} + 18436 x^{12} + 15858707 x^{11} - 49616078 x^{10} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{6}\cdot 5^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(43.0696\) of defining polynomial
Character \(\chi\) \(=\) 285.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-44.0696 q^{2} -81.0000 q^{3} +1430.13 q^{4} +625.000 q^{5} +3569.64 q^{6} +9758.51 q^{7} -40461.6 q^{8} +6561.00 q^{9} +O(q^{10})\) \(q-44.0696 q^{2} -81.0000 q^{3} +1430.13 q^{4} +625.000 q^{5} +3569.64 q^{6} +9758.51 q^{7} -40461.6 q^{8} +6561.00 q^{9} -27543.5 q^{10} +83107.6 q^{11} -115841. q^{12} -68713.3 q^{13} -430054. q^{14} -50625.0 q^{15} +1.05090e6 q^{16} -659839. q^{17} -289141. q^{18} -130321. q^{19} +893831. q^{20} -790439. q^{21} -3.66252e6 q^{22} -1.57802e6 q^{23} +3.27739e6 q^{24} +390625. q^{25} +3.02817e6 q^{26} -531441. q^{27} +1.39559e7 q^{28} -2.82963e6 q^{29} +2.23102e6 q^{30} -1.91046e6 q^{31} -2.55965e7 q^{32} -6.73171e6 q^{33} +2.90789e7 q^{34} +6.09907e6 q^{35} +9.38308e6 q^{36} -1.68862e7 q^{37} +5.74320e6 q^{38} +5.56578e6 q^{39} -2.52885e7 q^{40} +634906. q^{41} +3.48344e7 q^{42} +3.49112e7 q^{43} +1.18855e8 q^{44} +4.10062e6 q^{45} +6.95426e7 q^{46} +1.09085e7 q^{47} -8.51230e7 q^{48} +5.48749e7 q^{49} -1.72147e7 q^{50} +5.34470e7 q^{51} -9.82689e7 q^{52} +9.61915e7 q^{53} +2.34204e7 q^{54} +5.19422e7 q^{55} -3.94845e8 q^{56} +1.05560e7 q^{57} +1.24701e8 q^{58} -1.11455e8 q^{59} -7.24003e7 q^{60} +5.62686e7 q^{61} +8.41933e7 q^{62} +6.40256e7 q^{63} +5.89964e8 q^{64} -4.29458e7 q^{65} +2.96664e8 q^{66} +1.12744e8 q^{67} -9.43656e8 q^{68} +1.27819e8 q^{69} -2.68784e8 q^{70} -1.00568e8 q^{71} -2.65469e8 q^{72} -1.07558e8 q^{73} +7.44170e8 q^{74} -3.16406e7 q^{75} -1.86376e8 q^{76} +8.11006e8 q^{77} -2.45282e8 q^{78} +9.09498e7 q^{79} +6.56813e8 q^{80} +4.30467e7 q^{81} -2.79801e7 q^{82} -7.21878e8 q^{83} -1.13043e9 q^{84} -4.12400e8 q^{85} -1.53852e9 q^{86} +2.29200e8 q^{87} -3.36267e9 q^{88} +2.98299e8 q^{89} -1.80713e8 q^{90} -6.70539e8 q^{91} -2.25677e9 q^{92} +1.54747e8 q^{93} -4.80733e8 q^{94} -8.14506e7 q^{95} +2.07331e9 q^{96} -1.31774e8 q^{97} -2.41832e9 q^{98} +5.45269e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 15 q - 17 q^{2} - 1215 q^{3} + 5055 q^{4} + 9375 q^{5} + 1377 q^{6} + 1352 q^{7} - 3597 q^{8} + 98415 q^{9} - 10625 q^{10} + 138230 q^{11} - 409455 q^{12} - 176712 q^{13} - 555994 q^{14} - 759375 q^{15} + 1695731 q^{16} - 274992 q^{17} - 111537 q^{18} - 1954815 q^{19} + 3159375 q^{20} - 109512 q^{21} - 1031106 q^{22} + 1714212 q^{23} + 291357 q^{24} + 5859375 q^{25} + 9500004 q^{26} - 7971615 q^{27} + 14545598 q^{28} + 1754340 q^{29} + 860625 q^{30} + 8442914 q^{31} + 35638859 q^{32} - 11196630 q^{33} + 47218266 q^{34} + 845000 q^{35} + 33165855 q^{36} + 2956096 q^{37} + 2215457 q^{38} + 14313672 q^{39} - 2248125 q^{40} - 38550502 q^{41} + 45035514 q^{42} + 50753570 q^{43} + 212125630 q^{44} + 61509375 q^{45} - 117130008 q^{46} - 40252876 q^{47} - 137354211 q^{48} + 110123035 q^{49} - 6640625 q^{50} + 22274352 q^{51} - 87136648 q^{52} + 65532542 q^{53} + 9034497 q^{54} + 86393750 q^{55} - 377288898 q^{56} + 158340015 q^{57} + 211630876 q^{58} + 175407418 q^{59} - 255909375 q^{60} + 151231854 q^{61} - 30983940 q^{62} + 8870472 q^{63} + 836879575 q^{64} - 110445000 q^{65} + 83519586 q^{66} + 40009476 q^{67} - 124850430 q^{68} - 138851172 q^{69} - 347496250 q^{70} + 87578500 q^{71} - 23599917 q^{72} - 360657638 q^{73} + 1373397084 q^{74} - 474609375 q^{75} - 658772655 q^{76} - 304618172 q^{77} - 769500324 q^{78} + 205798286 q^{79} + 1059831875 q^{80} + 645700815 q^{81} - 2327138772 q^{82} - 63321462 q^{83} - 1178193438 q^{84} - 171870000 q^{85} - 848405762 q^{86} - 142101540 q^{87} - 3211126502 q^{88} - 381069174 q^{89} - 69710625 q^{90} + 1476892872 q^{91} - 2382818588 q^{92} - 683876034 q^{93} - 5137318040 q^{94} - 1221759375 q^{95} - 2886747579 q^{96} - 3915268828 q^{97} - 8273557437 q^{98} + 906927030 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −44.0696 −1.94762 −0.973810 0.227364i \(-0.926989\pi\)
−0.973810 + 0.227364i \(0.926989\pi\)
\(3\) −81.0000 −0.577350
\(4\) 1430.13 2.79322
\(5\) 625.000 0.447214
\(6\) 3569.64 1.12446
\(7\) 9758.51 1.53618 0.768091 0.640341i \(-0.221207\pi\)
0.768091 + 0.640341i \(0.221207\pi\)
\(8\) −40461.6 −3.49252
\(9\) 6561.00 0.333333
\(10\) −27543.5 −0.871002
\(11\) 83107.6 1.71149 0.855743 0.517400i \(-0.173100\pi\)
0.855743 + 0.517400i \(0.173100\pi\)
\(12\) −115841. −1.61267
\(13\) −68713.3 −0.667261 −0.333630 0.942704i \(-0.608274\pi\)
−0.333630 + 0.942704i \(0.608274\pi\)
\(14\) −430054. −2.99190
\(15\) −50625.0 −0.258199
\(16\) 1.05090e6 4.00887
\(17\) −659839. −1.91610 −0.958050 0.286601i \(-0.907474\pi\)
−0.958050 + 0.286601i \(0.907474\pi\)
\(18\) −289141. −0.649207
\(19\) −130321. −0.229416
\(20\) 893831. 1.24917
\(21\) −790439. −0.886915
\(22\) −3.66252e6 −3.33333
\(23\) −1.57802e6 −1.17581 −0.587904 0.808931i \(-0.700047\pi\)
−0.587904 + 0.808931i \(0.700047\pi\)
\(24\) 3.27739e6 2.01641
\(25\) 390625. 0.200000
\(26\) 3.02817e6 1.29957
\(27\) −531441. −0.192450
\(28\) 1.39559e7 4.29090
\(29\) −2.82963e6 −0.742913 −0.371457 0.928450i \(-0.621142\pi\)
−0.371457 + 0.928450i \(0.621142\pi\)
\(30\) 2.23102e6 0.502873
\(31\) −1.91046e6 −0.371545 −0.185772 0.982593i \(-0.559479\pi\)
−0.185772 + 0.982593i \(0.559479\pi\)
\(32\) −2.55965e7 −4.31524
\(33\) −6.73171e6 −0.988127
\(34\) 2.90789e7 3.73183
\(35\) 6.09907e6 0.687001
\(36\) 9.38308e6 0.931074
\(37\) −1.68862e7 −1.48124 −0.740620 0.671925i \(-0.765468\pi\)
−0.740620 + 0.671925i \(0.765468\pi\)
\(38\) 5.74320e6 0.446815
\(39\) 5.56578e6 0.385243
\(40\) −2.52885e7 −1.56190
\(41\) 634906. 0.0350899 0.0175450 0.999846i \(-0.494415\pi\)
0.0175450 + 0.999846i \(0.494415\pi\)
\(42\) 3.48344e7 1.72737
\(43\) 3.49112e7 1.55724 0.778622 0.627493i \(-0.215919\pi\)
0.778622 + 0.627493i \(0.215919\pi\)
\(44\) 1.18855e8 4.78056
\(45\) 4.10062e6 0.149071
\(46\) 6.95426e7 2.29003
\(47\) 1.09085e7 0.326080 0.163040 0.986619i \(-0.447870\pi\)
0.163040 + 0.986619i \(0.447870\pi\)
\(48\) −8.51230e7 −2.31452
\(49\) 5.48749e7 1.35985
\(50\) −1.72147e7 −0.389524
\(51\) 5.34470e7 1.10626
\(52\) −9.82689e7 −1.86381
\(53\) 9.61915e7 1.67454 0.837270 0.546790i \(-0.184150\pi\)
0.837270 + 0.546790i \(0.184150\pi\)
\(54\) 2.34204e7 0.374820
\(55\) 5.19422e7 0.765400
\(56\) −3.94845e8 −5.36514
\(57\) 1.05560e7 0.132453
\(58\) 1.24701e8 1.44691
\(59\) −1.11455e8 −1.19747 −0.598735 0.800947i \(-0.704330\pi\)
−0.598735 + 0.800947i \(0.704330\pi\)
\(60\) −7.24003e7 −0.721207
\(61\) 5.62686e7 0.520334 0.260167 0.965564i \(-0.416222\pi\)
0.260167 + 0.965564i \(0.416222\pi\)
\(62\) 8.41933e7 0.723627
\(63\) 6.40256e7 0.512060
\(64\) 5.89964e8 4.39558
\(65\) −4.29458e7 −0.298408
\(66\) 2.96664e8 1.92450
\(67\) 1.12744e8 0.683529 0.341765 0.939786i \(-0.388975\pi\)
0.341765 + 0.939786i \(0.388975\pi\)
\(68\) −9.43656e8 −5.35209
\(69\) 1.27819e8 0.678853
\(70\) −2.68784e8 −1.33802
\(71\) −1.00568e8 −0.469674 −0.234837 0.972035i \(-0.575456\pi\)
−0.234837 + 0.972035i \(0.575456\pi\)
\(72\) −2.65469e8 −1.16417
\(73\) −1.07558e8 −0.443293 −0.221647 0.975127i \(-0.571143\pi\)
−0.221647 + 0.975127i \(0.571143\pi\)
\(74\) 7.44170e8 2.88489
\(75\) −3.16406e7 −0.115470
\(76\) −1.86376e8 −0.640809
\(77\) 8.11006e8 2.62915
\(78\) −2.45282e8 −0.750307
\(79\) 9.09498e7 0.262712 0.131356 0.991335i \(-0.458067\pi\)
0.131356 + 0.991335i \(0.458067\pi\)
\(80\) 6.56813e8 1.79282
\(81\) 4.30467e7 0.111111
\(82\) −2.79801e7 −0.0683418
\(83\) −7.21878e8 −1.66960 −0.834799 0.550554i \(-0.814416\pi\)
−0.834799 + 0.550554i \(0.814416\pi\)
\(84\) −1.13043e9 −2.47735
\(85\) −4.12400e8 −0.856906
\(86\) −1.53852e9 −3.03292
\(87\) 2.29200e8 0.428921
\(88\) −3.36267e9 −5.97740
\(89\) 2.98299e8 0.503961 0.251980 0.967732i \(-0.418918\pi\)
0.251980 + 0.967732i \(0.418918\pi\)
\(90\) −1.80713e8 −0.290334
\(91\) −6.70539e8 −1.02503
\(92\) −2.25677e9 −3.28430
\(93\) 1.54747e8 0.214511
\(94\) −4.80733e8 −0.635081
\(95\) −8.14506e7 −0.102598
\(96\) 2.07331e9 2.49141
\(97\) −1.31774e8 −0.151133 −0.0755663 0.997141i \(-0.524076\pi\)
−0.0755663 + 0.997141i \(0.524076\pi\)
\(98\) −2.41832e9 −2.64848
\(99\) 5.45269e8 0.570496
\(100\) 5.58645e8 0.558645
\(101\) 6.38345e8 0.610392 0.305196 0.952289i \(-0.401278\pi\)
0.305196 + 0.952289i \(0.401278\pi\)
\(102\) −2.35539e9 −2.15458
\(103\) 1.45769e9 1.27613 0.638067 0.769981i \(-0.279734\pi\)
0.638067 + 0.769981i \(0.279734\pi\)
\(104\) 2.78025e9 2.33042
\(105\) −4.94025e8 −0.396640
\(106\) −4.23912e9 −3.26137
\(107\) −8.98746e8 −0.662842 −0.331421 0.943483i \(-0.607528\pi\)
−0.331421 + 0.943483i \(0.607528\pi\)
\(108\) −7.60030e8 −0.537556
\(109\) 2.22191e9 1.50767 0.753837 0.657061i \(-0.228201\pi\)
0.753837 + 0.657061i \(0.228201\pi\)
\(110\) −2.28907e9 −1.49071
\(111\) 1.36779e9 0.855194
\(112\) 1.02552e10 6.15835
\(113\) 1.28566e9 0.741778 0.370889 0.928677i \(-0.379053\pi\)
0.370889 + 0.928677i \(0.379053\pi\)
\(114\) −4.65199e8 −0.257969
\(115\) −9.86261e8 −0.525838
\(116\) −4.04674e9 −2.07512
\(117\) −4.50828e8 −0.222420
\(118\) 4.91176e9 2.33221
\(119\) −6.43905e9 −2.94348
\(120\) 2.04837e9 0.901764
\(121\) 4.54892e9 1.92919
\(122\) −2.47974e9 −1.01341
\(123\) −5.14274e7 −0.0202592
\(124\) −2.73221e9 −1.03781
\(125\) 2.44141e8 0.0894427
\(126\) −2.82158e9 −0.997299
\(127\) 2.10445e9 0.717832 0.358916 0.933370i \(-0.383146\pi\)
0.358916 + 0.933370i \(0.383146\pi\)
\(128\) −1.28941e10 −4.24567
\(129\) −2.82781e9 −0.899076
\(130\) 1.89260e9 0.581186
\(131\) −2.38213e9 −0.706716 −0.353358 0.935488i \(-0.614960\pi\)
−0.353358 + 0.935488i \(0.614960\pi\)
\(132\) −9.62723e9 −2.76006
\(133\) −1.27174e9 −0.352424
\(134\) −4.96859e9 −1.33125
\(135\) −3.32151e8 −0.0860663
\(136\) 2.66982e10 6.69201
\(137\) 2.01716e9 0.489213 0.244607 0.969622i \(-0.421341\pi\)
0.244607 + 0.969622i \(0.421341\pi\)
\(138\) −5.63295e9 −1.32215
\(139\) 3.02057e9 0.686313 0.343156 0.939278i \(-0.388504\pi\)
0.343156 + 0.939278i \(0.388504\pi\)
\(140\) 8.72246e9 1.91895
\(141\) −8.83588e8 −0.188263
\(142\) 4.43198e9 0.914746
\(143\) −5.71060e9 −1.14201
\(144\) 6.89496e9 1.33629
\(145\) −1.76852e9 −0.332241
\(146\) 4.74005e9 0.863366
\(147\) −4.44487e9 −0.785111
\(148\) −2.41495e10 −4.13743
\(149\) 6.11718e9 1.01675 0.508373 0.861137i \(-0.330247\pi\)
0.508373 + 0.861137i \(0.330247\pi\)
\(150\) 1.39439e9 0.224892
\(151\) 6.56980e9 1.02839 0.514193 0.857675i \(-0.328092\pi\)
0.514193 + 0.857675i \(0.328092\pi\)
\(152\) 5.27300e9 0.801238
\(153\) −4.32921e9 −0.638700
\(154\) −3.57407e10 −5.12059
\(155\) −1.19404e9 −0.166160
\(156\) 7.95978e9 1.07607
\(157\) −8.41573e9 −1.10546 −0.552730 0.833360i \(-0.686414\pi\)
−0.552730 + 0.833360i \(0.686414\pi\)
\(158\) −4.00812e9 −0.511663
\(159\) −7.79151e9 −0.966796
\(160\) −1.59978e10 −1.92983
\(161\) −1.53991e10 −1.80625
\(162\) −1.89705e9 −0.216402
\(163\) 4.90069e9 0.543768 0.271884 0.962330i \(-0.412353\pi\)
0.271884 + 0.962330i \(0.412353\pi\)
\(164\) 9.07999e8 0.0980139
\(165\) −4.20732e9 −0.441904
\(166\) 3.18129e10 3.25174
\(167\) 2.23401e9 0.222260 0.111130 0.993806i \(-0.464553\pi\)
0.111130 + 0.993806i \(0.464553\pi\)
\(168\) 3.19825e10 3.09756
\(169\) −5.88298e9 −0.554763
\(170\) 1.81743e10 1.66893
\(171\) −8.55036e8 −0.0764719
\(172\) 4.99276e10 4.34973
\(173\) 1.39842e10 1.18695 0.593474 0.804853i \(-0.297756\pi\)
0.593474 + 0.804853i \(0.297756\pi\)
\(174\) −1.01007e10 −0.835376
\(175\) 3.81192e9 0.307236
\(176\) 8.73379e10 6.86113
\(177\) 9.02783e9 0.691359
\(178\) −1.31459e10 −0.981524
\(179\) 1.42509e10 1.03754 0.518769 0.854915i \(-0.326391\pi\)
0.518769 + 0.854915i \(0.326391\pi\)
\(180\) 5.86443e9 0.416389
\(181\) −1.03942e10 −0.719844 −0.359922 0.932982i \(-0.617197\pi\)
−0.359922 + 0.932982i \(0.617197\pi\)
\(182\) 2.95504e10 1.99638
\(183\) −4.55776e9 −0.300415
\(184\) 6.38492e10 4.10653
\(185\) −1.05539e10 −0.662430
\(186\) −6.81966e9 −0.417787
\(187\) −5.48377e10 −3.27938
\(188\) 1.56006e10 0.910815
\(189\) −5.18607e9 −0.295638
\(190\) 3.58950e9 0.199822
\(191\) 1.15049e10 0.625508 0.312754 0.949834i \(-0.398748\pi\)
0.312754 + 0.949834i \(0.398748\pi\)
\(192\) −4.77871e10 −2.53779
\(193\) 3.11563e10 1.61636 0.808180 0.588935i \(-0.200453\pi\)
0.808180 + 0.588935i \(0.200453\pi\)
\(194\) 5.80724e9 0.294349
\(195\) 3.47861e9 0.172286
\(196\) 7.84783e10 3.79837
\(197\) 3.71917e10 1.75933 0.879665 0.475593i \(-0.157767\pi\)
0.879665 + 0.475593i \(0.157767\pi\)
\(198\) −2.40298e10 −1.11111
\(199\) 3.42758e10 1.54935 0.774675 0.632360i \(-0.217914\pi\)
0.774675 + 0.632360i \(0.217914\pi\)
\(200\) −1.58053e10 −0.698503
\(201\) −9.13227e9 −0.394636
\(202\) −2.81316e10 −1.18881
\(203\) −2.76130e10 −1.14125
\(204\) 7.64362e10 3.09003
\(205\) 3.96816e8 0.0156927
\(206\) −6.42396e10 −2.48542
\(207\) −1.03534e10 −0.391936
\(208\) −7.22109e10 −2.67496
\(209\) −1.08307e10 −0.392642
\(210\) 2.17715e10 0.772504
\(211\) 7.67891e8 0.0266703 0.0133352 0.999911i \(-0.495755\pi\)
0.0133352 + 0.999911i \(0.495755\pi\)
\(212\) 1.37566e11 4.67736
\(213\) 8.14599e9 0.271166
\(214\) 3.96074e10 1.29096
\(215\) 2.18195e10 0.696421
\(216\) 2.15030e10 0.672135
\(217\) −1.86433e10 −0.570760
\(218\) −9.79188e10 −2.93638
\(219\) 8.71222e9 0.255935
\(220\) 7.42842e10 2.13793
\(221\) 4.53397e10 1.27854
\(222\) −6.02778e10 −1.66559
\(223\) 1.05024e10 0.284391 0.142195 0.989839i \(-0.454584\pi\)
0.142195 + 0.989839i \(0.454584\pi\)
\(224\) −2.49783e11 −6.62899
\(225\) 2.56289e9 0.0666667
\(226\) −5.66587e10 −1.44470
\(227\) −9.24552e9 −0.231108 −0.115554 0.993301i \(-0.536864\pi\)
−0.115554 + 0.993301i \(0.536864\pi\)
\(228\) 1.50965e10 0.369971
\(229\) 3.66715e10 0.881189 0.440594 0.897706i \(-0.354768\pi\)
0.440594 + 0.897706i \(0.354768\pi\)
\(230\) 4.34641e10 1.02413
\(231\) −6.56915e10 −1.51794
\(232\) 1.14491e11 2.59464
\(233\) 2.72947e10 0.606704 0.303352 0.952879i \(-0.401894\pi\)
0.303352 + 0.952879i \(0.401894\pi\)
\(234\) 1.98678e10 0.433190
\(235\) 6.81781e9 0.145828
\(236\) −1.59395e11 −3.34480
\(237\) −7.36693e9 −0.151677
\(238\) 2.83766e11 5.73277
\(239\) 1.93984e10 0.384571 0.192285 0.981339i \(-0.438410\pi\)
0.192285 + 0.981339i \(0.438410\pi\)
\(240\) −5.32019e10 −1.03509
\(241\) −6.57530e10 −1.25556 −0.627782 0.778390i \(-0.716037\pi\)
−0.627782 + 0.778390i \(0.716037\pi\)
\(242\) −2.00469e11 −3.75732
\(243\) −3.48678e9 −0.0641500
\(244\) 8.04715e10 1.45341
\(245\) 3.42968e10 0.608144
\(246\) 2.26639e9 0.0394572
\(247\) 8.95478e9 0.153080
\(248\) 7.73004e10 1.29763
\(249\) 5.84721e10 0.963943
\(250\) −1.07592e10 −0.174200
\(251\) −1.50667e10 −0.239600 −0.119800 0.992798i \(-0.538225\pi\)
−0.119800 + 0.992798i \(0.538225\pi\)
\(252\) 9.15649e10 1.43030
\(253\) −1.31145e11 −2.01238
\(254\) −9.27425e10 −1.39806
\(255\) 3.34044e10 0.494735
\(256\) 2.66176e11 3.87338
\(257\) 9.16595e9 0.131063 0.0655313 0.997851i \(-0.479126\pi\)
0.0655313 + 0.997851i \(0.479126\pi\)
\(258\) 1.24620e11 1.75106
\(259\) −1.64785e11 −2.27545
\(260\) −6.14181e10 −0.833520
\(261\) −1.85652e10 −0.247638
\(262\) 1.04980e11 1.37641
\(263\) −8.74404e10 −1.12697 −0.563484 0.826127i \(-0.690539\pi\)
−0.563484 + 0.826127i \(0.690539\pi\)
\(264\) 2.72376e11 3.45105
\(265\) 6.01197e10 0.748877
\(266\) 5.60450e10 0.686388
\(267\) −2.41622e10 −0.290962
\(268\) 1.61239e11 1.90925
\(269\) 6.76776e10 0.788060 0.394030 0.919097i \(-0.371081\pi\)
0.394030 + 0.919097i \(0.371081\pi\)
\(270\) 1.46377e10 0.167624
\(271\) −5.83870e10 −0.657589 −0.328794 0.944402i \(-0.606642\pi\)
−0.328794 + 0.944402i \(0.606642\pi\)
\(272\) −6.93426e11 −7.68140
\(273\) 5.43137e10 0.591803
\(274\) −8.88955e10 −0.952801
\(275\) 3.24639e10 0.342297
\(276\) 1.82798e11 1.89619
\(277\) −8.27440e10 −0.844457 −0.422228 0.906489i \(-0.638752\pi\)
−0.422228 + 0.906489i \(0.638752\pi\)
\(278\) −1.33115e11 −1.33668
\(279\) −1.25345e10 −0.123848
\(280\) −2.46778e11 −2.39936
\(281\) 8.85508e10 0.847254 0.423627 0.905837i \(-0.360757\pi\)
0.423627 + 0.905837i \(0.360757\pi\)
\(282\) 3.89394e10 0.366664
\(283\) −7.43966e10 −0.689468 −0.344734 0.938700i \(-0.612031\pi\)
−0.344734 + 0.938700i \(0.612031\pi\)
\(284\) −1.43825e11 −1.31190
\(285\) 6.59750e9 0.0592349
\(286\) 2.51664e11 2.22420
\(287\) 6.19574e9 0.0539045
\(288\) −1.67938e11 −1.43841
\(289\) 3.16800e11 2.67144
\(290\) 7.79378e10 0.647079
\(291\) 1.06737e10 0.0872564
\(292\) −1.53822e11 −1.23822
\(293\) 1.79888e10 0.142593 0.0712963 0.997455i \(-0.477286\pi\)
0.0712963 + 0.997455i \(0.477286\pi\)
\(294\) 1.95884e11 1.52910
\(295\) −6.96592e10 −0.535524
\(296\) 6.83245e11 5.17325
\(297\) −4.41668e10 −0.329376
\(298\) −2.69581e11 −1.98024
\(299\) 1.08431e11 0.784571
\(300\) −4.52502e10 −0.322534
\(301\) 3.40681e11 2.39221
\(302\) −2.89529e11 −2.00290
\(303\) −5.17059e10 −0.352410
\(304\) −1.36955e11 −0.919698
\(305\) 3.51679e10 0.232700
\(306\) 1.90786e11 1.24394
\(307\) −7.90208e10 −0.507714 −0.253857 0.967242i \(-0.581699\pi\)
−0.253857 + 0.967242i \(0.581699\pi\)
\(308\) 1.15984e12 7.34381
\(309\) −1.18073e11 −0.736776
\(310\) 5.26208e10 0.323616
\(311\) −2.38546e11 −1.44594 −0.722971 0.690879i \(-0.757224\pi\)
−0.722971 + 0.690879i \(0.757224\pi\)
\(312\) −2.25200e11 −1.34547
\(313\) 2.01412e11 1.18614 0.593070 0.805151i \(-0.297916\pi\)
0.593070 + 0.805151i \(0.297916\pi\)
\(314\) 3.70878e11 2.15302
\(315\) 4.00160e10 0.229000
\(316\) 1.30070e11 0.733813
\(317\) −1.00180e11 −0.557202 −0.278601 0.960407i \(-0.589871\pi\)
−0.278601 + 0.960407i \(0.589871\pi\)
\(318\) 3.43369e11 1.88295
\(319\) −2.35163e11 −1.27149
\(320\) 3.68728e11 1.96576
\(321\) 7.27984e10 0.382692
\(322\) 6.78632e11 3.51790
\(323\) 8.59909e10 0.439583
\(324\) 6.15624e10 0.310358
\(325\) −2.68411e10 −0.133452
\(326\) −2.15972e11 −1.05905
\(327\) −1.79975e11 −0.870456
\(328\) −2.56893e10 −0.122552
\(329\) 1.06451e11 0.500918
\(330\) 1.85415e11 0.860661
\(331\) 2.46688e11 1.12959 0.564797 0.825230i \(-0.308954\pi\)
0.564797 + 0.825230i \(0.308954\pi\)
\(332\) −1.03238e12 −4.66356
\(333\) −1.10791e11 −0.493746
\(334\) −9.84519e10 −0.432878
\(335\) 7.04650e10 0.305684
\(336\) −8.30674e11 −3.55553
\(337\) 4.02837e11 1.70135 0.850676 0.525690i \(-0.176193\pi\)
0.850676 + 0.525690i \(0.176193\pi\)
\(338\) 2.59261e11 1.08047
\(339\) −1.04139e11 −0.428266
\(340\) −5.89785e11 −2.39353
\(341\) −1.58774e11 −0.635894
\(342\) 3.76811e10 0.148938
\(343\) 1.41707e11 0.552798
\(344\) −1.41256e12 −5.43870
\(345\) 7.98871e10 0.303592
\(346\) −6.16280e11 −2.31172
\(347\) −4.17462e11 −1.54573 −0.772866 0.634569i \(-0.781178\pi\)
−0.772866 + 0.634569i \(0.781178\pi\)
\(348\) 3.27786e11 1.19807
\(349\) −2.31672e10 −0.0835910 −0.0417955 0.999126i \(-0.513308\pi\)
−0.0417955 + 0.999126i \(0.513308\pi\)
\(350\) −1.67990e11 −0.598379
\(351\) 3.65171e10 0.128414
\(352\) −2.12726e12 −7.38548
\(353\) −3.81093e11 −1.30631 −0.653153 0.757226i \(-0.726554\pi\)
−0.653153 + 0.757226i \(0.726554\pi\)
\(354\) −3.97853e11 −1.34650
\(355\) −6.28549e10 −0.210045
\(356\) 4.26606e11 1.40767
\(357\) 5.21563e11 1.69942
\(358\) −6.28032e11 −2.02073
\(359\) 6.93513e10 0.220358 0.110179 0.993912i \(-0.464858\pi\)
0.110179 + 0.993912i \(0.464858\pi\)
\(360\) −1.65918e11 −0.520634
\(361\) 1.69836e10 0.0526316
\(362\) 4.58069e11 1.40198
\(363\) −3.68463e11 −1.11382
\(364\) −9.58959e11 −2.86315
\(365\) −6.72239e10 −0.198247
\(366\) 2.00859e11 0.585094
\(367\) 4.80006e11 1.38118 0.690588 0.723248i \(-0.257352\pi\)
0.690588 + 0.723248i \(0.257352\pi\)
\(368\) −1.65834e12 −4.71366
\(369\) 4.16562e9 0.0116966
\(370\) 4.65106e11 1.29016
\(371\) 9.38686e11 2.57240
\(372\) 2.21309e11 0.599178
\(373\) −1.22775e11 −0.328412 −0.164206 0.986426i \(-0.552506\pi\)
−0.164206 + 0.986426i \(0.552506\pi\)
\(374\) 2.41667e12 6.38699
\(375\) −1.97754e10 −0.0516398
\(376\) −4.41376e11 −1.13884
\(377\) 1.94433e11 0.495717
\(378\) 2.28548e11 0.575791
\(379\) 6.43989e11 1.60325 0.801626 0.597826i \(-0.203969\pi\)
0.801626 + 0.597826i \(0.203969\pi\)
\(380\) −1.16485e11 −0.286579
\(381\) −1.70461e11 −0.414440
\(382\) −5.07017e11 −1.21825
\(383\) −2.36644e11 −0.561953 −0.280977 0.959715i \(-0.590658\pi\)
−0.280977 + 0.959715i \(0.590658\pi\)
\(384\) 1.04442e12 2.45124
\(385\) 5.06879e11 1.17579
\(386\) −1.37305e12 −3.14806
\(387\) 2.29052e11 0.519082
\(388\) −1.88454e11 −0.422147
\(389\) 5.07462e11 1.12365 0.561824 0.827257i \(-0.310100\pi\)
0.561824 + 0.827257i \(0.310100\pi\)
\(390\) −1.53301e11 −0.335548
\(391\) 1.04124e12 2.25297
\(392\) −2.22033e12 −4.74931
\(393\) 1.92953e11 0.408023
\(394\) −1.63902e12 −3.42651
\(395\) 5.68436e10 0.117488
\(396\) 7.79805e11 1.59352
\(397\) 6.20976e7 0.000125464 0 6.27318e−5 1.00000i \(-0.499980\pi\)
6.27318e−5 1.00000i \(0.499980\pi\)
\(398\) −1.51052e12 −3.01754
\(399\) 1.03011e11 0.203472
\(400\) 4.10508e11 0.801774
\(401\) 1.33552e11 0.257929 0.128964 0.991649i \(-0.458835\pi\)
0.128964 + 0.991649i \(0.458835\pi\)
\(402\) 4.02455e11 0.768600
\(403\) 1.31274e11 0.247917
\(404\) 9.12916e11 1.70496
\(405\) 2.69042e10 0.0496904
\(406\) 1.21689e12 2.22272
\(407\) −1.40337e12 −2.53512
\(408\) −2.16255e12 −3.86363
\(409\) −9.15255e11 −1.61729 −0.808644 0.588299i \(-0.799798\pi\)
−0.808644 + 0.588299i \(0.799798\pi\)
\(410\) −1.74875e10 −0.0305634
\(411\) −1.63390e11 −0.282447
\(412\) 2.08468e12 3.56453
\(413\) −1.08763e12 −1.83953
\(414\) 4.56269e11 0.763343
\(415\) −4.51173e11 −0.746667
\(416\) 1.75882e12 2.87939
\(417\) −2.44666e11 −0.396243
\(418\) 4.77303e11 0.764717
\(419\) 1.07655e12 1.70636 0.853179 0.521618i \(-0.174671\pi\)
0.853179 + 0.521618i \(0.174671\pi\)
\(420\) −7.06520e11 −1.10790
\(421\) −6.95477e11 −1.07898 −0.539490 0.841992i \(-0.681383\pi\)
−0.539490 + 0.841992i \(0.681383\pi\)
\(422\) −3.38406e10 −0.0519437
\(423\) 7.15707e10 0.108693
\(424\) −3.89207e12 −5.84836
\(425\) −2.57750e11 −0.383220
\(426\) −3.58991e11 −0.528129
\(427\) 5.49098e11 0.799327
\(428\) −1.28532e12 −1.85146
\(429\) 4.62558e11 0.659339
\(430\) −9.61577e11 −1.35636
\(431\) 5.03589e11 0.702956 0.351478 0.936196i \(-0.385679\pi\)
0.351478 + 0.936196i \(0.385679\pi\)
\(432\) −5.58492e11 −0.771508
\(433\) 1.27865e12 1.74805 0.874027 0.485878i \(-0.161500\pi\)
0.874027 + 0.485878i \(0.161500\pi\)
\(434\) 8.21602e11 1.11162
\(435\) 1.43250e11 0.191819
\(436\) 3.17762e12 4.21127
\(437\) 2.05649e11 0.269749
\(438\) −3.83944e11 −0.498465
\(439\) −1.03893e12 −1.33505 −0.667524 0.744589i \(-0.732646\pi\)
−0.667524 + 0.744589i \(0.732646\pi\)
\(440\) −2.10167e12 −2.67317
\(441\) 3.60035e11 0.453284
\(442\) −1.99810e12 −2.49011
\(443\) 4.21624e11 0.520125 0.260063 0.965592i \(-0.416257\pi\)
0.260063 + 0.965592i \(0.416257\pi\)
\(444\) 1.95611e12 2.38875
\(445\) 1.86437e11 0.225378
\(446\) −4.62835e11 −0.553885
\(447\) −4.95491e11 −0.587019
\(448\) 5.75717e12 6.75240
\(449\) −3.73705e11 −0.433931 −0.216965 0.976179i \(-0.569616\pi\)
−0.216965 + 0.976179i \(0.569616\pi\)
\(450\) −1.12946e11 −0.129841
\(451\) 5.27655e10 0.0600559
\(452\) 1.83867e12 2.07195
\(453\) −5.32154e11 −0.593739
\(454\) 4.07446e11 0.450110
\(455\) −4.19087e11 −0.458409
\(456\) −4.27113e11 −0.462595
\(457\) −4.18561e11 −0.448886 −0.224443 0.974487i \(-0.572056\pi\)
−0.224443 + 0.974487i \(0.572056\pi\)
\(458\) −1.61610e12 −1.71622
\(459\) 3.50666e11 0.368754
\(460\) −1.41048e12 −1.46878
\(461\) 6.17190e11 0.636451 0.318225 0.948015i \(-0.396913\pi\)
0.318225 + 0.948015i \(0.396913\pi\)
\(462\) 2.89500e12 2.95638
\(463\) −2.24614e11 −0.227155 −0.113578 0.993529i \(-0.536231\pi\)
−0.113578 + 0.993529i \(0.536231\pi\)
\(464\) −2.97366e12 −2.97824
\(465\) 9.67172e10 0.0959324
\(466\) −1.20287e12 −1.18163
\(467\) −1.72081e12 −1.67419 −0.837097 0.547055i \(-0.815749\pi\)
−0.837097 + 0.547055i \(0.815749\pi\)
\(468\) −6.44743e11 −0.621269
\(469\) 1.10021e12 1.05002
\(470\) −3.00458e11 −0.284017
\(471\) 6.81674e11 0.638238
\(472\) 4.50964e12 4.18218
\(473\) 2.90139e12 2.66520
\(474\) 3.24658e11 0.295409
\(475\) −5.09066e10 −0.0458831
\(476\) −9.20868e12 −8.22179
\(477\) 6.31113e11 0.558180
\(478\) −8.54881e11 −0.748997
\(479\) 1.97449e12 1.71374 0.856872 0.515530i \(-0.172405\pi\)
0.856872 + 0.515530i \(0.172405\pi\)
\(480\) 1.29582e12 1.11419
\(481\) 1.16031e12 0.988373
\(482\) 2.89771e12 2.44536
\(483\) 1.24733e12 1.04284
\(484\) 6.50555e12 5.38865
\(485\) −8.23590e10 −0.0675885
\(486\) 1.53661e11 0.124940
\(487\) 4.83448e11 0.389466 0.194733 0.980856i \(-0.437616\pi\)
0.194733 + 0.980856i \(0.437616\pi\)
\(488\) −2.27672e12 −1.81727
\(489\) −3.96956e11 −0.313944
\(490\) −1.51145e12 −1.18443
\(491\) −1.62883e12 −1.26477 −0.632383 0.774656i \(-0.717923\pi\)
−0.632383 + 0.774656i \(0.717923\pi\)
\(492\) −7.35479e10 −0.0565884
\(493\) 1.86710e12 1.42350
\(494\) −3.94634e11 −0.298142
\(495\) 3.40793e11 0.255133
\(496\) −2.00771e12 −1.48947
\(497\) −9.81392e11 −0.721504
\(498\) −2.57684e12 −1.87739
\(499\) 4.01893e11 0.290174 0.145087 0.989419i \(-0.453654\pi\)
0.145087 + 0.989419i \(0.453654\pi\)
\(500\) 3.49153e11 0.249833
\(501\) −1.80955e11 −0.128322
\(502\) 6.63983e11 0.466649
\(503\) 2.23256e12 1.55506 0.777530 0.628846i \(-0.216472\pi\)
0.777530 + 0.628846i \(0.216472\pi\)
\(504\) −2.59058e12 −1.78838
\(505\) 3.98966e11 0.272976
\(506\) 5.77952e12 3.91935
\(507\) 4.76522e11 0.320293
\(508\) 3.00964e12 2.00506
\(509\) 1.43367e11 0.0946717 0.0473358 0.998879i \(-0.484927\pi\)
0.0473358 + 0.998879i \(0.484927\pi\)
\(510\) −1.47212e12 −0.963555
\(511\) −1.04961e12 −0.680978
\(512\) −5.12851e12 −3.29819
\(513\) 6.92579e10 0.0441511
\(514\) −4.03940e11 −0.255260
\(515\) 9.11053e11 0.570705
\(516\) −4.04413e12 −2.51132
\(517\) 9.06579e11 0.558082
\(518\) 7.26199e12 4.43171
\(519\) −1.13272e12 −0.685285
\(520\) 1.73766e12 1.04220
\(521\) −1.34420e12 −0.799270 −0.399635 0.916674i \(-0.630863\pi\)
−0.399635 + 0.916674i \(0.630863\pi\)
\(522\) 8.18160e11 0.482304
\(523\) −7.53431e10 −0.0440338 −0.0220169 0.999758i \(-0.507009\pi\)
−0.0220169 + 0.999758i \(0.507009\pi\)
\(524\) −3.40676e12 −1.97401
\(525\) −3.08765e11 −0.177383
\(526\) 3.85347e12 2.19490
\(527\) 1.26060e12 0.711916
\(528\) −7.07437e12 −3.96128
\(529\) 6.88987e11 0.382526
\(530\) −2.64945e12 −1.45853
\(531\) −7.31254e11 −0.399156
\(532\) −1.81875e12 −0.984399
\(533\) −4.36265e10 −0.0234141
\(534\) 1.06482e12 0.566683
\(535\) −5.61716e11 −0.296432
\(536\) −4.56181e12 −2.38724
\(537\) −1.15432e12 −0.599023
\(538\) −2.98252e12 −1.53484
\(539\) 4.56052e12 2.32737
\(540\) −4.75019e11 −0.240402
\(541\) −2.50299e12 −1.25624 −0.628118 0.778118i \(-0.716174\pi\)
−0.628118 + 0.778118i \(0.716174\pi\)
\(542\) 2.57309e12 1.28073
\(543\) 8.41931e11 0.415602
\(544\) 1.68896e13 8.26843
\(545\) 1.38870e12 0.674253
\(546\) −2.39358e12 −1.15261
\(547\) 2.91493e12 1.39215 0.696074 0.717970i \(-0.254929\pi\)
0.696074 + 0.717970i \(0.254929\pi\)
\(548\) 2.88480e12 1.36648
\(549\) 3.69179e11 0.173445
\(550\) −1.43067e12 −0.666665
\(551\) 3.68760e11 0.170436
\(552\) −5.17178e12 −2.37091
\(553\) 8.87535e11 0.403573
\(554\) 3.64650e12 1.64468
\(555\) 8.54866e11 0.382454
\(556\) 4.31981e12 1.91702
\(557\) 2.75181e12 1.21135 0.605676 0.795712i \(-0.292903\pi\)
0.605676 + 0.795712i \(0.292903\pi\)
\(558\) 5.52392e11 0.241209
\(559\) −2.39886e12 −1.03909
\(560\) 6.40952e12 2.75410
\(561\) 4.44185e12 1.89335
\(562\) −3.90240e12 −1.65013
\(563\) −1.38035e12 −0.579032 −0.289516 0.957173i \(-0.593494\pi\)
−0.289516 + 0.957173i \(0.593494\pi\)
\(564\) −1.26365e12 −0.525859
\(565\) 8.03539e11 0.331733
\(566\) 3.27863e12 1.34282
\(567\) 4.20072e11 0.170687
\(568\) 4.06914e12 1.64034
\(569\) −2.78819e12 −1.11511 −0.557555 0.830140i \(-0.688261\pi\)
−0.557555 + 0.830140i \(0.688261\pi\)
\(570\) −2.90749e11 −0.115367
\(571\) −4.21419e12 −1.65902 −0.829510 0.558491i \(-0.811380\pi\)
−0.829510 + 0.558491i \(0.811380\pi\)
\(572\) −8.16689e12 −3.18988
\(573\) −9.31898e11 −0.361137
\(574\) −2.73044e11 −0.104985
\(575\) −6.16413e11 −0.235162
\(576\) 3.87076e12 1.46519
\(577\) 3.24484e12 1.21872 0.609358 0.792895i \(-0.291427\pi\)
0.609358 + 0.792895i \(0.291427\pi\)
\(578\) −1.39613e13 −5.20295
\(579\) −2.52366e12 −0.933206
\(580\) −2.52921e12 −0.928023
\(581\) −7.04445e12 −2.56481
\(582\) −4.70387e11 −0.169942
\(583\) 7.99425e12 2.86595
\(584\) 4.35198e12 1.54821
\(585\) −2.81767e11 −0.0994694
\(586\) −7.92757e11 −0.277716
\(587\) −5.37315e11 −0.186792 −0.0933959 0.995629i \(-0.529772\pi\)
−0.0933959 + 0.995629i \(0.529772\pi\)
\(588\) −6.35674e12 −2.19299
\(589\) 2.48973e11 0.0852382
\(590\) 3.06985e12 1.04300
\(591\) −3.01252e12 −1.01575
\(592\) −1.77458e13 −5.93810
\(593\) 5.74122e12 1.90659 0.953296 0.302038i \(-0.0976670\pi\)
0.953296 + 0.302038i \(0.0976670\pi\)
\(594\) 1.94641e12 0.641499
\(595\) −4.02441e12 −1.31636
\(596\) 8.74836e12 2.84000
\(597\) −2.77634e12 −0.894517
\(598\) −4.77850e12 −1.52805
\(599\) 3.28237e12 1.04176 0.520880 0.853630i \(-0.325604\pi\)
0.520880 + 0.853630i \(0.325604\pi\)
\(600\) 1.28023e12 0.403281
\(601\) 9.39268e11 0.293666 0.146833 0.989161i \(-0.453092\pi\)
0.146833 + 0.989161i \(0.453092\pi\)
\(602\) −1.50137e13 −4.65912
\(603\) 7.39714e11 0.227843
\(604\) 9.39567e12 2.87251
\(605\) 2.84308e12 0.862759
\(606\) 2.27866e12 0.686361
\(607\) −4.30843e12 −1.28816 −0.644080 0.764958i \(-0.722760\pi\)
−0.644080 + 0.764958i \(0.722760\pi\)
\(608\) 3.33576e12 0.989984
\(609\) 2.23665e12 0.658901
\(610\) −1.54984e12 −0.453212
\(611\) −7.49559e11 −0.217581
\(612\) −6.19133e12 −1.78403
\(613\) −4.56018e12 −1.30440 −0.652198 0.758048i \(-0.726153\pi\)
−0.652198 + 0.758048i \(0.726153\pi\)
\(614\) 3.48242e12 0.988833
\(615\) −3.21421e10 −0.00906018
\(616\) −3.28146e13 −9.18236
\(617\) 2.46376e12 0.684408 0.342204 0.939626i \(-0.388827\pi\)
0.342204 + 0.939626i \(0.388827\pi\)
\(618\) 5.20341e12 1.43496
\(619\) −2.58119e12 −0.706663 −0.353332 0.935498i \(-0.614951\pi\)
−0.353332 + 0.935498i \(0.614951\pi\)
\(620\) −1.70763e12 −0.464121
\(621\) 8.38623e11 0.226284
\(622\) 1.05126e13 2.81614
\(623\) 2.91095e12 0.774175
\(624\) 5.84908e12 1.54439
\(625\) 1.52588e11 0.0400000
\(626\) −8.87615e12 −2.31015
\(627\) 8.77284e11 0.226692
\(628\) −1.20356e13 −3.08780
\(629\) 1.11422e13 2.83820
\(630\) −1.76349e12 −0.446006
\(631\) −1.98347e12 −0.498075 −0.249037 0.968494i \(-0.580114\pi\)
−0.249037 + 0.968494i \(0.580114\pi\)
\(632\) −3.67998e12 −0.917526
\(633\) −6.21991e10 −0.0153981
\(634\) 4.41487e12 1.08522
\(635\) 1.31528e12 0.321024
\(636\) −1.11429e13 −2.70048
\(637\) −3.77064e12 −0.907376
\(638\) 1.03636e13 2.47637
\(639\) −6.59825e11 −0.156558
\(640\) −8.05882e12 −1.89872
\(641\) −8.50685e12 −1.99025 −0.995125 0.0986171i \(-0.968558\pi\)
−0.995125 + 0.0986171i \(0.968558\pi\)
\(642\) −3.20820e12 −0.745338
\(643\) −3.12664e11 −0.0721321 −0.0360661 0.999349i \(-0.511483\pi\)
−0.0360661 + 0.999349i \(0.511483\pi\)
\(644\) −2.20227e13 −5.04527
\(645\) −1.76738e12 −0.402079
\(646\) −3.78959e12 −0.856141
\(647\) 3.49352e12 0.783779 0.391889 0.920012i \(-0.371822\pi\)
0.391889 + 0.920012i \(0.371822\pi\)
\(648\) −1.74174e12 −0.388057
\(649\) −9.26273e12 −2.04945
\(650\) 1.18288e12 0.259914
\(651\) 1.51010e12 0.329528
\(652\) 7.00863e12 1.51886
\(653\) 4.99413e12 1.07486 0.537429 0.843309i \(-0.319396\pi\)
0.537429 + 0.843309i \(0.319396\pi\)
\(654\) 7.93142e12 1.69532
\(655\) −1.48883e12 −0.316053
\(656\) 6.67224e11 0.140671
\(657\) −7.05690e11 −0.147764
\(658\) −4.69124e12 −0.975599
\(659\) 5.22410e12 1.07901 0.539507 0.841981i \(-0.318611\pi\)
0.539507 + 0.841981i \(0.318611\pi\)
\(660\) −6.01702e12 −1.23434
\(661\) 3.22164e12 0.656404 0.328202 0.944608i \(-0.393557\pi\)
0.328202 + 0.944608i \(0.393557\pi\)
\(662\) −1.08715e13 −2.20002
\(663\) −3.67252e12 −0.738165
\(664\) 2.92083e13 5.83110
\(665\) −7.94837e11 −0.157609
\(666\) 4.88250e12 0.961630
\(667\) 4.46520e12 0.873524
\(668\) 3.19492e12 0.620821
\(669\) −8.50692e11 −0.164193
\(670\) −3.10537e12 −0.595355
\(671\) 4.67635e12 0.890545
\(672\) 2.02325e13 3.82725
\(673\) 3.58337e12 0.673324 0.336662 0.941626i \(-0.390702\pi\)
0.336662 + 0.941626i \(0.390702\pi\)
\(674\) −1.77529e13 −3.31359
\(675\) −2.07594e11 −0.0384900
\(676\) −8.41343e12 −1.54958
\(677\) 1.53251e11 0.0280384 0.0140192 0.999902i \(-0.495537\pi\)
0.0140192 + 0.999902i \(0.495537\pi\)
\(678\) 4.58935e12 0.834099
\(679\) −1.28592e12 −0.232167
\(680\) 1.66864e13 2.99276
\(681\) 7.48887e11 0.133430
\(682\) 6.99710e12 1.23848
\(683\) 2.55365e12 0.449022 0.224511 0.974472i \(-0.427921\pi\)
0.224511 + 0.974472i \(0.427921\pi\)
\(684\) −1.22281e12 −0.213603
\(685\) 1.26073e12 0.218783
\(686\) −6.24496e12 −1.07664
\(687\) −2.97039e12 −0.508754
\(688\) 3.66882e13 6.24279
\(689\) −6.60964e12 −1.11735
\(690\) −3.52059e12 −0.591283
\(691\) 6.21812e12 1.03755 0.518773 0.854912i \(-0.326389\pi\)
0.518773 + 0.854912i \(0.326389\pi\)
\(692\) 1.99993e13 3.31541
\(693\) 5.32101e12 0.876385
\(694\) 1.83974e13 3.01050
\(695\) 1.88786e12 0.306928
\(696\) −9.27380e12 −1.49801
\(697\) −4.18936e11 −0.0672358
\(698\) 1.02097e12 0.162803
\(699\) −2.21087e12 −0.350281
\(700\) 5.45154e12 0.858179
\(701\) 9.91610e12 1.55099 0.775496 0.631352i \(-0.217500\pi\)
0.775496 + 0.631352i \(0.217500\pi\)
\(702\) −1.60929e12 −0.250102
\(703\) 2.20063e12 0.339820
\(704\) 4.90305e13 7.52297
\(705\) −5.52243e11 −0.0841936
\(706\) 1.67946e13 2.54419
\(707\) 6.22930e12 0.937673
\(708\) 1.29110e13 1.93112
\(709\) −1.02416e13 −1.52215 −0.761077 0.648662i \(-0.775329\pi\)
−0.761077 + 0.648662i \(0.775329\pi\)
\(710\) 2.76999e12 0.409087
\(711\) 5.96722e11 0.0875706
\(712\) −1.20697e13 −1.76009
\(713\) 3.01474e12 0.436865
\(714\) −2.29851e13 −3.30982
\(715\) −3.56912e12 −0.510722
\(716\) 2.03806e13 2.89807
\(717\) −1.57127e12 −0.222032
\(718\) −3.05629e12 −0.429175
\(719\) 7.10262e12 0.991148 0.495574 0.868566i \(-0.334958\pi\)
0.495574 + 0.868566i \(0.334958\pi\)
\(720\) 4.30935e12 0.597607
\(721\) 1.42248e13 1.96037
\(722\) −7.48459e11 −0.102506
\(723\) 5.32599e12 0.724900
\(724\) −1.48651e13 −2.01068
\(725\) −1.10532e12 −0.148583
\(726\) 1.62380e13 2.16929
\(727\) −2.62998e11 −0.0349179 −0.0174589 0.999848i \(-0.505558\pi\)
−0.0174589 + 0.999848i \(0.505558\pi\)
\(728\) 2.71311e13 3.57995
\(729\) 2.82430e11 0.0370370
\(730\) 2.96253e12 0.386109
\(731\) −2.30358e13 −2.98384
\(732\) −6.51819e12 −0.839126
\(733\) −4.85321e12 −0.620956 −0.310478 0.950580i \(-0.600489\pi\)
−0.310478 + 0.950580i \(0.600489\pi\)
\(734\) −2.11537e13 −2.69001
\(735\) −2.77804e12 −0.351112
\(736\) 4.03917e13 5.07390
\(737\) 9.36989e12 1.16985
\(738\) −1.83577e11 −0.0227806
\(739\) −1.32813e13 −1.63809 −0.819047 0.573726i \(-0.805497\pi\)
−0.819047 + 0.573726i \(0.805497\pi\)
\(740\) −1.50934e13 −1.85032
\(741\) −7.25338e11 −0.0883809
\(742\) −4.13675e13 −5.01005
\(743\) 5.32672e12 0.641224 0.320612 0.947211i \(-0.396111\pi\)
0.320612 + 0.947211i \(0.396111\pi\)
\(744\) −6.26133e12 −0.749184
\(745\) 3.82323e12 0.454703
\(746\) 5.41063e12 0.639622
\(747\) −4.73624e12 −0.556533
\(748\) −7.84250e13 −9.16004
\(749\) −8.77042e12 −1.01824
\(750\) 8.71494e11 0.100575
\(751\) −3.71999e12 −0.426738 −0.213369 0.976972i \(-0.568444\pi\)
−0.213369 + 0.976972i \(0.568444\pi\)
\(752\) 1.14638e13 1.30721
\(753\) 1.22040e12 0.138333
\(754\) −8.56859e12 −0.965468
\(755\) 4.10613e12 0.459908
\(756\) −7.41676e12 −0.825783
\(757\) −7.96330e12 −0.881376 −0.440688 0.897660i \(-0.645266\pi\)
−0.440688 + 0.897660i \(0.645266\pi\)
\(758\) −2.83803e13 −3.12253
\(759\) 1.06228e13 1.16185
\(760\) 3.29563e12 0.358325
\(761\) −6.92944e12 −0.748975 −0.374488 0.927232i \(-0.622181\pi\)
−0.374488 + 0.927232i \(0.622181\pi\)
\(762\) 7.51214e12 0.807172
\(763\) 2.16826e13 2.31606
\(764\) 1.64535e13 1.74718
\(765\) −2.70575e12 −0.285635
\(766\) 1.04288e13 1.09447
\(767\) 7.65842e12 0.799024
\(768\) −2.15603e13 −2.23630
\(769\) −4.93485e12 −0.508868 −0.254434 0.967090i \(-0.581889\pi\)
−0.254434 + 0.967090i \(0.581889\pi\)
\(770\) −2.23380e13 −2.29000
\(771\) −7.42442e11 −0.0756690
\(772\) 4.45576e13 4.51486
\(773\) −6.28021e12 −0.632654 −0.316327 0.948650i \(-0.602450\pi\)
−0.316327 + 0.948650i \(0.602450\pi\)
\(774\) −1.00943e13 −1.01097
\(775\) −7.46274e11 −0.0743089
\(776\) 5.33181e12 0.527833
\(777\) 1.33475e13 1.31373
\(778\) −2.23636e13 −2.18844
\(779\) −8.27416e10 −0.00805018
\(780\) 4.97487e12 0.481233
\(781\) −8.35795e12 −0.803841
\(782\) −4.58870e13 −4.38792
\(783\) 1.50378e12 0.142974
\(784\) 5.76682e13 5.45147
\(785\) −5.25983e12 −0.494377
\(786\) −8.50335e12 −0.794673
\(787\) 8.58465e12 0.797694 0.398847 0.917018i \(-0.369410\pi\)
0.398847 + 0.917018i \(0.369410\pi\)
\(788\) 5.31889e13 4.91420
\(789\) 7.08268e12 0.650655
\(790\) −2.50508e12 −0.228823
\(791\) 1.25462e13 1.13951
\(792\) −2.20625e13 −1.99247
\(793\) −3.86640e12 −0.347198
\(794\) −2.73662e9 −0.000244355 0
\(795\) −4.86970e12 −0.432364
\(796\) 4.90189e13 4.32768
\(797\) 2.12794e12 0.186808 0.0934042 0.995628i \(-0.470225\pi\)
0.0934042 + 0.995628i \(0.470225\pi\)
\(798\) −4.53965e12 −0.396286
\(799\) −7.19786e12 −0.624802
\(800\) −9.99862e12 −0.863048
\(801\) 1.95714e12 0.167987
\(802\) −5.88557e12 −0.502347
\(803\) −8.93891e12 −0.758690
\(804\) −1.30603e13 −1.10231
\(805\) −9.62444e12 −0.807782
\(806\) −5.78520e12 −0.482848
\(807\) −5.48188e12 −0.454987
\(808\) −2.58285e13 −2.13181
\(809\) 9.93643e10 0.00815571 0.00407786 0.999992i \(-0.498702\pi\)
0.00407786 + 0.999992i \(0.498702\pi\)
\(810\) −1.18566e12 −0.0967780
\(811\) −1.11695e13 −0.906648 −0.453324 0.891346i \(-0.649762\pi\)
−0.453324 + 0.891346i \(0.649762\pi\)
\(812\) −3.94901e13 −3.18776
\(813\) 4.72935e12 0.379659
\(814\) 6.18462e13 4.93745
\(815\) 3.06293e12 0.243180
\(816\) 5.61675e13 4.43486
\(817\) −4.54966e12 −0.357256
\(818\) 4.03349e13 3.14986
\(819\) −4.39941e12 −0.341678
\(820\) 5.67499e11 0.0438332
\(821\) 7.51912e12 0.577594 0.288797 0.957390i \(-0.406745\pi\)
0.288797 + 0.957390i \(0.406745\pi\)
\(822\) 7.20053e12 0.550100
\(823\) −1.69757e13 −1.28982 −0.644909 0.764259i \(-0.723105\pi\)
−0.644909 + 0.764259i \(0.723105\pi\)
\(824\) −5.89803e13 −4.45692
\(825\) −2.62958e12 −0.197625
\(826\) 4.79315e13 3.58270
\(827\) −7.37899e11 −0.0548558 −0.0274279 0.999624i \(-0.508732\pi\)
−0.0274279 + 0.999624i \(0.508732\pi\)
\(828\) −1.48067e13 −1.09477
\(829\) −2.54814e12 −0.187382 −0.0936910 0.995601i \(-0.529867\pi\)
−0.0936910 + 0.995601i \(0.529867\pi\)
\(830\) 1.98830e13 1.45422
\(831\) 6.70226e12 0.487547
\(832\) −4.05384e13 −2.93300
\(833\) −3.62087e13 −2.60561
\(834\) 1.07823e13 0.771730
\(835\) 1.39626e12 0.0993976
\(836\) −1.54893e13 −1.09674
\(837\) 1.01530e12 0.0715038
\(838\) −4.74430e13 −3.32334
\(839\) 5.11715e12 0.356533 0.178266 0.983982i \(-0.442951\pi\)
0.178266 + 0.983982i \(0.442951\pi\)
\(840\) 1.99890e13 1.38527
\(841\) −6.50036e12 −0.448080
\(842\) 3.06494e13 2.10144
\(843\) −7.17261e12 −0.489163
\(844\) 1.09818e12 0.0744962
\(845\) −3.67686e12 −0.248098
\(846\) −3.15409e12 −0.211694
\(847\) 4.43907e13 2.96358
\(848\) 1.01088e14 6.71301
\(849\) 6.02613e12 0.398065
\(850\) 1.13589e13 0.746367
\(851\) 2.66468e13 1.74165
\(852\) 1.16498e13 0.757428
\(853\) −1.35299e13 −0.875030 −0.437515 0.899211i \(-0.644141\pi\)
−0.437515 + 0.899211i \(0.644141\pi\)
\(854\) −2.41985e13 −1.55679
\(855\) −5.34398e11 −0.0341993
\(856\) 3.63647e13 2.31498
\(857\) −1.35882e13 −0.860498 −0.430249 0.902710i \(-0.641574\pi\)
−0.430249 + 0.902710i \(0.641574\pi\)
\(858\) −2.03848e13 −1.28414
\(859\) 5.82107e12 0.364782 0.182391 0.983226i \(-0.441616\pi\)
0.182391 + 0.983226i \(0.441616\pi\)
\(860\) 3.12047e13 1.94526
\(861\) −5.01855e11 −0.0311218
\(862\) −2.21930e13 −1.36909
\(863\) 1.30995e13 0.803910 0.401955 0.915659i \(-0.368331\pi\)
0.401955 + 0.915659i \(0.368331\pi\)
\(864\) 1.36030e13 0.830468
\(865\) 8.74015e12 0.530819
\(866\) −5.63494e13 −3.40454
\(867\) −2.56608e13 −1.54236
\(868\) −2.66623e13 −1.59426
\(869\) 7.55862e12 0.449628
\(870\) −6.31297e12 −0.373591
\(871\) −7.74701e12 −0.456092
\(872\) −8.99022e13 −5.26558
\(873\) −8.64572e11 −0.0503775
\(874\) −9.06286e12 −0.525368
\(875\) 2.38245e12 0.137400
\(876\) 1.24596e13 0.714885
\(877\) 2.33967e13 1.33554 0.667770 0.744368i \(-0.267249\pi\)
0.667770 + 0.744368i \(0.267249\pi\)
\(878\) 4.57853e13 2.60016
\(879\) −1.45709e12 −0.0823259
\(880\) 5.45862e13 3.06839
\(881\) −1.53702e13 −0.859583 −0.429791 0.902928i \(-0.641413\pi\)
−0.429791 + 0.902928i \(0.641413\pi\)
\(882\) −1.58666e13 −0.882825
\(883\) 2.05085e13 1.13530 0.567650 0.823270i \(-0.307853\pi\)
0.567650 + 0.823270i \(0.307853\pi\)
\(884\) 6.48417e13 3.57124
\(885\) 5.64239e12 0.309185
\(886\) −1.85808e13 −1.01301
\(887\) −2.57846e13 −1.39863 −0.699316 0.714812i \(-0.746512\pi\)
−0.699316 + 0.714812i \(0.746512\pi\)
\(888\) −5.53428e13 −2.98678
\(889\) 2.05363e13 1.10272
\(890\) −8.21620e12 −0.438951
\(891\) 3.57751e12 0.190165
\(892\) 1.50197e13 0.794366
\(893\) −1.42161e12 −0.0748080
\(894\) 2.18361e13 1.14329
\(895\) 8.90682e12 0.464001
\(896\) −1.25827e14 −6.52212
\(897\) −8.78289e12 −0.452972
\(898\) 1.64690e13 0.845132
\(899\) 5.40590e12 0.276025
\(900\) 3.66527e12 0.186215
\(901\) −6.34710e13 −3.20859
\(902\) −2.32536e12 −0.116966
\(903\) −2.75952e13 −1.38114
\(904\) −5.20200e13 −2.59067
\(905\) −6.49638e12 −0.321924
\(906\) 2.34518e13 1.15638
\(907\) −2.96929e13 −1.45687 −0.728434 0.685115i \(-0.759752\pi\)
−0.728434 + 0.685115i \(0.759752\pi\)
\(908\) −1.32223e13 −0.645536
\(909\) 4.18818e12 0.203464
\(910\) 1.84690e13 0.892806
\(911\) −1.24331e13 −0.598063 −0.299032 0.954243i \(-0.596664\pi\)
−0.299032 + 0.954243i \(0.596664\pi\)
\(912\) 1.10933e13 0.530988
\(913\) −5.99935e13 −2.85750
\(914\) 1.84458e13 0.874259
\(915\) −2.84860e12 −0.134350
\(916\) 5.24450e13 2.46136
\(917\) −2.32461e13 −1.08564
\(918\) −1.54537e13 −0.718192
\(919\) −2.39965e13 −1.10976 −0.554880 0.831931i \(-0.687236\pi\)
−0.554880 + 0.831931i \(0.687236\pi\)
\(920\) 3.99057e13 1.83650
\(921\) 6.40069e12 0.293129
\(922\) −2.71993e13 −1.23956
\(923\) 6.91034e12 0.313395
\(924\) −9.39474e13 −4.23995
\(925\) −6.59619e12 −0.296248
\(926\) 9.89865e12 0.442412
\(927\) 9.56387e12 0.425378
\(928\) 7.24284e13 3.20585
\(929\) 2.41460e13 1.06359 0.531795 0.846873i \(-0.321518\pi\)
0.531795 + 0.846873i \(0.321518\pi\)
\(930\) −4.26229e12 −0.186840
\(931\) −7.15136e12 −0.311972
\(932\) 3.90350e13 1.69466
\(933\) 1.93222e13 0.834814
\(934\) 7.58352e13 3.26069
\(935\) −3.42735e13 −1.46658
\(936\) 1.82412e13 0.776806
\(937\) 4.35824e13 1.84707 0.923535 0.383514i \(-0.125286\pi\)
0.923535 + 0.383514i \(0.125286\pi\)
\(938\) −4.84860e13 −2.04505
\(939\) −1.63144e13 −0.684819
\(940\) 9.75036e12 0.407329
\(941\) 4.07354e12 0.169363 0.0846814 0.996408i \(-0.473013\pi\)
0.0846814 + 0.996408i \(0.473013\pi\)
\(942\) −3.00411e13 −1.24304
\(943\) −1.00189e12 −0.0412590
\(944\) −1.17128e14 −4.80050
\(945\) −3.24130e12 −0.132213
\(946\) −1.27863e14 −5.19080
\(947\) 2.11050e12 0.0852729 0.0426365 0.999091i \(-0.486424\pi\)
0.0426365 + 0.999091i \(0.486424\pi\)
\(948\) −1.05357e13 −0.423667
\(949\) 7.39068e12 0.295792
\(950\) 2.24344e12 0.0893629
\(951\) 8.11454e12 0.321700
\(952\) 2.60535e14 10.2801
\(953\) −9.09273e10 −0.00357089 −0.00178544 0.999998i \(-0.500568\pi\)
−0.00178544 + 0.999998i \(0.500568\pi\)
\(954\) −2.78129e13 −1.08712
\(955\) 7.19057e12 0.279736
\(956\) 2.77423e13 1.07419
\(957\) 1.90482e13 0.734093
\(958\) −8.70151e13 −3.33772
\(959\) 1.96845e13 0.751520
\(960\) −2.98669e13 −1.13493
\(961\) −2.27898e13 −0.861955
\(962\) −5.11344e13 −1.92497
\(963\) −5.89667e12 −0.220947
\(964\) −9.40353e13 −3.50707
\(965\) 1.94727e13 0.722858
\(966\) −5.49692e13 −2.03106
\(967\) −5.07933e13 −1.86805 −0.934023 0.357212i \(-0.883727\pi\)
−0.934023 + 0.357212i \(0.883727\pi\)
\(968\) −1.84057e14 −6.73772
\(969\) −6.96527e12 −0.253794
\(970\) 3.62953e12 0.131637
\(971\) 4.16593e13 1.50392 0.751961 0.659207i \(-0.229108\pi\)
0.751961 + 0.659207i \(0.229108\pi\)
\(972\) −4.98656e12 −0.179185
\(973\) 2.94763e13 1.05430
\(974\) −2.13054e13 −0.758532
\(975\) 2.17413e12 0.0770486
\(976\) 5.91328e13 2.08595
\(977\) 3.99517e13 1.40285 0.701423 0.712745i \(-0.252548\pi\)
0.701423 + 0.712745i \(0.252548\pi\)
\(978\) 1.74937e13 0.611444
\(979\) 2.47909e13 0.862522
\(980\) 4.90489e13 1.69868
\(981\) 1.45780e13 0.502558
\(982\) 7.17821e13 2.46328
\(983\) 1.13120e13 0.386411 0.193205 0.981158i \(-0.438112\pi\)
0.193205 + 0.981158i \(0.438112\pi\)
\(984\) 2.08084e12 0.0707555
\(985\) 2.32448e13 0.786797
\(986\) −8.22823e13 −2.77243
\(987\) −8.62251e12 −0.289205
\(988\) 1.28065e13 0.427587
\(989\) −5.50905e13 −1.83102
\(990\) −1.50186e13 −0.496903
\(991\) 2.77307e13 0.913333 0.456666 0.889638i \(-0.349043\pi\)
0.456666 + 0.889638i \(0.349043\pi\)
\(992\) 4.89011e13 1.60330
\(993\) −1.99818e13 −0.652172
\(994\) 4.32496e13 1.40522
\(995\) 2.14224e13 0.692890
\(996\) 8.36227e13 2.69251
\(997\) −3.77438e13 −1.20981 −0.604906 0.796297i \(-0.706789\pi\)
−0.604906 + 0.796297i \(0.706789\pi\)
\(998\) −1.77113e13 −0.565149
\(999\) 8.97404e12 0.285065
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.10.a.h.1.1 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.10.a.h.1.1 15 1.1 even 1 trivial