Properties

Label 285.10.a.f
Level $285$
Weight $10$
Character orbit 285.a
Self dual yes
Analytic conductor $146.785$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.785213307\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - x^{13} - 5365 x^{12} + 7107 x^{11} + 10970098 x^{10} - 19024208 x^{9} - 10608934432 x^{8} + \cdots - 480881506516992 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{8}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{13}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - 81 q^{3} + (\beta_{2} - \beta_1 + 255) q^{4} - 625 q^{5} + 81 \beta_1 q^{6} + (\beta_{5} - 23 \beta_1 + 934) q^{7} + ( - \beta_{3} - \beta_{2} - 250 \beta_1 + 464) q^{8} + 6561 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} - 81 q^{3} + (\beta_{2} - \beta_1 + 255) q^{4} - 625 q^{5} + 81 \beta_1 q^{6} + (\beta_{5} - 23 \beta_1 + 934) q^{7} + ( - \beta_{3} - \beta_{2} - 250 \beta_1 + 464) q^{8} + 6561 q^{9} + 625 \beta_1 q^{10} + (\beta_{7} + \beta_{5} - 15 \beta_{2} + \cdots + 3135) q^{11}+ \cdots + (6561 \beta_{7} + 6561 \beta_{5} + \cdots + 20568735) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - q^{2} - 1134 q^{3} + 3563 q^{4} - 8750 q^{5} + 81 q^{6} + 13054 q^{7} + 6249 q^{8} + 91854 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 14 q - q^{2} - 1134 q^{3} + 3563 q^{4} - 8750 q^{5} + 81 q^{6} + 13054 q^{7} + 6249 q^{8} + 91854 q^{9} + 625 q^{10} + 43520 q^{11} - 288603 q^{12} + 256834 q^{13} + 250610 q^{14} + 708750 q^{15} + 866291 q^{16} - 91412 q^{17} - 6561 q^{18} + 1824494 q^{19} - 2226875 q^{20} - 1057374 q^{21} + 5028672 q^{22} - 1629286 q^{23} - 506169 q^{24} + 5468750 q^{25} - 5525738 q^{26} - 7440174 q^{27} + 2214066 q^{28} - 3136160 q^{29} - 50625 q^{30} + 216848 q^{31} - 5019923 q^{32} - 3525120 q^{33} + 14499560 q^{34} - 8158750 q^{35} + 23376843 q^{36} + 29450026 q^{37} - 130321 q^{38} - 20803554 q^{39} - 3905625 q^{40} - 18243760 q^{41} - 20299410 q^{42} + 26051662 q^{43} - 66833140 q^{44} - 57408750 q^{45} - 87479176 q^{46} + 15959554 q^{47} - 70169571 q^{48} + 120608310 q^{49} - 390625 q^{50} + 7404372 q^{51} - 76766782 q^{52} + 24009130 q^{53} + 531441 q^{54} - 27200000 q^{55} - 248644798 q^{56} - 147784014 q^{57} - 208603522 q^{58} - 51606384 q^{59} + 180376875 q^{60} - 267404032 q^{61} + 211868546 q^{62} + 85647294 q^{63} - 647618425 q^{64} - 160521250 q^{65} - 407322432 q^{66} + 354061992 q^{67} - 690026380 q^{68} + 131972166 q^{69} - 156631250 q^{70} + 178030792 q^{71} + 40999689 q^{72} + 571450504 q^{73} + 406967766 q^{74} - 442968750 q^{75} + 464333723 q^{76} + 922830092 q^{77} + 447584778 q^{78} + 456688676 q^{79} - 541431875 q^{80} + 602654094 q^{81} + 1477406200 q^{82} + 275098162 q^{83} - 179339346 q^{84} + 57132500 q^{85} - 909539740 q^{86} + 254028960 q^{87} + 1278025456 q^{88} - 2005727664 q^{89} + 4100625 q^{90} - 181709276 q^{91} + 209371504 q^{92} - 17564688 q^{93} - 617421584 q^{94} - 1140308750 q^{95} + 406613763 q^{96} + 1606885598 q^{97} - 3483053209 q^{98} + 285534720 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{14} - x^{13} - 5365 x^{12} + 7107 x^{11} + 10970098 x^{10} - 19024208 x^{9} - 10608934432 x^{8} + \cdots - 480881506516992 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu - 767 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 1275\nu + 1231 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 49\!\cdots\!11 \nu^{13} + \cdots - 31\!\cdots\!92 ) / 68\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 15\!\cdots\!57 \nu^{13} + \cdots + 38\!\cdots\!04 ) / 68\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 10\!\cdots\!77 \nu^{13} + \cdots - 35\!\cdots\!44 ) / 68\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 40\!\cdots\!97 \nu^{13} + \cdots + 42\!\cdots\!16 ) / 21\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 66\!\cdots\!49 \nu^{13} + \cdots - 13\!\cdots\!28 ) / 34\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 35\!\cdots\!01 \nu^{13} + \cdots - 22\!\cdots\!28 ) / 13\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 90\!\cdots\!71 \nu^{13} + \cdots - 30\!\cdots\!12 ) / 31\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 59\!\cdots\!87 \nu^{13} + \cdots + 13\!\cdots\!64 ) / 17\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 63\!\cdots\!51 \nu^{13} + \cdots + 14\!\cdots\!28 ) / 17\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 57\!\cdots\!87 \nu^{13} + \cdots - 16\!\cdots\!64 ) / 68\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - \beta _1 + 767 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 1274\beta _1 - 464 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - \beta_{13} + \beta_{12} + 2 \beta_{11} + \beta_{10} - 2 \beta_{9} - \beta_{8} + 4 \beta_{7} + \cdots + 977878 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2 \beta_{13} - 9 \beta_{12} - 24 \beta_{11} + 30 \beta_{10} - 13 \beta_{9} - 26 \beta_{8} + \cdots - 591005 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 2893 \beta_{13} + 2508 \beta_{12} + 3898 \beta_{11} + 3269 \beta_{10} - 5125 \beta_{9} + \cdots + 1384970143 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 2972 \beta_{13} - 13756 \beta_{12} - 88220 \beta_{11} + 96868 \beta_{10} - 43060 \beta_{9} + \cdots - 1075101020 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 6541337 \beta_{13} + 4959033 \beta_{12} + 5964170 \beta_{11} + 7716633 \beta_{10} + \cdots + 2077546046810 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 21173394 \beta_{13} - 8087749 \beta_{12} - 224900256 \beta_{11} + 219745618 \beta_{10} + \cdots - 2140755470997 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 13343039329 \beta_{13} + 8969110260 \beta_{12} + 8366862002 \beta_{11} + 16090591321 \beta_{10} + \cdots + 32\!\cdots\!19 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 62448351928 \beta_{13} + 18820392872 \beta_{12} - 490975237460 \beta_{11} + 436660818656 \beta_{10} + \cdots - 39\!\cdots\!72 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 25707542042197 \beta_{13} + 15550593556265 \beta_{12} + 11224301212978 \beta_{11} + \cdots + 51\!\cdots\!46 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 143949912659366 \beta_{13} + 87449312953599 \beta_{12} - 986142552578248 \beta_{11} + \cdots - 66\!\cdots\!41 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
41.5454
36.7045
33.9313
27.3479
16.1367
8.32294
0.187735
−0.198399
−2.26189
−21.3757
−28.9110
−30.3072
−38.9237
−41.1985
−41.5454 −81.0000 1214.02 −625.000 3365.17 6093.78 −29165.5 6561.00 25965.8
1.2 −36.7045 −81.0000 835.221 −625.000 2973.07 −10828.2 −11863.7 6561.00 22940.3
1.3 −33.9313 −81.0000 639.331 −625.000 2748.43 9880.04 −4320.49 6561.00 21207.0
1.4 −27.3479 −81.0000 235.909 −625.000 2215.18 −4985.88 7550.51 6561.00 17092.5
1.5 −16.1367 −81.0000 −251.607 −625.000 1307.07 −1176.10 12322.1 6561.00 10085.4
1.6 −8.32294 −81.0000 −442.729 −625.000 674.158 −7295.26 7946.15 6561.00 5201.84
1.7 −0.187735 −81.0000 −511.965 −625.000 15.2065 905.223 192.234 6561.00 117.334
1.8 0.198399 −81.0000 −511.961 −625.000 −16.0704 11709.0 −203.153 6561.00 −124.000
1.9 2.26189 −81.0000 −506.884 −625.000 −183.213 −10.0609 −2304.60 6561.00 −1413.68
1.10 21.3757 −81.0000 −55.0809 −625.000 −1731.43 6106.61 −12121.7 6561.00 −13359.8
1.11 28.9110 −81.0000 323.844 −625.000 −2341.79 −5747.14 −5439.76 6561.00 −18069.4
1.12 30.3072 −81.0000 406.529 −625.000 −2454.89 9233.36 −3196.55 6561.00 −18942.0
1.13 38.9237 −81.0000 1003.06 −625.000 −3152.82 −5904.55 19113.8 6561.00 −24327.3
1.14 41.1985 −81.0000 1185.32 −625.000 −3337.08 5073.19 27739.7 6561.00 −25749.1
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.14
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 285.10.a.f 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
285.10.a.f 14 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{14} + T_{2}^{13} - 5365 T_{2}^{12} - 7107 T_{2}^{11} + 10970098 T_{2}^{10} + \cdots - 480881506516992 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(285))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{14} + \cdots - 480881506516992 \) Copy content Toggle raw display
$3$ \( (T + 81)^{14} \) Copy content Toggle raw display
$5$ \( (T + 625)^{14} \) Copy content Toggle raw display
$7$ \( T^{14} + \cdots - 28\!\cdots\!84 \) Copy content Toggle raw display
$11$ \( T^{14} + \cdots - 10\!\cdots\!96 \) Copy content Toggle raw display
$13$ \( T^{14} + \cdots - 87\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{14} + \cdots + 41\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( (T - 130321)^{14} \) Copy content Toggle raw display
$23$ \( T^{14} + \cdots + 55\!\cdots\!44 \) Copy content Toggle raw display
$29$ \( T^{14} + \cdots + 21\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{14} + \cdots - 17\!\cdots\!60 \) Copy content Toggle raw display
$37$ \( T^{14} + \cdots - 53\!\cdots\!96 \) Copy content Toggle raw display
$41$ \( T^{14} + \cdots + 18\!\cdots\!80 \) Copy content Toggle raw display
$43$ \( T^{14} + \cdots - 13\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{14} + \cdots - 22\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( T^{14} + \cdots + 22\!\cdots\!88 \) Copy content Toggle raw display
$59$ \( T^{14} + \cdots - 37\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{14} + \cdots + 40\!\cdots\!40 \) Copy content Toggle raw display
$67$ \( T^{14} + \cdots + 22\!\cdots\!80 \) Copy content Toggle raw display
$71$ \( T^{14} + \cdots - 15\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{14} + \cdots + 20\!\cdots\!84 \) Copy content Toggle raw display
$79$ \( T^{14} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{14} + \cdots + 59\!\cdots\!20 \) Copy content Toggle raw display
$89$ \( T^{14} + \cdots + 59\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{14} + \cdots + 13\!\cdots\!88 \) Copy content Toggle raw display
show more
show less