Properties

Label 285.10.a.d
Level $285$
Weight $10$
Character orbit 285.a
Self dual yes
Analytic conductor $146.785$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.785213307\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} - 4398 x^{10} + 11376 x^{9} + 7070146 x^{8} - 15274638 x^{7} - 5114407260 x^{6} + \cdots + 43\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{3}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 3) q^{2} + 81 q^{3} + (\beta_{2} - 6 \beta_1 + 231) q^{4} + 625 q^{5} + (81 \beta_1 - 243) q^{6} + (\beta_{5} - \beta_{2} - 52 \beta_1 - 412) q^{7} + ( - \beta_{5} + \beta_{4} + \cdots - 3400) q^{8}+ \cdots + 6561 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 - 3) q^{2} + 81 q^{3} + (\beta_{2} - 6 \beta_1 + 231) q^{4} + 625 q^{5} + (81 \beta_1 - 243) q^{6} + (\beta_{5} - \beta_{2} - 52 \beta_1 - 412) q^{7} + ( - \beta_{5} + \beta_{4} + \cdots - 3400) q^{8}+ \cdots + (6561 \beta_{11} + 6561 \beta_{9} + \cdots - 33178977) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 33 q^{2} + 972 q^{3} + 2751 q^{4} + 7500 q^{5} - 2673 q^{6} - 5100 q^{7} - 40215 q^{8} + 78732 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 33 q^{2} + 972 q^{3} + 2751 q^{4} + 7500 q^{5} - 2673 q^{6} - 5100 q^{7} - 40215 q^{8} + 78732 q^{9} - 20625 q^{10} - 60416 q^{11} + 222831 q^{12} - 164042 q^{13} - 444762 q^{14} + 607500 q^{15} + 319475 q^{16} - 552834 q^{17} - 216513 q^{18} - 1563852 q^{19} + 1719375 q^{20} - 413100 q^{21} + 708846 q^{22} - 2749174 q^{23} - 3257415 q^{24} + 4687500 q^{25} - 5159376 q^{26} + 6377292 q^{27} - 2379170 q^{28} - 3415632 q^{29} - 1670625 q^{30} - 9822574 q^{31} - 22282623 q^{32} - 4893696 q^{33} + 5214442 q^{34} - 3187500 q^{35} + 18049311 q^{36} - 24559054 q^{37} + 4300593 q^{38} - 13287402 q^{39} - 25134375 q^{40} - 35856950 q^{41} - 36025722 q^{42} - 73839462 q^{43} - 88153054 q^{44} + 49207500 q^{45} - 19966000 q^{46} - 134699358 q^{47} + 25877475 q^{48} - 64331236 q^{49} - 12890625 q^{50} - 44779554 q^{51} - 290325860 q^{52} - 74807846 q^{53} - 17537553 q^{54} - 37760000 q^{55} - 403278618 q^{56} - 126672012 q^{57} - 377474064 q^{58} - 294192102 q^{59} + 139269375 q^{60} - 184407884 q^{61} - 356900784 q^{62} - 33461100 q^{63} + 169573219 q^{64} - 102526250 q^{65} + 57416526 q^{66} - 427627864 q^{67} - 56755242 q^{68} - 222683094 q^{69} - 277976250 q^{70} - 488904216 q^{71} - 263850615 q^{72} - 184702472 q^{73} - 1424419204 q^{74} + 379687500 q^{75} - 358513071 q^{76} - 827371672 q^{77} - 417909456 q^{78} - 620531838 q^{79} + 199671875 q^{80} + 516560652 q^{81} + 100137664 q^{82} - 32273124 q^{83} - 192712770 q^{84} - 345521250 q^{85} + 1147824298 q^{86} - 276666192 q^{87} + 2717542210 q^{88} + 473499162 q^{89} - 135320625 q^{90} - 1430236924 q^{91} + 1920565904 q^{92} - 795628494 q^{93} + 2483643504 q^{94} - 977407500 q^{95} - 1804892463 q^{96} + 318965234 q^{97} + 2863543931 q^{98} - 396389376 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 3 x^{11} - 4398 x^{10} + 11376 x^{9} + 7070146 x^{8} - 15274638 x^{7} - 5114407260 x^{6} + \cdots + 43\!\cdots\!00 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 734 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 60\!\cdots\!33 \nu^{11} + \cdots + 98\!\cdots\!80 ) / 66\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 25\!\cdots\!72 \nu^{11} + \cdots - 10\!\cdots\!20 ) / 33\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 25\!\cdots\!72 \nu^{11} + \cdots - 12\!\cdots\!60 ) / 33\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 81\!\cdots\!91 \nu^{11} + \cdots + 17\!\cdots\!88 ) / 66\!\cdots\!96 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 16\!\cdots\!08 \nu^{11} + \cdots - 78\!\cdots\!60 ) / 11\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 16\!\cdots\!11 \nu^{11} + \cdots - 24\!\cdots\!60 ) / 33\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 48\!\cdots\!39 \nu^{11} + \cdots + 97\!\cdots\!40 ) / 83\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 20\!\cdots\!57 \nu^{11} + \cdots + 40\!\cdots\!60 ) / 22\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 38\!\cdots\!33 \nu^{11} + \cdots - 82\!\cdots\!40 ) / 16\!\cdots\!40 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 734 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{5} + \beta_{4} + \beta_{2} + 1184\beta _1 + 161 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 10 \beta_{10} - 4 \beta_{9} + 10 \beta_{8} - 6 \beta_{7} + 30 \beta_{6} - 4 \beta_{5} + 14 \beta_{4} + \cdots + 869182 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 272 \beta_{11} + 314 \beta_{10} - 196 \beta_{9} + 342 \beta_{8} - 106 \beta_{7} + 274 \beta_{6} + \cdots + 459699 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 1800 \beta_{11} - 20936 \beta_{10} - 6312 \beta_{9} + 29496 \beta_{8} - 11576 \beta_{7} + \cdots + 1192208620 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 814672 \beta_{11} + 979580 \beta_{10} - 602248 \beta_{9} + 1029620 \beta_{8} - 476428 \beta_{7} + \cdots + 1318783089 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 6298704 \beta_{11} - 33653574 \beta_{10} - 4914508 \beta_{9} + 64963350 \beta_{8} - 18138650 \beta_{7} + \cdots + 1771384672930 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 1796504560 \beta_{11} + 2222145966 \beta_{10} - 1349736652 \beta_{9} + 2260779634 \beta_{8} + \cdots + 3425843328143 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 15881066552 \beta_{11} - 49671714164 \beta_{10} + 1717261456 \beta_{9} + 128958154260 \beta_{8} + \cdots + 27\!\cdots\!56 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 3526759027120 \beta_{11} + 4435915245424 \beta_{10} - 2666403632272 \beta_{9} + 4419288994480 \beta_{8} + \cdots + 79\!\cdots\!01 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−40.7797
−34.2245
−28.9288
−22.0115
−12.3423
−5.36255
6.42527
11.5013
26.4167
26.9112
33.7980
41.5969
−43.7797 81.0000 1404.66 625.000 −3546.16 6872.55 −39080.6 6561.00 −27362.3
1.2 −37.2245 81.0000 873.663 625.000 −3015.18 −2357.55 −13462.7 6561.00 −23265.3
1.3 −31.9288 81.0000 507.448 625.000 −2586.23 −632.496 145.335 6561.00 −19955.5
1.4 −25.0115 81.0000 113.577 625.000 −2025.93 −7116.10 9965.17 6561.00 −15632.2
1.5 −15.3423 81.0000 −276.614 625.000 −1242.73 8224.35 12099.1 6561.00 −9588.93
1.6 −8.36255 81.0000 −442.068 625.000 −677.366 1660.91 7978.44 6561.00 −5226.59
1.7 3.42527 81.0000 −500.268 625.000 277.446 −1060.52 −3467.29 6561.00 2140.79
1.8 8.50131 81.0000 −439.728 625.000 688.606 −8602.42 −8090.93 6561.00 5313.32
1.9 23.4167 81.0000 36.3418 625.000 1896.75 2524.82 −11138.3 6561.00 14635.4
1.10 23.9112 81.0000 59.7445 625.000 1936.81 7881.01 −10814.0 6561.00 14944.5
1.11 30.7980 81.0000 436.517 625.000 2494.64 −2782.02 −2324.71 6561.00 19248.8
1.12 38.5969 81.0000 977.722 625.000 3126.35 −9712.55 17975.4 6561.00 24123.1
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.12
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 285.10.a.d 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
285.10.a.d 12 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{12} + 33 T_{2}^{11} - 3903 T_{2}^{10} - 116109 T_{2}^{9} + 5622838 T_{2}^{8} + \cdots + 32\!\cdots\!12 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(285))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} + \cdots + 32\!\cdots\!12 \) Copy content Toggle raw display
$3$ \( (T - 81)^{12} \) Copy content Toggle raw display
$5$ \( (T - 625)^{12} \) Copy content Toggle raw display
$7$ \( T^{12} + \cdots - 48\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( T^{12} + \cdots - 32\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{12} + \cdots - 12\!\cdots\!64 \) Copy content Toggle raw display
$17$ \( T^{12} + \cdots + 45\!\cdots\!88 \) Copy content Toggle raw display
$19$ \( (T + 130321)^{12} \) Copy content Toggle raw display
$23$ \( T^{12} + \cdots + 55\!\cdots\!44 \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots + 40\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{12} + \cdots - 27\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{12} + \cdots + 31\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 66\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots - 52\!\cdots\!20 \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots + 19\!\cdots\!08 \) Copy content Toggle raw display
$53$ \( T^{12} + \cdots + 85\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 28\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots + 36\!\cdots\!24 \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots - 80\!\cdots\!88 \) Copy content Toggle raw display
$71$ \( T^{12} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 99\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots - 88\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots - 28\!\cdots\!60 \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots - 33\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
show more
show less