Properties

Label 285.10.a.c
Level $285$
Weight $10$
Character orbit 285.a
Self dual yes
Analytic conductor $146.785$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,10,Mod(1,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.785213307\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} - 4398 x^{10} + 4080 x^{9} + 7026370 x^{8} + 7294322 x^{7} - 5023445596 x^{6} + \cdots + 49\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{13}\cdot 3^{6}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 3) q^{2} - 81 q^{3} + (\beta_{2} - 3 \beta_1 + 230) q^{4} + 625 q^{5} + ( - 81 \beta_1 + 243) q^{6} + (\beta_{8} - 2 \beta_{2} - 24 \beta_1 - 282) q^{7} + (\beta_{3} - 7 \beta_{2} + 190 \beta_1 - 1575) q^{8} + 6561 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 - 3) q^{2} - 81 q^{3} + (\beta_{2} - 3 \beta_1 + 230) q^{4} + 625 q^{5} + ( - 81 \beta_1 + 243) q^{6} + (\beta_{8} - 2 \beta_{2} - 24 \beta_1 - 282) q^{7} + (\beta_{3} - 7 \beta_{2} + 190 \beta_1 - 1575) q^{8} + 6561 q^{9} + (625 \beta_1 - 1875) q^{10} + (\beta_{9} + \beta_{8} - \beta_{7} + \cdots - 713) q^{11}+ \cdots + (6561 \beta_{9} + 6561 \beta_{8} + \cdots - 4677993) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 33 q^{2} - 972 q^{3} + 2751 q^{4} + 7500 q^{5} + 2673 q^{6} - 3450 q^{7} - 18327 q^{8} + 78732 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 33 q^{2} - 972 q^{3} + 2751 q^{4} + 7500 q^{5} + 2673 q^{6} - 3450 q^{7} - 18327 q^{8} + 78732 q^{9} - 20625 q^{10} - 8180 q^{11} - 222831 q^{12} - 54754 q^{13} - 198168 q^{14} - 607500 q^{15} + 319475 q^{16} + 622056 q^{17} - 216513 q^{18} + 1563852 q^{19} + 1719375 q^{20} + 279450 q^{21} + 1080046 q^{22} - 260950 q^{23} + 1484487 q^{24} + 4687500 q^{25} + 138408 q^{26} - 6377292 q^{27} - 10403256 q^{28} - 13341236 q^{29} + 1670625 q^{30} - 25146168 q^{31} - 20499967 q^{32} + 662580 q^{33} - 35204664 q^{34} - 2156250 q^{35} + 18049311 q^{36} - 13452262 q^{37} - 4300593 q^{38} + 4435074 q^{39} - 11454375 q^{40} - 15407528 q^{41} + 16051608 q^{42} - 9479442 q^{43} - 19754122 q^{44} + 49207500 q^{45} - 40375204 q^{46} + 14425082 q^{47} - 25877475 q^{48} - 11054488 q^{49} - 12890625 q^{50} - 50386536 q^{51} + 41921168 q^{52} - 49133618 q^{53} + 17537553 q^{54} - 5112500 q^{55} - 95483884 q^{56} - 126672012 q^{57} + 237527692 q^{58} - 88347684 q^{59} - 139269375 q^{60} - 178983832 q^{61} + 299493054 q^{62} - 22635450 q^{63} + 342342499 q^{64} - 34221250 q^{65} - 87483726 q^{66} - 11418912 q^{67} + 369530944 q^{68} + 21136950 q^{69} - 123855000 q^{70} - 175745456 q^{71} - 120243447 q^{72} + 216614468 q^{73} + 183691428 q^{74} - 379687500 q^{75} + 358513071 q^{76} + 605840856 q^{77} - 11211048 q^{78} - 125678224 q^{79} + 199671875 q^{80} + 516560652 q^{81} + 857111058 q^{82} + 759016846 q^{83} + 842663736 q^{84} + 388785000 q^{85} + 290528982 q^{86} + 1080640116 q^{87} + 2351936450 q^{88} + 308917100 q^{89} - 135320625 q^{90} + 609006592 q^{91} + 3006293692 q^{92} + 2036839608 q^{93} + 840979428 q^{94} + 977407500 q^{95} + 1660497327 q^{96} + 565359698 q^{97} - 348280833 q^{98} - 53668980 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 3 x^{11} - 4398 x^{10} + 4080 x^{9} + 7026370 x^{8} + 7294322 x^{7} - 5023445596 x^{6} + \cdots + 49\!\cdots\!00 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3\nu - 733 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 2\nu^{2} - 1208\nu - 511 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 16\!\cdots\!87 \nu^{11} + \cdots - 12\!\cdots\!00 ) / 23\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 37\!\cdots\!57 \nu^{11} + \cdots + 16\!\cdots\!00 ) / 23\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 64\!\cdots\!53 \nu^{11} + \cdots + 23\!\cdots\!00 ) / 11\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 14\!\cdots\!77 \nu^{11} + \cdots - 13\!\cdots\!00 ) / 23\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 89\!\cdots\!61 \nu^{11} + \cdots - 17\!\cdots\!00 ) / 11\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 19\!\cdots\!87 \nu^{11} + \cdots - 12\!\cdots\!00 ) / 23\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 41\!\cdots\!21 \nu^{11} + \cdots + 12\!\cdots\!00 ) / 23\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 53\!\cdots\!09 \nu^{11} + \cdots - 28\!\cdots\!00 ) / 23\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3\beta _1 + 733 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 2\beta_{2} + 1214\beta _1 + 1977 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 8 \beta_{11} - 10 \beta_{10} - 4 \beta_{9} + 9 \beta_{8} + 6 \beta_{7} + 13 \beta_{6} - 4 \beta_{5} + \cdots + 889061 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 16 \beta_{11} - 174 \beta_{10} - 108 \beta_{9} - 181 \beta_{8} + 2 \beta_{7} + 39 \beta_{6} + \cdots + 4477443 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 19040 \beta_{11} - 23520 \beta_{10} - 12624 \beta_{9} + 23604 \beta_{8} + 19240 \beta_{7} + \cdots + 1273776211 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 78656 \beta_{11} - 430772 \beta_{10} - 281592 \beta_{9} - 288086 \beta_{8} + 32652 \beta_{7} + \cdots + 9236613561 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 35476472 \beta_{11} - 44749286 \beta_{10} - 30683692 \beta_{9} + 48869527 \beta_{8} + \cdots + 1955414213881 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 214410992 \beta_{11} - 833125658 \beta_{10} - 598042548 \beta_{9} - 240067127 \beta_{8} + \cdots + 18668768175903 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 61607399824 \beta_{11} - 79944882156 \beta_{10} - 65393752120 \beta_{9} + 93786784746 \beta_{8} + \cdots + 31\!\cdots\!71 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 482806042272 \beta_{11} - 1514333547008 \beta_{10} - 1211990053344 \beta_{9} + 99195125208 \beta_{8} + \cdots + 37\!\cdots\!01 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−39.7851
−35.8200
−23.3522
−21.0754
−14.0719
−10.1882
3.54971
14.8734
21.3302
28.1327
36.9825
42.4242
−42.7851 −81.0000 1318.56 625.000 3465.59 −1551.27 −34508.7 6561.00 −26740.7
1.2 −38.8200 −81.0000 994.993 625.000 3144.42 2821.42 −18749.8 6561.00 −24262.5
1.3 −26.3522 −81.0000 182.438 625.000 2134.53 −1882.26 8684.68 6561.00 −16470.1
1.4 −24.0754 −81.0000 67.6236 625.000 1950.11 −10502.2 10698.5 6561.00 −15047.1
1.5 −17.0719 −81.0000 −220.549 625.000 1382.83 11804.8 12506.0 6561.00 −10670.0
1.6 −13.1882 −81.0000 −338.072 625.000 1068.24 296.534 11210.9 6561.00 −8242.61
1.7 0.549710 −81.0000 −511.698 625.000 −44.5265 3867.71 −562.737 6561.00 343.569
1.8 11.8734 −81.0000 −371.022 625.000 −961.747 −8400.74 −10484.5 6561.00 7420.89
1.9 18.3302 −81.0000 −176.005 625.000 −1484.74 8938.51 −12611.2 6561.00 11456.3
1.10 25.1327 −81.0000 119.655 625.000 −2035.75 116.881 −9860.71 6561.00 15708.0
1.11 33.9825 −81.0000 642.811 625.000 −2752.58 −5887.61 4445.28 6561.00 21239.1
1.12 39.4242 −81.0000 1042.27 625.000 −3193.36 −3071.79 20905.3 6561.00 24640.1
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.12
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 285.10.a.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
285.10.a.c 12 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{12} + 33 T_{2}^{11} - 3903 T_{2}^{10} - 123405 T_{2}^{9} + 5382070 T_{2}^{8} + \cdots + 955735809196032 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(285))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} + \cdots + 955735809196032 \) Copy content Toggle raw display
$3$ \( (T + 81)^{12} \) Copy content Toggle raw display
$5$ \( (T - 625)^{12} \) Copy content Toggle raw display
$7$ \( T^{12} + \cdots + 18\!\cdots\!08 \) Copy content Toggle raw display
$11$ \( T^{12} + \cdots + 16\!\cdots\!08 \) Copy content Toggle raw display
$13$ \( T^{12} + \cdots - 95\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{12} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( (T - 130321)^{12} \) Copy content Toggle raw display
$23$ \( T^{12} + \cdots - 16\!\cdots\!08 \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots + 53\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{12} + \cdots - 39\!\cdots\!80 \) Copy content Toggle raw display
$37$ \( T^{12} + \cdots - 51\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 72\!\cdots\!20 \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots - 46\!\cdots\!88 \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots - 20\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{12} + \cdots - 19\!\cdots\!12 \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 87\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots - 55\!\cdots\!20 \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots - 17\!\cdots\!80 \) Copy content Toggle raw display
$71$ \( T^{12} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 25\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 30\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots - 18\!\cdots\!40 \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 12\!\cdots\!44 \) Copy content Toggle raw display
show more
show less