Defining parameters
| Level: | \( N \) | \(=\) | \( 2842 = 2 \cdot 7^{2} \cdot 29 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2842.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 29 \) | ||
| Sturm bound: | \(840\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2842))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 436 | 97 | 339 |
| Cusp forms | 405 | 97 | 308 |
| Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(7\) | \(29\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(50\) | \(15\) | \(35\) | \(47\) | \(15\) | \(32\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(58\) | \(11\) | \(47\) | \(54\) | \(11\) | \(43\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(59\) | \(10\) | \(49\) | \(55\) | \(10\) | \(45\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(51\) | \(13\) | \(38\) | \(47\) | \(13\) | \(34\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(52\) | \(15\) | \(37\) | \(48\) | \(15\) | \(33\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(56\) | \(7\) | \(49\) | \(52\) | \(7\) | \(45\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(57\) | \(10\) | \(47\) | \(53\) | \(10\) | \(43\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(53\) | \(16\) | \(37\) | \(49\) | \(16\) | \(33\) | \(4\) | \(0\) | \(4\) | |||
| Plus space | \(+\) | \(214\) | \(45\) | \(169\) | \(199\) | \(45\) | \(154\) | \(15\) | \(0\) | \(15\) | |||||
| Minus space | \(-\) | \(222\) | \(52\) | \(170\) | \(206\) | \(52\) | \(154\) | \(16\) | \(0\) | \(16\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2842))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2842))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2842)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(58))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(203))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(406))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1421))\)\(^{\oplus 2}\)