Properties

Label 2816.2.c.m.1409.1
Level $2816$
Weight $2$
Character 2816.1409
Analytic conductor $22.486$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2816,2,Mod(1409,2816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2816, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2816.1409");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2816 = 2^{8} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2816.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4858732092\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 352)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1409.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2816.1409
Dual form 2816.2.c.m.1409.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} -1.00000i q^{5} +4.00000 q^{7} +2.00000 q^{9} +1.00000i q^{11} -2.00000i q^{13} -1.00000 q^{15} +2.00000i q^{19} -4.00000i q^{21} +9.00000 q^{23} +4.00000 q^{25} -5.00000i q^{27} +4.00000i q^{29} -5.00000 q^{31} +1.00000 q^{33} -4.00000i q^{35} +9.00000i q^{37} -2.00000 q^{39} -2.00000 q^{41} -6.00000i q^{43} -2.00000i q^{45} +4.00000 q^{47} +9.00000 q^{49} +6.00000i q^{53} +1.00000 q^{55} +2.00000 q^{57} -5.00000i q^{59} +8.00000 q^{63} -2.00000 q^{65} +13.0000i q^{67} -9.00000i q^{69} -1.00000 q^{71} -14.0000 q^{73} -4.00000i q^{75} +4.00000i q^{77} +10.0000 q^{79} +1.00000 q^{81} -14.0000i q^{83} +4.00000 q^{87} +13.0000 q^{89} -8.00000i q^{91} +5.00000i q^{93} +2.00000 q^{95} -19.0000 q^{97} +2.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{7} + 4 q^{9} - 2 q^{15} + 18 q^{23} + 8 q^{25} - 10 q^{31} + 2 q^{33} - 4 q^{39} - 4 q^{41} + 8 q^{47} + 18 q^{49} + 2 q^{55} + 4 q^{57} + 16 q^{63} - 4 q^{65} - 2 q^{71} - 28 q^{73} + 20 q^{79}+ \cdots - 38 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2816\mathbb{Z}\right)^\times\).

\(n\) \(1025\) \(1541\) \(2047\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i −0.957427 0.288675i \(-0.906785\pi\)
0.957427 0.288675i \(-0.0932147\pi\)
\(4\) 0 0
\(5\) − 1.00000i − 0.447214i −0.974679 0.223607i \(-0.928217\pi\)
0.974679 0.223607i \(-0.0717831\pi\)
\(6\) 0 0
\(7\) 4.00000 1.51186 0.755929 0.654654i \(-0.227186\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 0 0
\(9\) 2.00000 0.666667
\(10\) 0 0
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) − 2.00000i − 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 2.00000i 0.458831i 0.973329 + 0.229416i \(0.0736815\pi\)
−0.973329 + 0.229416i \(0.926318\pi\)
\(20\) 0 0
\(21\) − 4.00000i − 0.872872i
\(22\) 0 0
\(23\) 9.00000 1.87663 0.938315 0.345782i \(-0.112386\pi\)
0.938315 + 0.345782i \(0.112386\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) − 5.00000i − 0.962250i
\(28\) 0 0
\(29\) 4.00000i 0.742781i 0.928477 + 0.371391i \(0.121119\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 0 0
\(31\) −5.00000 −0.898027 −0.449013 0.893525i \(-0.648224\pi\)
−0.449013 + 0.893525i \(0.648224\pi\)
\(32\) 0 0
\(33\) 1.00000 0.174078
\(34\) 0 0
\(35\) − 4.00000i − 0.676123i
\(36\) 0 0
\(37\) 9.00000i 1.47959i 0.672832 + 0.739795i \(0.265078\pi\)
−0.672832 + 0.739795i \(0.734922\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) − 6.00000i − 0.914991i −0.889212 0.457496i \(-0.848747\pi\)
0.889212 0.457496i \(-0.151253\pi\)
\(44\) 0 0
\(45\) − 2.00000i − 0.298142i
\(46\) 0 0
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) 0 0
\(59\) − 5.00000i − 0.650945i −0.945552 0.325472i \(-0.894477\pi\)
0.945552 0.325472i \(-0.105523\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 8.00000 1.00791
\(64\) 0 0
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) 13.0000i 1.58820i 0.607785 + 0.794101i \(0.292058\pi\)
−0.607785 + 0.794101i \(0.707942\pi\)
\(68\) 0 0
\(69\) − 9.00000i − 1.08347i
\(70\) 0 0
\(71\) −1.00000 −0.118678 −0.0593391 0.998238i \(-0.518899\pi\)
−0.0593391 + 0.998238i \(0.518899\pi\)
\(72\) 0 0
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 0 0
\(75\) − 4.00000i − 0.461880i
\(76\) 0 0
\(77\) 4.00000i 0.455842i
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 14.0000i − 1.53670i −0.640030 0.768350i \(-0.721078\pi\)
0.640030 0.768350i \(-0.278922\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 4.00000 0.428845
\(88\) 0 0
\(89\) 13.0000 1.37800 0.688999 0.724763i \(-0.258051\pi\)
0.688999 + 0.724763i \(0.258051\pi\)
\(90\) 0 0
\(91\) − 8.00000i − 0.838628i
\(92\) 0 0
\(93\) 5.00000i 0.518476i
\(94\) 0 0
\(95\) 2.00000 0.205196
\(96\) 0 0
\(97\) −19.0000 −1.92916 −0.964579 0.263795i \(-0.915026\pi\)
−0.964579 + 0.263795i \(0.915026\pi\)
\(98\) 0 0
\(99\) 2.00000i 0.201008i
\(100\) 0 0
\(101\) 12.0000i 1.19404i 0.802225 + 0.597022i \(0.203650\pi\)
−0.802225 + 0.597022i \(0.796350\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) −4.00000 −0.390360
\(106\) 0 0
\(107\) 8.00000i 0.773389i 0.922208 + 0.386695i \(0.126383\pi\)
−0.922208 + 0.386695i \(0.873617\pi\)
\(108\) 0 0
\(109\) 10.0000i 0.957826i 0.877862 + 0.478913i \(0.158969\pi\)
−0.877862 + 0.478913i \(0.841031\pi\)
\(110\) 0 0
\(111\) 9.00000 0.854242
\(112\) 0 0
\(113\) −7.00000 −0.658505 −0.329252 0.944242i \(-0.606797\pi\)
−0.329252 + 0.944242i \(0.606797\pi\)
\(114\) 0 0
\(115\) − 9.00000i − 0.839254i
\(116\) 0 0
\(117\) − 4.00000i − 0.369800i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 2.00000i 0.180334i
\(124\) 0 0
\(125\) − 9.00000i − 0.804984i
\(126\) 0 0
\(127\) −2.00000 −0.177471 −0.0887357 0.996055i \(-0.528283\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) 0 0
\(129\) −6.00000 −0.528271
\(130\) 0 0
\(131\) − 16.0000i − 1.39793i −0.715158 0.698963i \(-0.753645\pi\)
0.715158 0.698963i \(-0.246355\pi\)
\(132\) 0 0
\(133\) 8.00000i 0.693688i
\(134\) 0 0
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) −13.0000 −1.11066 −0.555332 0.831628i \(-0.687409\pi\)
−0.555332 + 0.831628i \(0.687409\pi\)
\(138\) 0 0
\(139\) − 16.0000i − 1.35710i −0.734553 0.678551i \(-0.762608\pi\)
0.734553 0.678551i \(-0.237392\pi\)
\(140\) 0 0
\(141\) − 4.00000i − 0.336861i
\(142\) 0 0
\(143\) 2.00000 0.167248
\(144\) 0 0
\(145\) 4.00000 0.332182
\(146\) 0 0
\(147\) − 9.00000i − 0.742307i
\(148\) 0 0
\(149\) − 12.0000i − 0.983078i −0.870855 0.491539i \(-0.836434\pi\)
0.870855 0.491539i \(-0.163566\pi\)
\(150\) 0 0
\(151\) 14.0000 1.13930 0.569652 0.821886i \(-0.307078\pi\)
0.569652 + 0.821886i \(0.307078\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.00000i 0.401610i
\(156\) 0 0
\(157\) 13.0000i 1.03751i 0.854922 + 0.518756i \(0.173605\pi\)
−0.854922 + 0.518756i \(0.826395\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 36.0000 2.83720
\(162\) 0 0
\(163\) − 20.0000i − 1.56652i −0.621694 0.783260i \(-0.713555\pi\)
0.621694 0.783260i \(-0.286445\pi\)
\(164\) 0 0
\(165\) − 1.00000i − 0.0778499i
\(166\) 0 0
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 4.00000i 0.305888i
\(172\) 0 0
\(173\) − 22.0000i − 1.67263i −0.548250 0.836315i \(-0.684706\pi\)
0.548250 0.836315i \(-0.315294\pi\)
\(174\) 0 0
\(175\) 16.0000 1.20949
\(176\) 0 0
\(177\) −5.00000 −0.375823
\(178\) 0 0
\(179\) − 11.0000i − 0.822179i −0.911595 0.411089i \(-0.865148\pi\)
0.911595 0.411089i \(-0.134852\pi\)
\(180\) 0 0
\(181\) − 11.0000i − 0.817624i −0.912619 0.408812i \(-0.865943\pi\)
0.912619 0.408812i \(-0.134057\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 9.00000 0.661693
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) − 20.0000i − 1.45479i
\(190\) 0 0
\(191\) −15.0000 −1.08536 −0.542681 0.839939i \(-0.682591\pi\)
−0.542681 + 0.839939i \(0.682591\pi\)
\(192\) 0 0
\(193\) −12.0000 −0.863779 −0.431889 0.901927i \(-0.642153\pi\)
−0.431889 + 0.901927i \(0.642153\pi\)
\(194\) 0 0
\(195\) 2.00000i 0.143223i
\(196\) 0 0
\(197\) − 22.0000i − 1.56744i −0.621117 0.783718i \(-0.713321\pi\)
0.621117 0.783718i \(-0.286679\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 13.0000 0.916949
\(202\) 0 0
\(203\) 16.0000i 1.12298i
\(204\) 0 0
\(205\) 2.00000i 0.139686i
\(206\) 0 0
\(207\) 18.0000 1.25109
\(208\) 0 0
\(209\) −2.00000 −0.138343
\(210\) 0 0
\(211\) 12.0000i 0.826114i 0.910705 + 0.413057i \(0.135539\pi\)
−0.910705 + 0.413057i \(0.864461\pi\)
\(212\) 0 0
\(213\) 1.00000i 0.0685189i
\(214\) 0 0
\(215\) −6.00000 −0.409197
\(216\) 0 0
\(217\) −20.0000 −1.35769
\(218\) 0 0
\(219\) 14.0000i 0.946032i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −25.0000 −1.67412 −0.837062 0.547108i \(-0.815729\pi\)
−0.837062 + 0.547108i \(0.815729\pi\)
\(224\) 0 0
\(225\) 8.00000 0.533333
\(226\) 0 0
\(227\) − 24.0000i − 1.59294i −0.604681 0.796468i \(-0.706699\pi\)
0.604681 0.796468i \(-0.293301\pi\)
\(228\) 0 0
\(229\) 9.00000i 0.594737i 0.954763 + 0.297368i \(0.0961089\pi\)
−0.954763 + 0.297368i \(0.903891\pi\)
\(230\) 0 0
\(231\) 4.00000 0.263181
\(232\) 0 0
\(233\) 12.0000 0.786146 0.393073 0.919507i \(-0.371412\pi\)
0.393073 + 0.919507i \(0.371412\pi\)
\(234\) 0 0
\(235\) − 4.00000i − 0.260931i
\(236\) 0 0
\(237\) − 10.0000i − 0.649570i
\(238\) 0 0
\(239\) 18.0000 1.16432 0.582162 0.813073i \(-0.302207\pi\)
0.582162 + 0.813073i \(0.302207\pi\)
\(240\) 0 0
\(241\) −4.00000 −0.257663 −0.128831 0.991667i \(-0.541123\pi\)
−0.128831 + 0.991667i \(0.541123\pi\)
\(242\) 0 0
\(243\) − 16.0000i − 1.02640i
\(244\) 0 0
\(245\) − 9.00000i − 0.574989i
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 0 0
\(249\) −14.0000 −0.887214
\(250\) 0 0
\(251\) − 17.0000i − 1.07303i −0.843891 0.536515i \(-0.819740\pi\)
0.843891 0.536515i \(-0.180260\pi\)
\(252\) 0 0
\(253\) 9.00000i 0.565825i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) 36.0000i 2.23693i
\(260\) 0 0
\(261\) 8.00000i 0.495188i
\(262\) 0 0
\(263\) −4.00000 −0.246651 −0.123325 0.992366i \(-0.539356\pi\)
−0.123325 + 0.992366i \(0.539356\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) − 13.0000i − 0.795587i
\(268\) 0 0
\(269\) 14.0000i 0.853595i 0.904347 + 0.426798i \(0.140358\pi\)
−0.904347 + 0.426798i \(0.859642\pi\)
\(270\) 0 0
\(271\) −10.0000 −0.607457 −0.303728 0.952759i \(-0.598232\pi\)
−0.303728 + 0.952759i \(0.598232\pi\)
\(272\) 0 0
\(273\) −8.00000 −0.484182
\(274\) 0 0
\(275\) 4.00000i 0.241209i
\(276\) 0 0
\(277\) 14.0000i 0.841178i 0.907251 + 0.420589i \(0.138177\pi\)
−0.907251 + 0.420589i \(0.861823\pi\)
\(278\) 0 0
\(279\) −10.0000 −0.598684
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 8.00000i 0.475551i 0.971320 + 0.237775i \(0.0764182\pi\)
−0.971320 + 0.237775i \(0.923582\pi\)
\(284\) 0 0
\(285\) − 2.00000i − 0.118470i
\(286\) 0 0
\(287\) −8.00000 −0.472225
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 19.0000i 1.11380i
\(292\) 0 0
\(293\) 10.0000i 0.584206i 0.956387 + 0.292103i \(0.0943550\pi\)
−0.956387 + 0.292103i \(0.905645\pi\)
\(294\) 0 0
\(295\) −5.00000 −0.291111
\(296\) 0 0
\(297\) 5.00000 0.290129
\(298\) 0 0
\(299\) − 18.0000i − 1.04097i
\(300\) 0 0
\(301\) − 24.0000i − 1.38334i
\(302\) 0 0
\(303\) 12.0000 0.689382
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 34.0000i 1.94048i 0.242140 + 0.970241i \(0.422151\pi\)
−0.242140 + 0.970241i \(0.577849\pi\)
\(308\) 0 0
\(309\) 8.00000i 0.455104i
\(310\) 0 0
\(311\) 16.0000 0.907277 0.453638 0.891186i \(-0.350126\pi\)
0.453638 + 0.891186i \(0.350126\pi\)
\(312\) 0 0
\(313\) −7.00000 −0.395663 −0.197832 0.980236i \(-0.563390\pi\)
−0.197832 + 0.980236i \(0.563390\pi\)
\(314\) 0 0
\(315\) − 8.00000i − 0.450749i
\(316\) 0 0
\(317\) 9.00000i 0.505490i 0.967533 + 0.252745i \(0.0813334\pi\)
−0.967533 + 0.252745i \(0.918667\pi\)
\(318\) 0 0
\(319\) −4.00000 −0.223957
\(320\) 0 0
\(321\) 8.00000 0.446516
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) − 8.00000i − 0.443760i
\(326\) 0 0
\(327\) 10.0000 0.553001
\(328\) 0 0
\(329\) 16.0000 0.882109
\(330\) 0 0
\(331\) 13.0000i 0.714545i 0.934000 + 0.357272i \(0.116293\pi\)
−0.934000 + 0.357272i \(0.883707\pi\)
\(332\) 0 0
\(333\) 18.0000i 0.986394i
\(334\) 0 0
\(335\) 13.0000 0.710266
\(336\) 0 0
\(337\) 12.0000 0.653682 0.326841 0.945079i \(-0.394016\pi\)
0.326841 + 0.945079i \(0.394016\pi\)
\(338\) 0 0
\(339\) 7.00000i 0.380188i
\(340\) 0 0
\(341\) − 5.00000i − 0.270765i
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 0 0
\(345\) −9.00000 −0.484544
\(346\) 0 0
\(347\) − 10.0000i − 0.536828i −0.963304 0.268414i \(-0.913500\pi\)
0.963304 0.268414i \(-0.0864995\pi\)
\(348\) 0 0
\(349\) 8.00000i 0.428230i 0.976808 + 0.214115i \(0.0686868\pi\)
−0.976808 + 0.214115i \(0.931313\pi\)
\(350\) 0 0
\(351\) −10.0000 −0.533761
\(352\) 0 0
\(353\) 3.00000 0.159674 0.0798369 0.996808i \(-0.474560\pi\)
0.0798369 + 0.996808i \(0.474560\pi\)
\(354\) 0 0
\(355\) 1.00000i 0.0530745i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −22.0000 −1.16112 −0.580558 0.814219i \(-0.697165\pi\)
−0.580558 + 0.814219i \(0.697165\pi\)
\(360\) 0 0
\(361\) 15.0000 0.789474
\(362\) 0 0
\(363\) 1.00000i 0.0524864i
\(364\) 0 0
\(365\) 14.0000i 0.732793i
\(366\) 0 0
\(367\) −13.0000 −0.678594 −0.339297 0.940679i \(-0.610189\pi\)
−0.339297 + 0.940679i \(0.610189\pi\)
\(368\) 0 0
\(369\) −4.00000 −0.208232
\(370\) 0 0
\(371\) 24.0000i 1.24602i
\(372\) 0 0
\(373\) − 32.0000i − 1.65690i −0.560065 0.828449i \(-0.689224\pi\)
0.560065 0.828449i \(-0.310776\pi\)
\(374\) 0 0
\(375\) −9.00000 −0.464758
\(376\) 0 0
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) − 7.00000i − 0.359566i −0.983706 0.179783i \(-0.942460\pi\)
0.983706 0.179783i \(-0.0575395\pi\)
\(380\) 0 0
\(381\) 2.00000i 0.102463i
\(382\) 0 0
\(383\) −9.00000 −0.459879 −0.229939 0.973205i \(-0.573853\pi\)
−0.229939 + 0.973205i \(0.573853\pi\)
\(384\) 0 0
\(385\) 4.00000 0.203859
\(386\) 0 0
\(387\) − 12.0000i − 0.609994i
\(388\) 0 0
\(389\) 19.0000i 0.963338i 0.876353 + 0.481669i \(0.159969\pi\)
−0.876353 + 0.481669i \(0.840031\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −16.0000 −0.807093
\(394\) 0 0
\(395\) − 10.0000i − 0.503155i
\(396\) 0 0
\(397\) 22.0000i 1.10415i 0.833795 + 0.552074i \(0.186163\pi\)
−0.833795 + 0.552074i \(0.813837\pi\)
\(398\) 0 0
\(399\) 8.00000 0.400501
\(400\) 0 0
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 0 0
\(403\) 10.0000i 0.498135i
\(404\) 0 0
\(405\) − 1.00000i − 0.0496904i
\(406\) 0 0
\(407\) −9.00000 −0.446113
\(408\) 0 0
\(409\) −18.0000 −0.890043 −0.445021 0.895520i \(-0.646804\pi\)
−0.445021 + 0.895520i \(0.646804\pi\)
\(410\) 0 0
\(411\) 13.0000i 0.641243i
\(412\) 0 0
\(413\) − 20.0000i − 0.984136i
\(414\) 0 0
\(415\) −14.0000 −0.687233
\(416\) 0 0
\(417\) −16.0000 −0.783523
\(418\) 0 0
\(419\) 24.0000i 1.17248i 0.810139 + 0.586238i \(0.199392\pi\)
−0.810139 + 0.586238i \(0.800608\pi\)
\(420\) 0 0
\(421\) 2.00000i 0.0974740i 0.998812 + 0.0487370i \(0.0155196\pi\)
−0.998812 + 0.0487370i \(0.984480\pi\)
\(422\) 0 0
\(423\) 8.00000 0.388973
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) − 2.00000i − 0.0965609i
\(430\) 0 0
\(431\) 8.00000 0.385346 0.192673 0.981263i \(-0.438284\pi\)
0.192673 + 0.981263i \(0.438284\pi\)
\(432\) 0 0
\(433\) 5.00000 0.240285 0.120142 0.992757i \(-0.461665\pi\)
0.120142 + 0.992757i \(0.461665\pi\)
\(434\) 0 0
\(435\) − 4.00000i − 0.191785i
\(436\) 0 0
\(437\) 18.0000i 0.861057i
\(438\) 0 0
\(439\) 20.0000 0.954548 0.477274 0.878755i \(-0.341625\pi\)
0.477274 + 0.878755i \(0.341625\pi\)
\(440\) 0 0
\(441\) 18.0000 0.857143
\(442\) 0 0
\(443\) 11.0000i 0.522626i 0.965254 + 0.261313i \(0.0841554\pi\)
−0.965254 + 0.261313i \(0.915845\pi\)
\(444\) 0 0
\(445\) − 13.0000i − 0.616259i
\(446\) 0 0
\(447\) −12.0000 −0.567581
\(448\) 0 0
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) − 2.00000i − 0.0941763i
\(452\) 0 0
\(453\) − 14.0000i − 0.657777i
\(454\) 0 0
\(455\) −8.00000 −0.375046
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 5.00000 0.232370 0.116185 0.993228i \(-0.462933\pi\)
0.116185 + 0.993228i \(0.462933\pi\)
\(464\) 0 0
\(465\) 5.00000 0.231869
\(466\) 0 0
\(467\) − 19.0000i − 0.879215i −0.898190 0.439608i \(-0.855118\pi\)
0.898190 0.439608i \(-0.144882\pi\)
\(468\) 0 0
\(469\) 52.0000i 2.40114i
\(470\) 0 0
\(471\) 13.0000 0.599008
\(472\) 0 0
\(473\) 6.00000 0.275880
\(474\) 0 0
\(475\) 8.00000i 0.367065i
\(476\) 0 0
\(477\) 12.0000i 0.549442i
\(478\) 0 0
\(479\) −38.0000 −1.73626 −0.868132 0.496333i \(-0.834679\pi\)
−0.868132 + 0.496333i \(0.834679\pi\)
\(480\) 0 0
\(481\) 18.0000 0.820729
\(482\) 0 0
\(483\) − 36.0000i − 1.63806i
\(484\) 0 0
\(485\) 19.0000i 0.862746i
\(486\) 0 0
\(487\) −31.0000 −1.40474 −0.702372 0.711810i \(-0.747876\pi\)
−0.702372 + 0.711810i \(0.747876\pi\)
\(488\) 0 0
\(489\) −20.0000 −0.904431
\(490\) 0 0
\(491\) 8.00000i 0.361035i 0.983572 + 0.180517i \(0.0577772\pi\)
−0.983572 + 0.180517i \(0.942223\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 2.00000 0.0898933
\(496\) 0 0
\(497\) −4.00000 −0.179425
\(498\) 0 0
\(499\) 28.0000i 1.25345i 0.779240 + 0.626726i \(0.215605\pi\)
−0.779240 + 0.626726i \(0.784395\pi\)
\(500\) 0 0
\(501\) − 18.0000i − 0.804181i
\(502\) 0 0
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) 12.0000 0.533993
\(506\) 0 0
\(507\) − 9.00000i − 0.399704i
\(508\) 0 0
\(509\) 23.0000i 1.01946i 0.860335 + 0.509729i \(0.170254\pi\)
−0.860335 + 0.509729i \(0.829746\pi\)
\(510\) 0 0
\(511\) −56.0000 −2.47729
\(512\) 0 0
\(513\) 10.0000 0.441511
\(514\) 0 0
\(515\) 8.00000i 0.352522i
\(516\) 0 0
\(517\) 4.00000i 0.175920i
\(518\) 0 0
\(519\) −22.0000 −0.965693
\(520\) 0 0
\(521\) −17.0000 −0.744784 −0.372392 0.928076i \(-0.621462\pi\)
−0.372392 + 0.928076i \(0.621462\pi\)
\(522\) 0 0
\(523\) 42.0000i 1.83653i 0.395964 + 0.918266i \(0.370410\pi\)
−0.395964 + 0.918266i \(0.629590\pi\)
\(524\) 0 0
\(525\) − 16.0000i − 0.698297i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 58.0000 2.52174
\(530\) 0 0
\(531\) − 10.0000i − 0.433963i
\(532\) 0 0
\(533\) 4.00000i 0.173259i
\(534\) 0 0
\(535\) 8.00000 0.345870
\(536\) 0 0
\(537\) −11.0000 −0.474685
\(538\) 0 0
\(539\) 9.00000i 0.387657i
\(540\) 0 0
\(541\) − 10.0000i − 0.429934i −0.976621 0.214967i \(-0.931036\pi\)
0.976621 0.214967i \(-0.0689643\pi\)
\(542\) 0 0
\(543\) −11.0000 −0.472055
\(544\) 0 0
\(545\) 10.0000 0.428353
\(546\) 0 0
\(547\) − 20.0000i − 0.855138i −0.903983 0.427569i \(-0.859370\pi\)
0.903983 0.427569i \(-0.140630\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −8.00000 −0.340811
\(552\) 0 0
\(553\) 40.0000 1.70097
\(554\) 0 0
\(555\) − 9.00000i − 0.382029i
\(556\) 0 0
\(557\) − 4.00000i − 0.169485i −0.996403 0.0847427i \(-0.972993\pi\)
0.996403 0.0847427i \(-0.0270068\pi\)
\(558\) 0 0
\(559\) −12.0000 −0.507546
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 24.0000i − 1.01148i −0.862686 0.505740i \(-0.831220\pi\)
0.862686 0.505740i \(-0.168780\pi\)
\(564\) 0 0
\(565\) 7.00000i 0.294492i
\(566\) 0 0
\(567\) 4.00000 0.167984
\(568\) 0 0
\(569\) −4.00000 −0.167689 −0.0838444 0.996479i \(-0.526720\pi\)
−0.0838444 + 0.996479i \(0.526720\pi\)
\(570\) 0 0
\(571\) − 4.00000i − 0.167395i −0.996491 0.0836974i \(-0.973327\pi\)
0.996491 0.0836974i \(-0.0266729\pi\)
\(572\) 0 0
\(573\) 15.0000i 0.626634i
\(574\) 0 0
\(575\) 36.0000 1.50130
\(576\) 0 0
\(577\) −11.0000 −0.457936 −0.228968 0.973434i \(-0.573535\pi\)
−0.228968 + 0.973434i \(0.573535\pi\)
\(578\) 0 0
\(579\) 12.0000i 0.498703i
\(580\) 0 0
\(581\) − 56.0000i − 2.32327i
\(582\) 0 0
\(583\) −6.00000 −0.248495
\(584\) 0 0
\(585\) −4.00000 −0.165380
\(586\) 0 0
\(587\) 4.00000i 0.165098i 0.996587 + 0.0825488i \(0.0263060\pi\)
−0.996587 + 0.0825488i \(0.973694\pi\)
\(588\) 0 0
\(589\) − 10.0000i − 0.412043i
\(590\) 0 0
\(591\) −22.0000 −0.904959
\(592\) 0 0
\(593\) −12.0000 −0.492781 −0.246390 0.969171i \(-0.579245\pi\)
−0.246390 + 0.969171i \(0.579245\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 40.0000 1.63163 0.815817 0.578310i \(-0.196288\pi\)
0.815817 + 0.578310i \(0.196288\pi\)
\(602\) 0 0
\(603\) 26.0000i 1.05880i
\(604\) 0 0
\(605\) 1.00000i 0.0406558i
\(606\) 0 0
\(607\) −2.00000 −0.0811775 −0.0405887 0.999176i \(-0.512923\pi\)
−0.0405887 + 0.999176i \(0.512923\pi\)
\(608\) 0 0
\(609\) 16.0000 0.648353
\(610\) 0 0
\(611\) − 8.00000i − 0.323645i
\(612\) 0 0
\(613\) − 32.0000i − 1.29247i −0.763139 0.646234i \(-0.776343\pi\)
0.763139 0.646234i \(-0.223657\pi\)
\(614\) 0 0
\(615\) 2.00000 0.0806478
\(616\) 0 0
\(617\) 26.0000 1.04672 0.523360 0.852111i \(-0.324678\pi\)
0.523360 + 0.852111i \(0.324678\pi\)
\(618\) 0 0
\(619\) 37.0000i 1.48716i 0.668649 + 0.743578i \(0.266873\pi\)
−0.668649 + 0.743578i \(0.733127\pi\)
\(620\) 0 0
\(621\) − 45.0000i − 1.80579i
\(622\) 0 0
\(623\) 52.0000 2.08334
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 2.00000i 0.0798723i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −19.0000 −0.756378 −0.378189 0.925728i \(-0.623453\pi\)
−0.378189 + 0.925728i \(0.623453\pi\)
\(632\) 0 0
\(633\) 12.0000 0.476957
\(634\) 0 0
\(635\) 2.00000i 0.0793676i
\(636\) 0 0
\(637\) − 18.0000i − 0.713186i
\(638\) 0 0
\(639\) −2.00000 −0.0791188
\(640\) 0 0
\(641\) −5.00000 −0.197488 −0.0987441 0.995113i \(-0.531483\pi\)
−0.0987441 + 0.995113i \(0.531483\pi\)
\(642\) 0 0
\(643\) 41.0000i 1.61688i 0.588577 + 0.808441i \(0.299688\pi\)
−0.588577 + 0.808441i \(0.700312\pi\)
\(644\) 0 0
\(645\) 6.00000i 0.236250i
\(646\) 0 0
\(647\) 7.00000 0.275198 0.137599 0.990488i \(-0.456061\pi\)
0.137599 + 0.990488i \(0.456061\pi\)
\(648\) 0 0
\(649\) 5.00000 0.196267
\(650\) 0 0
\(651\) 20.0000i 0.783862i
\(652\) 0 0
\(653\) 39.0000i 1.52619i 0.646288 + 0.763094i \(0.276321\pi\)
−0.646288 + 0.763094i \(0.723679\pi\)
\(654\) 0 0
\(655\) −16.0000 −0.625172
\(656\) 0 0
\(657\) −28.0000 −1.09238
\(658\) 0 0
\(659\) 30.0000i 1.16863i 0.811525 + 0.584317i \(0.198638\pi\)
−0.811525 + 0.584317i \(0.801362\pi\)
\(660\) 0 0
\(661\) − 17.0000i − 0.661223i −0.943767 0.330612i \(-0.892745\pi\)
0.943767 0.330612i \(-0.107255\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.00000 0.310227
\(666\) 0 0
\(667\) 36.0000i 1.39393i
\(668\) 0 0
\(669\) 25.0000i 0.966556i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 22.0000 0.848038 0.424019 0.905653i \(-0.360619\pi\)
0.424019 + 0.905653i \(0.360619\pi\)
\(674\) 0 0
\(675\) − 20.0000i − 0.769800i
\(676\) 0 0
\(677\) 12.0000i 0.461197i 0.973049 + 0.230599i \(0.0740685\pi\)
−0.973049 + 0.230599i \(0.925932\pi\)
\(678\) 0 0
\(679\) −76.0000 −2.91661
\(680\) 0 0
\(681\) −24.0000 −0.919682
\(682\) 0 0
\(683\) 12.0000i 0.459167i 0.973289 + 0.229584i \(0.0737364\pi\)
−0.973289 + 0.229584i \(0.926264\pi\)
\(684\) 0 0
\(685\) 13.0000i 0.496704i
\(686\) 0 0
\(687\) 9.00000 0.343371
\(688\) 0 0
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) 5.00000i 0.190209i 0.995467 + 0.0951045i \(0.0303185\pi\)
−0.995467 + 0.0951045i \(0.969681\pi\)
\(692\) 0 0
\(693\) 8.00000i 0.303895i
\(694\) 0 0
\(695\) −16.0000 −0.606915
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) − 12.0000i − 0.453882i
\(700\) 0 0
\(701\) − 20.0000i − 0.755390i −0.925930 0.377695i \(-0.876717\pi\)
0.925930 0.377695i \(-0.123283\pi\)
\(702\) 0 0
\(703\) −18.0000 −0.678883
\(704\) 0 0
\(705\) −4.00000 −0.150649
\(706\) 0 0
\(707\) 48.0000i 1.80523i
\(708\) 0 0
\(709\) − 7.00000i − 0.262891i −0.991323 0.131445i \(-0.958038\pi\)
0.991323 0.131445i \(-0.0419618\pi\)
\(710\) 0 0
\(711\) 20.0000 0.750059
\(712\) 0 0
\(713\) −45.0000 −1.68526
\(714\) 0 0
\(715\) − 2.00000i − 0.0747958i
\(716\) 0 0
\(717\) − 18.0000i − 0.672222i
\(718\) 0 0
\(719\) 39.0000 1.45445 0.727227 0.686397i \(-0.240809\pi\)
0.727227 + 0.686397i \(0.240809\pi\)
\(720\) 0 0
\(721\) −32.0000 −1.19174
\(722\) 0 0
\(723\) 4.00000i 0.148762i
\(724\) 0 0
\(725\) 16.0000i 0.594225i
\(726\) 0 0
\(727\) 1.00000 0.0370879 0.0185440 0.999828i \(-0.494097\pi\)
0.0185440 + 0.999828i \(0.494097\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) − 24.0000i − 0.886460i −0.896408 0.443230i \(-0.853832\pi\)
0.896408 0.443230i \(-0.146168\pi\)
\(734\) 0 0
\(735\) −9.00000 −0.331970
\(736\) 0 0
\(737\) −13.0000 −0.478861
\(738\) 0 0
\(739\) 2.00000i 0.0735712i 0.999323 + 0.0367856i \(0.0117119\pi\)
−0.999323 + 0.0367856i \(0.988288\pi\)
\(740\) 0 0
\(741\) − 4.00000i − 0.146944i
\(742\) 0 0
\(743\) −44.0000 −1.61420 −0.807102 0.590412i \(-0.798965\pi\)
−0.807102 + 0.590412i \(0.798965\pi\)
\(744\) 0 0
\(745\) −12.0000 −0.439646
\(746\) 0 0
\(747\) − 28.0000i − 1.02447i
\(748\) 0 0
\(749\) 32.0000i 1.16925i
\(750\) 0 0
\(751\) 1.00000 0.0364905 0.0182453 0.999834i \(-0.494192\pi\)
0.0182453 + 0.999834i \(0.494192\pi\)
\(752\) 0 0
\(753\) −17.0000 −0.619514
\(754\) 0 0
\(755\) − 14.0000i − 0.509512i
\(756\) 0 0
\(757\) 10.0000i 0.363456i 0.983349 + 0.181728i \(0.0581691\pi\)
−0.983349 + 0.181728i \(0.941831\pi\)
\(758\) 0 0
\(759\) 9.00000 0.326679
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 0 0
\(763\) 40.0000i 1.44810i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −10.0000 −0.361079
\(768\) 0 0
\(769\) −50.0000 −1.80305 −0.901523 0.432731i \(-0.857550\pi\)
−0.901523 + 0.432731i \(0.857550\pi\)
\(770\) 0 0
\(771\) − 6.00000i − 0.216085i
\(772\) 0 0
\(773\) 14.0000i 0.503545i 0.967786 + 0.251773i \(0.0810135\pi\)
−0.967786 + 0.251773i \(0.918987\pi\)
\(774\) 0 0
\(775\) −20.0000 −0.718421
\(776\) 0 0
\(777\) 36.0000 1.29149
\(778\) 0 0
\(779\) − 4.00000i − 0.143315i
\(780\) 0 0
\(781\) − 1.00000i − 0.0357828i
\(782\) 0 0
\(783\) 20.0000 0.714742
\(784\) 0 0
\(785\) 13.0000 0.463990
\(786\) 0 0
\(787\) 4.00000i 0.142585i 0.997455 + 0.0712923i \(0.0227123\pi\)
−0.997455 + 0.0712923i \(0.977288\pi\)
\(788\) 0 0
\(789\) 4.00000i 0.142404i
\(790\) 0 0
\(791\) −28.0000 −0.995565
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 6.00000i − 0.212798i
\(796\) 0 0
\(797\) − 23.0000i − 0.814702i −0.913272 0.407351i \(-0.866453\pi\)
0.913272 0.407351i \(-0.133547\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 26.0000 0.918665
\(802\) 0 0
\(803\) − 14.0000i − 0.494049i
\(804\) 0 0
\(805\) − 36.0000i − 1.26883i
\(806\) 0 0
\(807\) 14.0000 0.492823
\(808\) 0 0
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) − 46.0000i − 1.61528i −0.589677 0.807639i \(-0.700745\pi\)
0.589677 0.807639i \(-0.299255\pi\)
\(812\) 0 0
\(813\) 10.0000i 0.350715i
\(814\) 0 0
\(815\) −20.0000 −0.700569
\(816\) 0 0
\(817\) 12.0000 0.419827
\(818\) 0 0
\(819\) − 16.0000i − 0.559085i
\(820\) 0 0
\(821\) 42.0000i 1.46581i 0.680331 + 0.732905i \(0.261836\pi\)
−0.680331 + 0.732905i \(0.738164\pi\)
\(822\) 0 0
\(823\) −27.0000 −0.941161 −0.470580 0.882357i \(-0.655955\pi\)
−0.470580 + 0.882357i \(0.655955\pi\)
\(824\) 0 0
\(825\) 4.00000 0.139262
\(826\) 0 0
\(827\) − 34.0000i − 1.18230i −0.806563 0.591148i \(-0.798675\pi\)
0.806563 0.591148i \(-0.201325\pi\)
\(828\) 0 0
\(829\) − 11.0000i − 0.382046i −0.981586 0.191023i \(-0.938820\pi\)
0.981586 0.191023i \(-0.0611805\pi\)
\(830\) 0 0
\(831\) 14.0000 0.485655
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) − 18.0000i − 0.622916i
\(836\) 0 0
\(837\) 25.0000i 0.864126i
\(838\) 0 0
\(839\) 21.0000 0.725001 0.362500 0.931984i \(-0.381923\pi\)
0.362500 + 0.931984i \(0.381923\pi\)
\(840\) 0 0
\(841\) 13.0000 0.448276
\(842\) 0 0
\(843\) 18.0000i 0.619953i
\(844\) 0 0
\(845\) − 9.00000i − 0.309609i
\(846\) 0 0
\(847\) −4.00000 −0.137442
\(848\) 0 0
\(849\) 8.00000 0.274559
\(850\) 0 0
\(851\) 81.0000i 2.77664i
\(852\) 0 0
\(853\) − 46.0000i − 1.57501i −0.616308 0.787505i \(-0.711372\pi\)
0.616308 0.787505i \(-0.288628\pi\)
\(854\) 0 0
\(855\) 4.00000 0.136797
\(856\) 0 0
\(857\) −16.0000 −0.546550 −0.273275 0.961936i \(-0.588107\pi\)
−0.273275 + 0.961936i \(0.588107\pi\)
\(858\) 0 0
\(859\) 23.0000i 0.784750i 0.919805 + 0.392375i \(0.128346\pi\)
−0.919805 + 0.392375i \(0.871654\pi\)
\(860\) 0 0
\(861\) 8.00000i 0.272639i
\(862\) 0 0
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 0 0
\(865\) −22.0000 −0.748022
\(866\) 0 0
\(867\) 17.0000i 0.577350i
\(868\) 0 0
\(869\) 10.0000i 0.339227i
\(870\) 0 0
\(871\) 26.0000 0.880976
\(872\) 0 0
\(873\) −38.0000 −1.28611
\(874\) 0 0
\(875\) − 36.0000i − 1.21702i
\(876\) 0 0
\(877\) 42.0000i 1.41824i 0.705088 + 0.709120i \(0.250907\pi\)
−0.705088 + 0.709120i \(0.749093\pi\)
\(878\) 0 0
\(879\) 10.0000 0.337292
\(880\) 0 0
\(881\) 21.0000 0.707508 0.353754 0.935339i \(-0.384905\pi\)
0.353754 + 0.935339i \(0.384905\pi\)
\(882\) 0 0
\(883\) − 4.00000i − 0.134611i −0.997732 0.0673054i \(-0.978560\pi\)
0.997732 0.0673054i \(-0.0214402\pi\)
\(884\) 0 0
\(885\) 5.00000i 0.168073i
\(886\) 0 0
\(887\) 42.0000 1.41022 0.705111 0.709097i \(-0.250897\pi\)
0.705111 + 0.709097i \(0.250897\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) 1.00000i 0.0335013i
\(892\) 0 0
\(893\) 8.00000i 0.267710i
\(894\) 0 0
\(895\) −11.0000 −0.367689
\(896\) 0 0
\(897\) −18.0000 −0.601003
\(898\) 0 0
\(899\) − 20.0000i − 0.667037i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −24.0000 −0.798670
\(904\) 0 0
\(905\) −11.0000 −0.365652
\(906\) 0 0
\(907\) 12.0000i 0.398453i 0.979953 + 0.199227i \(0.0638430\pi\)
−0.979953 + 0.199227i \(0.936157\pi\)
\(908\) 0 0
\(909\) 24.0000i 0.796030i
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) 14.0000 0.463332
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 64.0000i − 2.11347i
\(918\) 0 0
\(919\) 34.0000 1.12156 0.560778 0.827966i \(-0.310502\pi\)
0.560778 + 0.827966i \(0.310502\pi\)
\(920\) 0 0
\(921\) 34.0000 1.12034
\(922\) 0 0
\(923\) 2.00000i 0.0658308i
\(924\) 0 0
\(925\) 36.0000i 1.18367i
\(926\) 0 0
\(927\) −16.0000 −0.525509
\(928\) 0 0
\(929\) −46.0000 −1.50921 −0.754606 0.656179i \(-0.772172\pi\)
−0.754606 + 0.656179i \(0.772172\pi\)
\(930\) 0 0
\(931\) 18.0000i 0.589926i
\(932\) 0 0
\(933\) − 16.0000i − 0.523816i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −50.0000 −1.63343 −0.816714 0.577042i \(-0.804207\pi\)
−0.816714 + 0.577042i \(0.804207\pi\)
\(938\) 0 0
\(939\) 7.00000i 0.228436i
\(940\) 0 0
\(941\) − 18.0000i − 0.586783i −0.955992 0.293392i \(-0.905216\pi\)
0.955992 0.293392i \(-0.0947840\pi\)
\(942\) 0 0
\(943\) −18.0000 −0.586161
\(944\) 0 0
\(945\) −20.0000 −0.650600
\(946\) 0 0
\(947\) − 27.0000i − 0.877382i −0.898638 0.438691i \(-0.855442\pi\)
0.898638 0.438691i \(-0.144558\pi\)
\(948\) 0 0
\(949\) 28.0000i 0.908918i
\(950\) 0 0
\(951\) 9.00000 0.291845
\(952\) 0 0
\(953\) 36.0000 1.16615 0.583077 0.812417i \(-0.301849\pi\)
0.583077 + 0.812417i \(0.301849\pi\)
\(954\) 0 0
\(955\) 15.0000i 0.485389i
\(956\) 0 0
\(957\) 4.00000i 0.129302i
\(958\) 0 0
\(959\) −52.0000 −1.67917
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 0 0
\(963\) 16.0000i 0.515593i
\(964\) 0 0
\(965\) 12.0000i 0.386294i
\(966\) 0 0
\(967\) −4.00000 −0.128631 −0.0643157 0.997930i \(-0.520486\pi\)
−0.0643157 + 0.997930i \(0.520486\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 13.0000i 0.417190i 0.978002 + 0.208595i \(0.0668890\pi\)
−0.978002 + 0.208595i \(0.933111\pi\)
\(972\) 0 0
\(973\) − 64.0000i − 2.05175i
\(974\) 0 0
\(975\) −8.00000 −0.256205
\(976\) 0 0
\(977\) 17.0000 0.543878 0.271939 0.962314i \(-0.412335\pi\)
0.271939 + 0.962314i \(0.412335\pi\)
\(978\) 0 0
\(979\) 13.0000i 0.415482i
\(980\) 0 0
\(981\) 20.0000i 0.638551i
\(982\) 0 0
\(983\) 49.0000 1.56286 0.781429 0.623995i \(-0.214491\pi\)
0.781429 + 0.623995i \(0.214491\pi\)
\(984\) 0 0
\(985\) −22.0000 −0.700978
\(986\) 0 0
\(987\) − 16.0000i − 0.509286i
\(988\) 0 0
\(989\) − 54.0000i − 1.71710i
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) 13.0000 0.412543
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 28.0000i 0.886769i 0.896332 + 0.443384i \(0.146222\pi\)
−0.896332 + 0.443384i \(0.853778\pi\)
\(998\) 0 0
\(999\) 45.0000 1.42374
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2816.2.c.m.1409.1 2
4.3 odd 2 2816.2.c.a.1409.2 2
8.3 odd 2 2816.2.c.a.1409.1 2
8.5 even 2 inner 2816.2.c.m.1409.2 2
16.3 odd 4 704.2.a.d.1.1 1
16.5 even 4 352.2.a.c.1.1 1
16.11 odd 4 352.2.a.e.1.1 yes 1
16.13 even 4 704.2.a.g.1.1 1
48.5 odd 4 3168.2.a.g.1.1 1
48.11 even 4 3168.2.a.j.1.1 1
48.29 odd 4 6336.2.a.bq.1.1 1
48.35 even 4 6336.2.a.bv.1.1 1
80.59 odd 4 8800.2.a.i.1.1 1
80.69 even 4 8800.2.a.t.1.1 1
176.21 odd 4 3872.2.a.e.1.1 1
176.43 even 4 3872.2.a.j.1.1 1
176.109 odd 4 7744.2.a.y.1.1 1
176.131 even 4 7744.2.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.a.c.1.1 1 16.5 even 4
352.2.a.e.1.1 yes 1 16.11 odd 4
704.2.a.d.1.1 1 16.3 odd 4
704.2.a.g.1.1 1 16.13 even 4
2816.2.c.a.1409.1 2 8.3 odd 2
2816.2.c.a.1409.2 2 4.3 odd 2
2816.2.c.m.1409.1 2 1.1 even 1 trivial
2816.2.c.m.1409.2 2 8.5 even 2 inner
3168.2.a.g.1.1 1 48.5 odd 4
3168.2.a.j.1.1 1 48.11 even 4
3872.2.a.e.1.1 1 176.21 odd 4
3872.2.a.j.1.1 1 176.43 even 4
6336.2.a.bq.1.1 1 48.29 odd 4
6336.2.a.bv.1.1 1 48.35 even 4
7744.2.a.i.1.1 1 176.131 even 4
7744.2.a.y.1.1 1 176.109 odd 4
8800.2.a.i.1.1 1 80.59 odd 4
8800.2.a.t.1.1 1 80.69 even 4