Properties

Label 2816.2.c.m
Level $2816$
Weight $2$
Character orbit 2816.c
Analytic conductor $22.486$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2816,2,Mod(1409,2816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2816, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2816.1409");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2816 = 2^{8} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2816.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4858732092\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 352)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{3} + i q^{5} + 4 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + i q^{3} + i q^{5} + 4 q^{7} + 2 q^{9} - i q^{11} + 2 i q^{13} - q^{15} - 2 i q^{19} + 4 i q^{21} + 9 q^{23} + 4 q^{25} + 5 i q^{27} - 4 i q^{29} - 5 q^{31} + q^{33} + 4 i q^{35} - 9 i q^{37} - 2 q^{39} - 2 q^{41} + 6 i q^{43} + 2 i q^{45} + 4 q^{47} + 9 q^{49} - 6 i q^{53} + q^{55} + 2 q^{57} + 5 i q^{59} + 8 q^{63} - 2 q^{65} - 13 i q^{67} + 9 i q^{69} - q^{71} - 14 q^{73} + 4 i q^{75} - 4 i q^{77} + 10 q^{79} + q^{81} + 14 i q^{83} + 4 q^{87} + 13 q^{89} + 8 i q^{91} - 5 i q^{93} + 2 q^{95} - 19 q^{97} - 2 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{7} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8 q^{7} + 4 q^{9} - 2 q^{15} + 18 q^{23} + 8 q^{25} - 10 q^{31} + 2 q^{33} - 4 q^{39} - 4 q^{41} + 8 q^{47} + 18 q^{49} + 2 q^{55} + 4 q^{57} + 16 q^{63} - 4 q^{65} - 2 q^{71} - 28 q^{73} + 20 q^{79} + 2 q^{81} + 8 q^{87} + 26 q^{89} + 4 q^{95} - 38 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2816\mathbb{Z}\right)^\times\).

\(n\) \(1025\) \(1541\) \(2047\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1409.1
1.00000i
1.00000i
0 1.00000i 0 1.00000i 0 4.00000 0 2.00000 0
1409.2 0 1.00000i 0 1.00000i 0 4.00000 0 2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2816.2.c.m 2
4.b odd 2 1 2816.2.c.a 2
8.b even 2 1 inner 2816.2.c.m 2
8.d odd 2 1 2816.2.c.a 2
16.e even 4 1 352.2.a.c 1
16.e even 4 1 704.2.a.g 1
16.f odd 4 1 352.2.a.e yes 1
16.f odd 4 1 704.2.a.d 1
48.i odd 4 1 3168.2.a.g 1
48.i odd 4 1 6336.2.a.bq 1
48.k even 4 1 3168.2.a.j 1
48.k even 4 1 6336.2.a.bv 1
80.k odd 4 1 8800.2.a.i 1
80.q even 4 1 8800.2.a.t 1
176.i even 4 1 3872.2.a.j 1
176.i even 4 1 7744.2.a.i 1
176.l odd 4 1 3872.2.a.e 1
176.l odd 4 1 7744.2.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
352.2.a.c 1 16.e even 4 1
352.2.a.e yes 1 16.f odd 4 1
704.2.a.d 1 16.f odd 4 1
704.2.a.g 1 16.e even 4 1
2816.2.c.a 2 4.b odd 2 1
2816.2.c.a 2 8.d odd 2 1
2816.2.c.m 2 1.a even 1 1 trivial
2816.2.c.m 2 8.b even 2 1 inner
3168.2.a.g 1 48.i odd 4 1
3168.2.a.j 1 48.k even 4 1
3872.2.a.e 1 176.l odd 4 1
3872.2.a.j 1 176.i even 4 1
6336.2.a.bq 1 48.i odd 4 1
6336.2.a.bv 1 48.k even 4 1
7744.2.a.i 1 176.i even 4 1
7744.2.a.y 1 176.l odd 4 1
8800.2.a.i 1 80.k odd 4 1
8800.2.a.t 1 80.q even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2816, [\chi])\):

\( T_{3}^{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{2} + 1 \) Copy content Toggle raw display
\( T_{7} - 4 \) Copy content Toggle raw display
\( T_{23} - 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + 1 \) Copy content Toggle raw display
$7$ \( (T - 4)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 1 \) Copy content Toggle raw display
$13$ \( T^{2} + 4 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 4 \) Copy content Toggle raw display
$23$ \( (T - 9)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 16 \) Copy content Toggle raw display
$31$ \( (T + 5)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 81 \) Copy content Toggle raw display
$41$ \( (T + 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 36 \) Copy content Toggle raw display
$47$ \( (T - 4)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 36 \) Copy content Toggle raw display
$59$ \( T^{2} + 25 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 169 \) Copy content Toggle raw display
$71$ \( (T + 1)^{2} \) Copy content Toggle raw display
$73$ \( (T + 14)^{2} \) Copy content Toggle raw display
$79$ \( (T - 10)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 196 \) Copy content Toggle raw display
$89$ \( (T - 13)^{2} \) Copy content Toggle raw display
$97$ \( (T + 19)^{2} \) Copy content Toggle raw display
show more
show less