Properties

Label 2816.2.a.q.1.4
Level $2816$
Weight $2$
Character 2816.1
Self dual yes
Analytic conductor $22.486$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2816,2,Mod(1,2816)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2816.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2816, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2816 = 2^{8} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2816.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,4,0,0,0,5,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.4858732092\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.380224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 8x^{3} - 2x^{2} + 5x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.479072\) of defining polynomial
Character \(\chi\) \(=\) 2816.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.33544 q^{3} +1.93119 q^{5} -1.83930 q^{7} -1.21660 q^{9} -1.00000 q^{11} +0.160700 q^{13} +2.57899 q^{15} +5.41442 q^{17} -2.79744 q^{19} -2.45628 q^{21} +4.44137 q^{23} -1.27050 q^{25} -5.63102 q^{27} +8.34948 q^{29} +9.05835 q^{31} -1.33544 q^{33} -3.55204 q^{35} -0.602073 q^{37} +0.214606 q^{39} +11.7639 q^{41} +4.47936 q^{43} -2.34948 q^{45} -6.29558 q^{47} -3.61698 q^{49} +7.23064 q^{51} +11.7211 q^{53} -1.93119 q^{55} -3.73582 q^{57} +9.63102 q^{59} +3.32912 q^{61} +2.23769 q^{63} +0.310343 q^{65} -5.76864 q^{67} +5.93119 q^{69} +9.62916 q^{71} +0.681940 q^{73} -1.69668 q^{75} +1.83930 q^{77} -5.77867 q^{79} -3.87010 q^{81} +2.92400 q^{83} +10.4563 q^{85} +11.1502 q^{87} -5.74214 q^{89} -0.295576 q^{91} +12.0969 q^{93} -5.40240 q^{95} -5.37829 q^{97} +1.21660 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 4 q^{5} + 5 q^{9} - 5 q^{11} + 10 q^{13} - 4 q^{15} - 2 q^{17} + 12 q^{21} - 6 q^{23} + 3 q^{25} + 12 q^{27} + 10 q^{29} + 2 q^{31} + 16 q^{37} + 12 q^{39} - 2 q^{41} - 4 q^{43} + 20 q^{45} + 2 q^{47}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.33544 0.771017 0.385509 0.922704i \(-0.374026\pi\)
0.385509 + 0.922704i \(0.374026\pi\)
\(4\) 0 0
\(5\) 1.93119 0.863655 0.431827 0.901956i \(-0.357869\pi\)
0.431827 + 0.901956i \(0.357869\pi\)
\(6\) 0 0
\(7\) −1.83930 −0.695190 −0.347595 0.937645i \(-0.613002\pi\)
−0.347595 + 0.937645i \(0.613002\pi\)
\(8\) 0 0
\(9\) −1.21660 −0.405532
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 0.160700 0.0445702 0.0222851 0.999752i \(-0.492906\pi\)
0.0222851 + 0.999752i \(0.492906\pi\)
\(14\) 0 0
\(15\) 2.57899 0.665893
\(16\) 0 0
\(17\) 5.41442 1.31319 0.656595 0.754243i \(-0.271996\pi\)
0.656595 + 0.754243i \(0.271996\pi\)
\(18\) 0 0
\(19\) −2.79744 −0.641777 −0.320889 0.947117i \(-0.603982\pi\)
−0.320889 + 0.947117i \(0.603982\pi\)
\(20\) 0 0
\(21\) −2.45628 −0.536003
\(22\) 0 0
\(23\) 4.44137 0.926090 0.463045 0.886335i \(-0.346757\pi\)
0.463045 + 0.886335i \(0.346757\pi\)
\(24\) 0 0
\(25\) −1.27050 −0.254101
\(26\) 0 0
\(27\) −5.63102 −1.08369
\(28\) 0 0
\(29\) 8.34948 1.55046 0.775230 0.631679i \(-0.217634\pi\)
0.775230 + 0.631679i \(0.217634\pi\)
\(30\) 0 0
\(31\) 9.05835 1.62693 0.813464 0.581616i \(-0.197579\pi\)
0.813464 + 0.581616i \(0.197579\pi\)
\(32\) 0 0
\(33\) −1.33544 −0.232470
\(34\) 0 0
\(35\) −3.55204 −0.600404
\(36\) 0 0
\(37\) −0.602073 −0.0989801 −0.0494901 0.998775i \(-0.515760\pi\)
−0.0494901 + 0.998775i \(0.515760\pi\)
\(38\) 0 0
\(39\) 0.214606 0.0343644
\(40\) 0 0
\(41\) 11.7639 1.83721 0.918606 0.395174i \(-0.129316\pi\)
0.918606 + 0.395174i \(0.129316\pi\)
\(42\) 0 0
\(43\) 4.47936 0.683096 0.341548 0.939864i \(-0.389049\pi\)
0.341548 + 0.939864i \(0.389049\pi\)
\(44\) 0 0
\(45\) −2.34948 −0.350240
\(46\) 0 0
\(47\) −6.29558 −0.918304 −0.459152 0.888358i \(-0.651847\pi\)
−0.459152 + 0.888358i \(0.651847\pi\)
\(48\) 0 0
\(49\) −3.61698 −0.516711
\(50\) 0 0
\(51\) 7.23064 1.01249
\(52\) 0 0
\(53\) 11.7211 1.61001 0.805005 0.593268i \(-0.202162\pi\)
0.805005 + 0.593268i \(0.202162\pi\)
\(54\) 0 0
\(55\) −1.93119 −0.260402
\(56\) 0 0
\(57\) −3.73582 −0.494821
\(58\) 0 0
\(59\) 9.63102 1.25385 0.626926 0.779079i \(-0.284313\pi\)
0.626926 + 0.779079i \(0.284313\pi\)
\(60\) 0 0
\(61\) 3.32912 0.426250 0.213125 0.977025i \(-0.431636\pi\)
0.213125 + 0.977025i \(0.431636\pi\)
\(62\) 0 0
\(63\) 2.23769 0.281922
\(64\) 0 0
\(65\) 0.310343 0.0384933
\(66\) 0 0
\(67\) −5.76864 −0.704751 −0.352376 0.935859i \(-0.614626\pi\)
−0.352376 + 0.935859i \(0.614626\pi\)
\(68\) 0 0
\(69\) 5.93119 0.714031
\(70\) 0 0
\(71\) 9.62916 1.14277 0.571386 0.820682i \(-0.306406\pi\)
0.571386 + 0.820682i \(0.306406\pi\)
\(72\) 0 0
\(73\) 0.681940 0.0798150 0.0399075 0.999203i \(-0.487294\pi\)
0.0399075 + 0.999203i \(0.487294\pi\)
\(74\) 0 0
\(75\) −1.69668 −0.195916
\(76\) 0 0
\(77\) 1.83930 0.209608
\(78\) 0 0
\(79\) −5.77867 −0.650151 −0.325075 0.945688i \(-0.605390\pi\)
−0.325075 + 0.945688i \(0.605390\pi\)
\(80\) 0 0
\(81\) −3.87010 −0.430011
\(82\) 0 0
\(83\) 2.92400 0.320951 0.160476 0.987040i \(-0.448697\pi\)
0.160476 + 0.987040i \(0.448697\pi\)
\(84\) 0 0
\(85\) 10.4563 1.13414
\(86\) 0 0
\(87\) 11.1502 1.19543
\(88\) 0 0
\(89\) −5.74214 −0.608666 −0.304333 0.952566i \(-0.598434\pi\)
−0.304333 + 0.952566i \(0.598434\pi\)
\(90\) 0 0
\(91\) −0.295576 −0.0309848
\(92\) 0 0
\(93\) 12.0969 1.25439
\(94\) 0 0
\(95\) −5.40240 −0.554274
\(96\) 0 0
\(97\) −5.37829 −0.546082 −0.273041 0.962002i \(-0.588030\pi\)
−0.273041 + 0.962002i \(0.588030\pi\)
\(98\) 0 0
\(99\) 1.21660 0.122273
\(100\) 0 0
\(101\) 9.31868 0.927244 0.463622 0.886033i \(-0.346550\pi\)
0.463622 + 0.886033i \(0.346550\pi\)
\(102\) 0 0
\(103\) 1.67860 0.165397 0.0826987 0.996575i \(-0.473646\pi\)
0.0826987 + 0.996575i \(0.473646\pi\)
\(104\) 0 0
\(105\) −4.74354 −0.462922
\(106\) 0 0
\(107\) −11.2768 −1.09017 −0.545085 0.838381i \(-0.683503\pi\)
−0.545085 + 0.838381i \(0.683503\pi\)
\(108\) 0 0
\(109\) 19.6373 1.88092 0.940458 0.339910i \(-0.110397\pi\)
0.940458 + 0.339910i \(0.110397\pi\)
\(110\) 0 0
\(111\) −0.804032 −0.0763154
\(112\) 0 0
\(113\) −12.9156 −1.21499 −0.607497 0.794322i \(-0.707826\pi\)
−0.607497 + 0.794322i \(0.707826\pi\)
\(114\) 0 0
\(115\) 8.57714 0.799822
\(116\) 0 0
\(117\) −0.195508 −0.0180747
\(118\) 0 0
\(119\) −9.95874 −0.912916
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 15.7100 1.41652
\(124\) 0 0
\(125\) −12.1095 −1.08311
\(126\) 0 0
\(127\) −1.12716 −0.100019 −0.0500096 0.998749i \(-0.515925\pi\)
−0.0500096 + 0.998749i \(0.515925\pi\)
\(128\) 0 0
\(129\) 5.98192 0.526679
\(130\) 0 0
\(131\) 10.9554 0.957178 0.478589 0.878039i \(-0.341148\pi\)
0.478589 + 0.878039i \(0.341148\pi\)
\(132\) 0 0
\(133\) 5.14534 0.446157
\(134\) 0 0
\(135\) −10.8746 −0.935934
\(136\) 0 0
\(137\) 10.1753 0.869338 0.434669 0.900590i \(-0.356865\pi\)
0.434669 + 0.900590i \(0.356865\pi\)
\(138\) 0 0
\(139\) −18.3347 −1.55513 −0.777565 0.628802i \(-0.783545\pi\)
−0.777565 + 0.628802i \(0.783545\pi\)
\(140\) 0 0
\(141\) −8.40737 −0.708028
\(142\) 0 0
\(143\) −0.160700 −0.0134384
\(144\) 0 0
\(145\) 16.1244 1.33906
\(146\) 0 0
\(147\) −4.83026 −0.398393
\(148\) 0 0
\(149\) −8.46892 −0.693801 −0.346901 0.937902i \(-0.612766\pi\)
−0.346901 + 0.937902i \(0.612766\pi\)
\(150\) 0 0
\(151\) −10.0705 −0.819528 −0.409764 0.912191i \(-0.634389\pi\)
−0.409764 + 0.912191i \(0.634389\pi\)
\(152\) 0 0
\(153\) −6.58717 −0.532541
\(154\) 0 0
\(155\) 17.4934 1.40510
\(156\) 0 0
\(157\) 8.73969 0.697503 0.348752 0.937215i \(-0.386606\pi\)
0.348752 + 0.937215i \(0.386606\pi\)
\(158\) 0 0
\(159\) 15.6528 1.24135
\(160\) 0 0
\(161\) −8.16901 −0.643809
\(162\) 0 0
\(163\) −24.4237 −1.91301 −0.956507 0.291710i \(-0.905776\pi\)
−0.956507 + 0.291710i \(0.905776\pi\)
\(164\) 0 0
\(165\) −2.57899 −0.200774
\(166\) 0 0
\(167\) −7.36485 −0.569909 −0.284954 0.958541i \(-0.591978\pi\)
−0.284954 + 0.958541i \(0.591978\pi\)
\(168\) 0 0
\(169\) −12.9742 −0.998013
\(170\) 0 0
\(171\) 3.40336 0.260262
\(172\) 0 0
\(173\) 1.38302 0.105149 0.0525747 0.998617i \(-0.483257\pi\)
0.0525747 + 0.998617i \(0.483257\pi\)
\(174\) 0 0
\(175\) 2.33684 0.176648
\(176\) 0 0
\(177\) 12.8617 0.966741
\(178\) 0 0
\(179\) −9.89679 −0.739720 −0.369860 0.929087i \(-0.620594\pi\)
−0.369860 + 0.929087i \(0.620594\pi\)
\(180\) 0 0
\(181\) −11.6803 −0.868192 −0.434096 0.900867i \(-0.642932\pi\)
−0.434096 + 0.900867i \(0.642932\pi\)
\(182\) 0 0
\(183\) 4.44584 0.328646
\(184\) 0 0
\(185\) −1.16272 −0.0854846
\(186\) 0 0
\(187\) −5.41442 −0.395942
\(188\) 0 0
\(189\) 10.3571 0.753370
\(190\) 0 0
\(191\) −12.0902 −0.874814 −0.437407 0.899264i \(-0.644103\pi\)
−0.437407 + 0.899264i \(0.644103\pi\)
\(192\) 0 0
\(193\) −13.2620 −0.954622 −0.477311 0.878734i \(-0.658388\pi\)
−0.477311 + 0.878734i \(0.658388\pi\)
\(194\) 0 0
\(195\) 0.414445 0.0296790
\(196\) 0 0
\(197\) 11.6835 0.832415 0.416208 0.909270i \(-0.363359\pi\)
0.416208 + 0.909270i \(0.363359\pi\)
\(198\) 0 0
\(199\) −24.9329 −1.76745 −0.883725 0.468007i \(-0.844972\pi\)
−0.883725 + 0.468007i \(0.844972\pi\)
\(200\) 0 0
\(201\) −7.70367 −0.543375
\(202\) 0 0
\(203\) −15.3572 −1.07786
\(204\) 0 0
\(205\) 22.7183 1.58672
\(206\) 0 0
\(207\) −5.40336 −0.375560
\(208\) 0 0
\(209\) 2.79744 0.193503
\(210\) 0 0
\(211\) 5.96245 0.410472 0.205236 0.978713i \(-0.434204\pi\)
0.205236 + 0.978713i \(0.434204\pi\)
\(212\) 0 0
\(213\) 12.8592 0.881096
\(214\) 0 0
\(215\) 8.65049 0.589959
\(216\) 0 0
\(217\) −16.6610 −1.13102
\(218\) 0 0
\(219\) 0.910690 0.0615387
\(220\) 0 0
\(221\) 0.870099 0.0585292
\(222\) 0 0
\(223\) −1.03801 −0.0695103 −0.0347552 0.999396i \(-0.511065\pi\)
−0.0347552 + 0.999396i \(0.511065\pi\)
\(224\) 0 0
\(225\) 1.54569 0.103046
\(226\) 0 0
\(227\) 6.65612 0.441782 0.220891 0.975299i \(-0.429104\pi\)
0.220891 + 0.975299i \(0.429104\pi\)
\(228\) 0 0
\(229\) 16.3885 1.08298 0.541491 0.840707i \(-0.317860\pi\)
0.541491 + 0.840707i \(0.317860\pi\)
\(230\) 0 0
\(231\) 2.45628 0.161611
\(232\) 0 0
\(233\) 16.0742 1.05306 0.526529 0.850157i \(-0.323493\pi\)
0.526529 + 0.850157i \(0.323493\pi\)
\(234\) 0 0
\(235\) −12.1580 −0.793098
\(236\) 0 0
\(237\) −7.71707 −0.501278
\(238\) 0 0
\(239\) 2.52062 0.163045 0.0815226 0.996671i \(-0.474022\pi\)
0.0815226 + 0.996671i \(0.474022\pi\)
\(240\) 0 0
\(241\) 6.11179 0.393695 0.196848 0.980434i \(-0.436930\pi\)
0.196848 + 0.980434i \(0.436930\pi\)
\(242\) 0 0
\(243\) 11.7248 0.752144
\(244\) 0 0
\(245\) −6.98507 −0.446260
\(246\) 0 0
\(247\) −0.449550 −0.0286042
\(248\) 0 0
\(249\) 3.90483 0.247459
\(250\) 0 0
\(251\) −0.489390 −0.0308900 −0.0154450 0.999881i \(-0.504916\pi\)
−0.0154450 + 0.999881i \(0.504916\pi\)
\(252\) 0 0
\(253\) −4.44137 −0.279227
\(254\) 0 0
\(255\) 13.9637 0.874443
\(256\) 0 0
\(257\) 10.0886 0.629311 0.314655 0.949206i \(-0.398111\pi\)
0.314655 + 0.949206i \(0.398111\pi\)
\(258\) 0 0
\(259\) 1.10739 0.0688100
\(260\) 0 0
\(261\) −10.1580 −0.628762
\(262\) 0 0
\(263\) 3.98466 0.245705 0.122852 0.992425i \(-0.460796\pi\)
0.122852 + 0.992425i \(0.460796\pi\)
\(264\) 0 0
\(265\) 22.6356 1.39049
\(266\) 0 0
\(267\) −7.66829 −0.469292
\(268\) 0 0
\(269\) 2.70069 0.164664 0.0823320 0.996605i \(-0.473763\pi\)
0.0823320 + 0.996605i \(0.473763\pi\)
\(270\) 0 0
\(271\) −22.3611 −1.35834 −0.679170 0.733981i \(-0.737660\pi\)
−0.679170 + 0.733981i \(0.737660\pi\)
\(272\) 0 0
\(273\) −0.394724 −0.0238898
\(274\) 0 0
\(275\) 1.27050 0.0766142
\(276\) 0 0
\(277\) 31.4865 1.89184 0.945921 0.324396i \(-0.105161\pi\)
0.945921 + 0.324396i \(0.105161\pi\)
\(278\) 0 0
\(279\) −11.0204 −0.659772
\(280\) 0 0
\(281\) 9.57079 0.570945 0.285473 0.958387i \(-0.407849\pi\)
0.285473 + 0.958387i \(0.407849\pi\)
\(282\) 0 0
\(283\) 16.3997 0.974860 0.487430 0.873162i \(-0.337934\pi\)
0.487430 + 0.873162i \(0.337934\pi\)
\(284\) 0 0
\(285\) −7.21458 −0.427355
\(286\) 0 0
\(287\) −21.6373 −1.27721
\(288\) 0 0
\(289\) 12.3159 0.724467
\(290\) 0 0
\(291\) −7.18239 −0.421039
\(292\) 0 0
\(293\) −10.0087 −0.584715 −0.292357 0.956309i \(-0.594440\pi\)
−0.292357 + 0.956309i \(0.594440\pi\)
\(294\) 0 0
\(295\) 18.5993 1.08289
\(296\) 0 0
\(297\) 5.63102 0.326745
\(298\) 0 0
\(299\) 0.713730 0.0412761
\(300\) 0 0
\(301\) −8.23888 −0.474881
\(302\) 0 0
\(303\) 12.4446 0.714921
\(304\) 0 0
\(305\) 6.42916 0.368133
\(306\) 0 0
\(307\) 18.8436 1.07546 0.537731 0.843117i \(-0.319282\pi\)
0.537731 + 0.843117i \(0.319282\pi\)
\(308\) 0 0
\(309\) 2.24167 0.127524
\(310\) 0 0
\(311\) −1.59661 −0.0905356 −0.0452678 0.998975i \(-0.514414\pi\)
−0.0452678 + 0.998975i \(0.514414\pi\)
\(312\) 0 0
\(313\) −3.94136 −0.222779 −0.111389 0.993777i \(-0.535530\pi\)
−0.111389 + 0.993777i \(0.535530\pi\)
\(314\) 0 0
\(315\) 4.32140 0.243483
\(316\) 0 0
\(317\) 1.94384 0.109177 0.0545884 0.998509i \(-0.482615\pi\)
0.0545884 + 0.998509i \(0.482615\pi\)
\(318\) 0 0
\(319\) −8.34948 −0.467481
\(320\) 0 0
\(321\) −15.0595 −0.840539
\(322\) 0 0
\(323\) −15.1465 −0.842776
\(324\) 0 0
\(325\) −0.204170 −0.0113253
\(326\) 0 0
\(327\) 26.2245 1.45022
\(328\) 0 0
\(329\) 11.5795 0.638396
\(330\) 0 0
\(331\) 7.52148 0.413418 0.206709 0.978402i \(-0.433725\pi\)
0.206709 + 0.978402i \(0.433725\pi\)
\(332\) 0 0
\(333\) 0.732480 0.0401397
\(334\) 0 0
\(335\) −11.1403 −0.608662
\(336\) 0 0
\(337\) −8.47233 −0.461517 −0.230759 0.973011i \(-0.574121\pi\)
−0.230759 + 0.973011i \(0.574121\pi\)
\(338\) 0 0
\(339\) −17.2480 −0.936781
\(340\) 0 0
\(341\) −9.05835 −0.490537
\(342\) 0 0
\(343\) 19.5278 1.05440
\(344\) 0 0
\(345\) 11.4543 0.616677
\(346\) 0 0
\(347\) 17.2487 0.925960 0.462980 0.886369i \(-0.346780\pi\)
0.462980 + 0.886369i \(0.346780\pi\)
\(348\) 0 0
\(349\) −4.67588 −0.250294 −0.125147 0.992138i \(-0.539940\pi\)
−0.125147 + 0.992138i \(0.539940\pi\)
\(350\) 0 0
\(351\) −0.904906 −0.0483003
\(352\) 0 0
\(353\) −5.45055 −0.290104 −0.145052 0.989424i \(-0.546335\pi\)
−0.145052 + 0.989424i \(0.546335\pi\)
\(354\) 0 0
\(355\) 18.5957 0.986960
\(356\) 0 0
\(357\) −13.2993 −0.703874
\(358\) 0 0
\(359\) −28.0176 −1.47871 −0.739357 0.673313i \(-0.764871\pi\)
−0.739357 + 0.673313i \(0.764871\pi\)
\(360\) 0 0
\(361\) −11.1743 −0.588122
\(362\) 0 0
\(363\) 1.33544 0.0700925
\(364\) 0 0
\(365\) 1.31696 0.0689326
\(366\) 0 0
\(367\) 28.8393 1.50540 0.752699 0.658365i \(-0.228752\pi\)
0.752699 + 0.658365i \(0.228752\pi\)
\(368\) 0 0
\(369\) −14.3119 −0.745049
\(370\) 0 0
\(371\) −21.5585 −1.11926
\(372\) 0 0
\(373\) 1.34080 0.0694239 0.0347119 0.999397i \(-0.488949\pi\)
0.0347119 + 0.999397i \(0.488949\pi\)
\(374\) 0 0
\(375\) −16.1716 −0.835096
\(376\) 0 0
\(377\) 1.34176 0.0691044
\(378\) 0 0
\(379\) 8.72245 0.448042 0.224021 0.974584i \(-0.428082\pi\)
0.224021 + 0.974584i \(0.428082\pi\)
\(380\) 0 0
\(381\) −1.50525 −0.0771165
\(382\) 0 0
\(383\) −7.76275 −0.396658 −0.198329 0.980136i \(-0.563551\pi\)
−0.198329 + 0.980136i \(0.563551\pi\)
\(384\) 0 0
\(385\) 3.55204 0.181029
\(386\) 0 0
\(387\) −5.44957 −0.277017
\(388\) 0 0
\(389\) −38.5938 −1.95678 −0.978392 0.206760i \(-0.933708\pi\)
−0.978392 + 0.206760i \(0.933708\pi\)
\(390\) 0 0
\(391\) 24.0475 1.21613
\(392\) 0 0
\(393\) 14.6303 0.738001
\(394\) 0 0
\(395\) −11.1597 −0.561506
\(396\) 0 0
\(397\) −20.4200 −1.02485 −0.512426 0.858732i \(-0.671253\pi\)
−0.512426 + 0.858732i \(0.671253\pi\)
\(398\) 0 0
\(399\) 6.87129 0.343995
\(400\) 0 0
\(401\) 4.96247 0.247814 0.123907 0.992294i \(-0.460458\pi\)
0.123907 + 0.992294i \(0.460458\pi\)
\(402\) 0 0
\(403\) 1.45568 0.0725125
\(404\) 0 0
\(405\) −7.47390 −0.371381
\(406\) 0 0
\(407\) 0.602073 0.0298436
\(408\) 0 0
\(409\) −15.3418 −0.758601 −0.379301 0.925273i \(-0.623835\pi\)
−0.379301 + 0.925273i \(0.623835\pi\)
\(410\) 0 0
\(411\) 13.5886 0.670274
\(412\) 0 0
\(413\) −17.7143 −0.871665
\(414\) 0 0
\(415\) 5.64681 0.277191
\(416\) 0 0
\(417\) −24.4849 −1.19903
\(418\) 0 0
\(419\) 12.0628 0.589306 0.294653 0.955604i \(-0.404796\pi\)
0.294653 + 0.955604i \(0.404796\pi\)
\(420\) 0 0
\(421\) 14.3042 0.697143 0.348572 0.937282i \(-0.386667\pi\)
0.348572 + 0.937282i \(0.386667\pi\)
\(422\) 0 0
\(423\) 7.65918 0.372402
\(424\) 0 0
\(425\) −6.87904 −0.333682
\(426\) 0 0
\(427\) −6.12325 −0.296325
\(428\) 0 0
\(429\) −0.214606 −0.0103613
\(430\) 0 0
\(431\) 18.9520 0.912885 0.456443 0.889753i \(-0.349123\pi\)
0.456443 + 0.889753i \(0.349123\pi\)
\(432\) 0 0
\(433\) −16.4130 −0.788760 −0.394380 0.918948i \(-0.629041\pi\)
−0.394380 + 0.918948i \(0.629041\pi\)
\(434\) 0 0
\(435\) 21.5332 1.03244
\(436\) 0 0
\(437\) −12.4245 −0.594344
\(438\) 0 0
\(439\) −24.5482 −1.17162 −0.585810 0.810448i \(-0.699224\pi\)
−0.585810 + 0.810448i \(0.699224\pi\)
\(440\) 0 0
\(441\) 4.40040 0.209543
\(442\) 0 0
\(443\) 11.0679 0.525854 0.262927 0.964816i \(-0.415312\pi\)
0.262927 + 0.964816i \(0.415312\pi\)
\(444\) 0 0
\(445\) −11.0892 −0.525677
\(446\) 0 0
\(447\) −11.3097 −0.534933
\(448\) 0 0
\(449\) 26.6647 1.25838 0.629192 0.777250i \(-0.283386\pi\)
0.629192 + 0.777250i \(0.283386\pi\)
\(450\) 0 0
\(451\) −11.7639 −0.553940
\(452\) 0 0
\(453\) −13.4486 −0.631871
\(454\) 0 0
\(455\) −0.570814 −0.0267602
\(456\) 0 0
\(457\) −3.28296 −0.153570 −0.0767851 0.997048i \(-0.524466\pi\)
−0.0767851 + 0.997048i \(0.524466\pi\)
\(458\) 0 0
\(459\) −30.4887 −1.42309
\(460\) 0 0
\(461\) −3.17514 −0.147881 −0.0739406 0.997263i \(-0.523558\pi\)
−0.0739406 + 0.997263i \(0.523558\pi\)
\(462\) 0 0
\(463\) −21.8696 −1.01637 −0.508184 0.861248i \(-0.669683\pi\)
−0.508184 + 0.861248i \(0.669683\pi\)
\(464\) 0 0
\(465\) 23.3614 1.08336
\(466\) 0 0
\(467\) 4.95735 0.229399 0.114699 0.993400i \(-0.463410\pi\)
0.114699 + 0.993400i \(0.463410\pi\)
\(468\) 0 0
\(469\) 10.6103 0.489936
\(470\) 0 0
\(471\) 11.6713 0.537787
\(472\) 0 0
\(473\) −4.47936 −0.205961
\(474\) 0 0
\(475\) 3.55416 0.163076
\(476\) 0 0
\(477\) −14.2598 −0.652912
\(478\) 0 0
\(479\) 35.5423 1.62397 0.811984 0.583680i \(-0.198388\pi\)
0.811984 + 0.583680i \(0.198388\pi\)
\(480\) 0 0
\(481\) −0.0967532 −0.00441157
\(482\) 0 0
\(483\) −10.9092 −0.496387
\(484\) 0 0
\(485\) −10.3865 −0.471627
\(486\) 0 0
\(487\) 10.1547 0.460153 0.230076 0.973173i \(-0.426102\pi\)
0.230076 + 0.973173i \(0.426102\pi\)
\(488\) 0 0
\(489\) −32.6164 −1.47497
\(490\) 0 0
\(491\) −0.367564 −0.0165879 −0.00829395 0.999966i \(-0.502640\pi\)
−0.00829395 + 0.999966i \(0.502640\pi\)
\(492\) 0 0
\(493\) 45.2076 2.03605
\(494\) 0 0
\(495\) 2.34948 0.105601
\(496\) 0 0
\(497\) −17.7109 −0.794443
\(498\) 0 0
\(499\) 31.1824 1.39591 0.697957 0.716140i \(-0.254093\pi\)
0.697957 + 0.716140i \(0.254093\pi\)
\(500\) 0 0
\(501\) −9.83532 −0.439410
\(502\) 0 0
\(503\) 20.2004 0.900692 0.450346 0.892854i \(-0.351301\pi\)
0.450346 + 0.892854i \(0.351301\pi\)
\(504\) 0 0
\(505\) 17.9962 0.800818
\(506\) 0 0
\(507\) −17.3262 −0.769486
\(508\) 0 0
\(509\) −22.0209 −0.976058 −0.488029 0.872827i \(-0.662284\pi\)
−0.488029 + 0.872827i \(0.662284\pi\)
\(510\) 0 0
\(511\) −1.25429 −0.0554866
\(512\) 0 0
\(513\) 15.7524 0.695488
\(514\) 0 0
\(515\) 3.24170 0.142846
\(516\) 0 0
\(517\) 6.29558 0.276879
\(518\) 0 0
\(519\) 1.84695 0.0810719
\(520\) 0 0
\(521\) −36.1120 −1.58209 −0.791047 0.611755i \(-0.790464\pi\)
−0.791047 + 0.611755i \(0.790464\pi\)
\(522\) 0 0
\(523\) −34.5388 −1.51028 −0.755139 0.655565i \(-0.772431\pi\)
−0.755139 + 0.655565i \(0.772431\pi\)
\(524\) 0 0
\(525\) 3.12071 0.136199
\(526\) 0 0
\(527\) 49.0457 2.13646
\(528\) 0 0
\(529\) −3.27421 −0.142357
\(530\) 0 0
\(531\) −11.7171 −0.508478
\(532\) 0 0
\(533\) 1.89046 0.0818850
\(534\) 0 0
\(535\) −21.7777 −0.941530
\(536\) 0 0
\(537\) −13.2166 −0.570337
\(538\) 0 0
\(539\) 3.61698 0.155794
\(540\) 0 0
\(541\) 6.14527 0.264206 0.132103 0.991236i \(-0.457827\pi\)
0.132103 + 0.991236i \(0.457827\pi\)
\(542\) 0 0
\(543\) −15.5984 −0.669391
\(544\) 0 0
\(545\) 37.9234 1.62446
\(546\) 0 0
\(547\) −17.3331 −0.741110 −0.370555 0.928811i \(-0.620832\pi\)
−0.370555 + 0.928811i \(0.620832\pi\)
\(548\) 0 0
\(549\) −4.05020 −0.172858
\(550\) 0 0
\(551\) −23.3572 −0.995050
\(552\) 0 0
\(553\) 10.6287 0.451978
\(554\) 0 0
\(555\) −1.55274 −0.0659101
\(556\) 0 0
\(557\) −38.1630 −1.61702 −0.808508 0.588485i \(-0.799725\pi\)
−0.808508 + 0.588485i \(0.799725\pi\)
\(558\) 0 0
\(559\) 0.719834 0.0304457
\(560\) 0 0
\(561\) −7.23064 −0.305278
\(562\) 0 0
\(563\) 33.2131 1.39976 0.699882 0.714258i \(-0.253236\pi\)
0.699882 + 0.714258i \(0.253236\pi\)
\(564\) 0 0
\(565\) −24.9424 −1.04934
\(566\) 0 0
\(567\) 7.11827 0.298939
\(568\) 0 0
\(569\) −8.23504 −0.345231 −0.172615 0.984989i \(-0.555222\pi\)
−0.172615 + 0.984989i \(0.555222\pi\)
\(570\) 0 0
\(571\) 32.7618 1.37104 0.685518 0.728055i \(-0.259576\pi\)
0.685518 + 0.728055i \(0.259576\pi\)
\(572\) 0 0
\(573\) −16.1457 −0.674496
\(574\) 0 0
\(575\) −5.64278 −0.235320
\(576\) 0 0
\(577\) −6.50814 −0.270937 −0.135469 0.990782i \(-0.543254\pi\)
−0.135469 + 0.990782i \(0.543254\pi\)
\(578\) 0 0
\(579\) −17.7107 −0.736030
\(580\) 0 0
\(581\) −5.37812 −0.223122
\(582\) 0 0
\(583\) −11.7211 −0.485436
\(584\) 0 0
\(585\) −0.377562 −0.0156103
\(586\) 0 0
\(587\) 9.95325 0.410815 0.205407 0.978677i \(-0.434148\pi\)
0.205407 + 0.978677i \(0.434148\pi\)
\(588\) 0 0
\(589\) −25.3402 −1.04413
\(590\) 0 0
\(591\) 15.6026 0.641806
\(592\) 0 0
\(593\) 8.80877 0.361733 0.180867 0.983508i \(-0.442110\pi\)
0.180867 + 0.983508i \(0.442110\pi\)
\(594\) 0 0
\(595\) −19.2322 −0.788444
\(596\) 0 0
\(597\) −33.2965 −1.36273
\(598\) 0 0
\(599\) 31.9145 1.30399 0.651996 0.758223i \(-0.273932\pi\)
0.651996 + 0.758223i \(0.273932\pi\)
\(600\) 0 0
\(601\) −11.0314 −0.449981 −0.224991 0.974361i \(-0.572235\pi\)
−0.224991 + 0.974361i \(0.572235\pi\)
\(602\) 0 0
\(603\) 7.01811 0.285799
\(604\) 0 0
\(605\) 1.93119 0.0785141
\(606\) 0 0
\(607\) −12.2159 −0.495828 −0.247914 0.968782i \(-0.579745\pi\)
−0.247914 + 0.968782i \(0.579745\pi\)
\(608\) 0 0
\(609\) −20.5086 −0.831052
\(610\) 0 0
\(611\) −1.01170 −0.0409290
\(612\) 0 0
\(613\) 3.57482 0.144386 0.0721928 0.997391i \(-0.477000\pi\)
0.0721928 + 0.997391i \(0.477000\pi\)
\(614\) 0 0
\(615\) 30.3390 1.22339
\(616\) 0 0
\(617\) −30.5057 −1.22811 −0.614057 0.789262i \(-0.710463\pi\)
−0.614057 + 0.789262i \(0.710463\pi\)
\(618\) 0 0
\(619\) −10.6118 −0.426526 −0.213263 0.976995i \(-0.568409\pi\)
−0.213263 + 0.976995i \(0.568409\pi\)
\(620\) 0 0
\(621\) −25.0094 −1.00359
\(622\) 0 0
\(623\) 10.5615 0.423138
\(624\) 0 0
\(625\) −17.0333 −0.681332
\(626\) 0 0
\(627\) 3.73582 0.149194
\(628\) 0 0
\(629\) −3.25987 −0.129980
\(630\) 0 0
\(631\) 4.29235 0.170876 0.0854379 0.996343i \(-0.472771\pi\)
0.0854379 + 0.996343i \(0.472771\pi\)
\(632\) 0 0
\(633\) 7.96250 0.316481
\(634\) 0 0
\(635\) −2.17676 −0.0863820
\(636\) 0 0
\(637\) −0.581249 −0.0230299
\(638\) 0 0
\(639\) −11.7148 −0.463431
\(640\) 0 0
\(641\) −26.5606 −1.04908 −0.524540 0.851386i \(-0.675763\pi\)
−0.524540 + 0.851386i \(0.675763\pi\)
\(642\) 0 0
\(643\) −28.0614 −1.10663 −0.553317 0.832971i \(-0.686638\pi\)
−0.553317 + 0.832971i \(0.686638\pi\)
\(644\) 0 0
\(645\) 11.5522 0.454868
\(646\) 0 0
\(647\) −32.2983 −1.26978 −0.634888 0.772604i \(-0.718954\pi\)
−0.634888 + 0.772604i \(0.718954\pi\)
\(648\) 0 0
\(649\) −9.63102 −0.378050
\(650\) 0 0
\(651\) −22.2498 −0.872039
\(652\) 0 0
\(653\) −32.9200 −1.28826 −0.644130 0.764916i \(-0.722780\pi\)
−0.644130 + 0.764916i \(0.722780\pi\)
\(654\) 0 0
\(655\) 21.1570 0.826671
\(656\) 0 0
\(657\) −0.829646 −0.0323676
\(658\) 0 0
\(659\) −3.99602 −0.155663 −0.0778314 0.996967i \(-0.524800\pi\)
−0.0778314 + 0.996967i \(0.524800\pi\)
\(660\) 0 0
\(661\) −19.2377 −0.748258 −0.374129 0.927377i \(-0.622058\pi\)
−0.374129 + 0.927377i \(0.622058\pi\)
\(662\) 0 0
\(663\) 1.16197 0.0451270
\(664\) 0 0
\(665\) 9.93663 0.385326
\(666\) 0 0
\(667\) 37.0832 1.43587
\(668\) 0 0
\(669\) −1.38620 −0.0535937
\(670\) 0 0
\(671\) −3.32912 −0.128519
\(672\) 0 0
\(673\) 5.41202 0.208618 0.104309 0.994545i \(-0.466737\pi\)
0.104309 + 0.994545i \(0.466737\pi\)
\(674\) 0 0
\(675\) 7.15422 0.275366
\(676\) 0 0
\(677\) −41.1062 −1.57984 −0.789921 0.613209i \(-0.789878\pi\)
−0.789921 + 0.613209i \(0.789878\pi\)
\(678\) 0 0
\(679\) 9.89229 0.379631
\(680\) 0 0
\(681\) 8.88885 0.340621
\(682\) 0 0
\(683\) −35.8592 −1.37211 −0.686057 0.727548i \(-0.740660\pi\)
−0.686057 + 0.727548i \(0.740660\pi\)
\(684\) 0 0
\(685\) 19.6505 0.750808
\(686\) 0 0
\(687\) 21.8859 0.834997
\(688\) 0 0
\(689\) 1.88358 0.0717585
\(690\) 0 0
\(691\) 45.1462 1.71744 0.858721 0.512444i \(-0.171260\pi\)
0.858721 + 0.512444i \(0.171260\pi\)
\(692\) 0 0
\(693\) −2.23769 −0.0850027
\(694\) 0 0
\(695\) −35.4078 −1.34310
\(696\) 0 0
\(697\) 63.6947 2.41261
\(698\) 0 0
\(699\) 21.4662 0.811926
\(700\) 0 0
\(701\) 18.5867 0.702009 0.351005 0.936374i \(-0.385840\pi\)
0.351005 + 0.936374i \(0.385840\pi\)
\(702\) 0 0
\(703\) 1.68426 0.0635232
\(704\) 0 0
\(705\) −16.2362 −0.611492
\(706\) 0 0
\(707\) −17.1399 −0.644610
\(708\) 0 0
\(709\) 27.2703 1.02416 0.512079 0.858938i \(-0.328876\pi\)
0.512079 + 0.858938i \(0.328876\pi\)
\(710\) 0 0
\(711\) 7.03031 0.263657
\(712\) 0 0
\(713\) 40.2315 1.50668
\(714\) 0 0
\(715\) −0.310343 −0.0116062
\(716\) 0 0
\(717\) 3.36614 0.125711
\(718\) 0 0
\(719\) −34.1800 −1.27470 −0.637349 0.770575i \(-0.719969\pi\)
−0.637349 + 0.770575i \(0.719969\pi\)
\(720\) 0 0
\(721\) −3.08745 −0.114983
\(722\) 0 0
\(723\) 8.16194 0.303546
\(724\) 0 0
\(725\) −10.6080 −0.393973
\(726\) 0 0
\(727\) −25.0380 −0.928608 −0.464304 0.885676i \(-0.653696\pi\)
−0.464304 + 0.885676i \(0.653696\pi\)
\(728\) 0 0
\(729\) 27.2680 1.00993
\(730\) 0 0
\(731\) 24.2531 0.897034
\(732\) 0 0
\(733\) 17.2695 0.637862 0.318931 0.947778i \(-0.396676\pi\)
0.318931 + 0.947778i \(0.396676\pi\)
\(734\) 0 0
\(735\) −9.32815 −0.344074
\(736\) 0 0
\(737\) 5.76864 0.212490
\(738\) 0 0
\(739\) −17.2687 −0.635240 −0.317620 0.948218i \(-0.602884\pi\)
−0.317620 + 0.948218i \(0.602884\pi\)
\(740\) 0 0
\(741\) −0.600347 −0.0220543
\(742\) 0 0
\(743\) 34.6374 1.27072 0.635361 0.772215i \(-0.280851\pi\)
0.635361 + 0.772215i \(0.280851\pi\)
\(744\) 0 0
\(745\) −16.3551 −0.599205
\(746\) 0 0
\(747\) −3.55734 −0.130156
\(748\) 0 0
\(749\) 20.7414 0.757875
\(750\) 0 0
\(751\) −51.5526 −1.88118 −0.940591 0.339543i \(-0.889728\pi\)
−0.940591 + 0.339543i \(0.889728\pi\)
\(752\) 0 0
\(753\) −0.653551 −0.0238167
\(754\) 0 0
\(755\) −19.4481 −0.707790
\(756\) 0 0
\(757\) −32.6049 −1.18504 −0.592522 0.805554i \(-0.701868\pi\)
−0.592522 + 0.805554i \(0.701868\pi\)
\(758\) 0 0
\(759\) −5.93119 −0.215289
\(760\) 0 0
\(761\) 2.79094 0.101172 0.0505858 0.998720i \(-0.483891\pi\)
0.0505858 + 0.998720i \(0.483891\pi\)
\(762\) 0 0
\(763\) −36.1190 −1.30759
\(764\) 0 0
\(765\) −12.7211 −0.459932
\(766\) 0 0
\(767\) 1.54771 0.0558845
\(768\) 0 0
\(769\) 23.1604 0.835187 0.417593 0.908634i \(-0.362874\pi\)
0.417593 + 0.908634i \(0.362874\pi\)
\(770\) 0 0
\(771\) 13.4728 0.485209
\(772\) 0 0
\(773\) 20.7913 0.747811 0.373905 0.927467i \(-0.378018\pi\)
0.373905 + 0.927467i \(0.378018\pi\)
\(774\) 0 0
\(775\) −11.5087 −0.413403
\(776\) 0 0
\(777\) 1.47886 0.0530537
\(778\) 0 0
\(779\) −32.9088 −1.17908
\(780\) 0 0
\(781\) −9.62916 −0.344559
\(782\) 0 0
\(783\) −47.0161 −1.68022
\(784\) 0 0
\(785\) 16.8780 0.602402
\(786\) 0 0
\(787\) −40.3874 −1.43965 −0.719827 0.694153i \(-0.755779\pi\)
−0.719827 + 0.694153i \(0.755779\pi\)
\(788\) 0 0
\(789\) 5.32128 0.189443
\(790\) 0 0
\(791\) 23.7556 0.844651
\(792\) 0 0
\(793\) 0.534990 0.0189981
\(794\) 0 0
\(795\) 30.2285 1.07209
\(796\) 0 0
\(797\) −31.1190 −1.10229 −0.551145 0.834409i \(-0.685809\pi\)
−0.551145 + 0.834409i \(0.685809\pi\)
\(798\) 0 0
\(799\) −34.0869 −1.20591
\(800\) 0 0
\(801\) 6.98588 0.246834
\(802\) 0 0
\(803\) −0.681940 −0.0240651
\(804\) 0 0
\(805\) −15.7759 −0.556028
\(806\) 0 0
\(807\) 3.60661 0.126959
\(808\) 0 0
\(809\) −23.6252 −0.830619 −0.415309 0.909680i \(-0.636327\pi\)
−0.415309 + 0.909680i \(0.636327\pi\)
\(810\) 0 0
\(811\) 26.2978 0.923442 0.461721 0.887025i \(-0.347232\pi\)
0.461721 + 0.887025i \(0.347232\pi\)
\(812\) 0 0
\(813\) −29.8619 −1.04730
\(814\) 0 0
\(815\) −47.1669 −1.65218
\(816\) 0 0
\(817\) −12.5307 −0.438395
\(818\) 0 0
\(819\) 0.359597 0.0125653
\(820\) 0 0
\(821\) 55.6264 1.94137 0.970687 0.240348i \(-0.0772615\pi\)
0.970687 + 0.240348i \(0.0772615\pi\)
\(822\) 0 0
\(823\) 28.0971 0.979402 0.489701 0.871890i \(-0.337106\pi\)
0.489701 + 0.871890i \(0.337106\pi\)
\(824\) 0 0
\(825\) 1.69668 0.0590709
\(826\) 0 0
\(827\) −38.5555 −1.34070 −0.670352 0.742043i \(-0.733857\pi\)
−0.670352 + 0.742043i \(0.733857\pi\)
\(828\) 0 0
\(829\) 44.4581 1.54409 0.772047 0.635566i \(-0.219233\pi\)
0.772047 + 0.635566i \(0.219233\pi\)
\(830\) 0 0
\(831\) 42.0484 1.45864
\(832\) 0 0
\(833\) −19.5838 −0.678539
\(834\) 0 0
\(835\) −14.2229 −0.492204
\(836\) 0 0
\(837\) −51.0077 −1.76308
\(838\) 0 0
\(839\) −39.7880 −1.37364 −0.686818 0.726830i \(-0.740993\pi\)
−0.686818 + 0.726830i \(0.740993\pi\)
\(840\) 0 0
\(841\) 40.7138 1.40393
\(842\) 0 0
\(843\) 12.7812 0.440209
\(844\) 0 0
\(845\) −25.0556 −0.861939
\(846\) 0 0
\(847\) −1.83930 −0.0631991
\(848\) 0 0
\(849\) 21.9008 0.751634
\(850\) 0 0
\(851\) −2.67403 −0.0916645
\(852\) 0 0
\(853\) 4.19523 0.143642 0.0718210 0.997418i \(-0.477119\pi\)
0.0718210 + 0.997418i \(0.477119\pi\)
\(854\) 0 0
\(855\) 6.57254 0.224776
\(856\) 0 0
\(857\) −43.4106 −1.48288 −0.741438 0.671021i \(-0.765856\pi\)
−0.741438 + 0.671021i \(0.765856\pi\)
\(858\) 0 0
\(859\) 31.7672 1.08388 0.541941 0.840416i \(-0.317690\pi\)
0.541941 + 0.840416i \(0.317690\pi\)
\(860\) 0 0
\(861\) −28.8954 −0.984752
\(862\) 0 0
\(863\) 51.0969 1.73936 0.869679 0.493618i \(-0.164326\pi\)
0.869679 + 0.493618i \(0.164326\pi\)
\(864\) 0 0
\(865\) 2.67088 0.0908127
\(866\) 0 0
\(867\) 16.4472 0.558577
\(868\) 0 0
\(869\) 5.77867 0.196028
\(870\) 0 0
\(871\) −0.927021 −0.0314109
\(872\) 0 0
\(873\) 6.54321 0.221454
\(874\) 0 0
\(875\) 22.2731 0.752967
\(876\) 0 0
\(877\) −45.8912 −1.54963 −0.774817 0.632185i \(-0.782158\pi\)
−0.774817 + 0.632185i \(0.782158\pi\)
\(878\) 0 0
\(879\) −13.3660 −0.450825
\(880\) 0 0
\(881\) −19.3333 −0.651356 −0.325678 0.945481i \(-0.605593\pi\)
−0.325678 + 0.945481i \(0.605593\pi\)
\(882\) 0 0
\(883\) 22.5862 0.760088 0.380044 0.924968i \(-0.375909\pi\)
0.380044 + 0.924968i \(0.375909\pi\)
\(884\) 0 0
\(885\) 24.8383 0.834931
\(886\) 0 0
\(887\) −34.2005 −1.14834 −0.574170 0.818736i \(-0.694675\pi\)
−0.574170 + 0.818736i \(0.694675\pi\)
\(888\) 0 0
\(889\) 2.07318 0.0695323
\(890\) 0 0
\(891\) 3.87010 0.129653
\(892\) 0 0
\(893\) 17.6115 0.589347
\(894\) 0 0
\(895\) −19.1126 −0.638863
\(896\) 0 0
\(897\) 0.953144 0.0318246
\(898\) 0 0
\(899\) 75.6325 2.52249
\(900\) 0 0
\(901\) 63.4627 2.11425
\(902\) 0 0
\(903\) −11.0025 −0.366142
\(904\) 0 0
\(905\) −22.5569 −0.749818
\(906\) 0 0
\(907\) 17.2305 0.572129 0.286065 0.958210i \(-0.407653\pi\)
0.286065 + 0.958210i \(0.407653\pi\)
\(908\) 0 0
\(909\) −11.3371 −0.376027
\(910\) 0 0
\(911\) 28.1534 0.932763 0.466382 0.884584i \(-0.345557\pi\)
0.466382 + 0.884584i \(0.345557\pi\)
\(912\) 0 0
\(913\) −2.92400 −0.0967704
\(914\) 0 0
\(915\) 8.58577 0.283837
\(916\) 0 0
\(917\) −20.1503 −0.665420
\(918\) 0 0
\(919\) 1.87464 0.0618387 0.0309193 0.999522i \(-0.490157\pi\)
0.0309193 + 0.999522i \(0.490157\pi\)
\(920\) 0 0
\(921\) 25.1645 0.829199
\(922\) 0 0
\(923\) 1.54741 0.0509336
\(924\) 0 0
\(925\) 0.764935 0.0251509
\(926\) 0 0
\(927\) −2.04218 −0.0670740
\(928\) 0 0
\(929\) 23.2555 0.762989 0.381495 0.924371i \(-0.375409\pi\)
0.381495 + 0.924371i \(0.375409\pi\)
\(930\) 0 0
\(931\) 10.1183 0.331613
\(932\) 0 0
\(933\) −2.13218 −0.0698045
\(934\) 0 0
\(935\) −10.4563 −0.341957
\(936\) 0 0
\(937\) 11.1266 0.363490 0.181745 0.983346i \(-0.441826\pi\)
0.181745 + 0.983346i \(0.441826\pi\)
\(938\) 0 0
\(939\) −5.26345 −0.171766
\(940\) 0 0
\(941\) 23.5923 0.769088 0.384544 0.923107i \(-0.374359\pi\)
0.384544 + 0.923107i \(0.374359\pi\)
\(942\) 0 0
\(943\) 52.2479 1.70142
\(944\) 0 0
\(945\) 20.0016 0.650652
\(946\) 0 0
\(947\) 23.1038 0.750772 0.375386 0.926869i \(-0.377510\pi\)
0.375386 + 0.926869i \(0.377510\pi\)
\(948\) 0 0
\(949\) 0.109588 0.00355737
\(950\) 0 0
\(951\) 2.59588 0.0841771
\(952\) 0 0
\(953\) −2.75964 −0.0893934 −0.0446967 0.999001i \(-0.514232\pi\)
−0.0446967 + 0.999001i \(0.514232\pi\)
\(954\) 0 0
\(955\) −23.3484 −0.755537
\(956\) 0 0
\(957\) −11.1502 −0.360436
\(958\) 0 0
\(959\) −18.7155 −0.604355
\(960\) 0 0
\(961\) 51.0537 1.64689
\(962\) 0 0
\(963\) 13.7193 0.442099
\(964\) 0 0
\(965\) −25.6115 −0.824464
\(966\) 0 0
\(967\) 50.7176 1.63097 0.815484 0.578780i \(-0.196471\pi\)
0.815484 + 0.578780i \(0.196471\pi\)
\(968\) 0 0
\(969\) −20.2273 −0.649794
\(970\) 0 0
\(971\) −38.8913 −1.24808 −0.624041 0.781392i \(-0.714510\pi\)
−0.624041 + 0.781392i \(0.714510\pi\)
\(972\) 0 0
\(973\) 33.7230 1.08111
\(974\) 0 0
\(975\) −0.272657 −0.00873202
\(976\) 0 0
\(977\) −17.1186 −0.547673 −0.273837 0.961776i \(-0.588293\pi\)
−0.273837 + 0.961776i \(0.588293\pi\)
\(978\) 0 0
\(979\) 5.74214 0.183520
\(980\) 0 0
\(981\) −23.8907 −0.762773
\(982\) 0 0
\(983\) −5.78625 −0.184553 −0.0922763 0.995733i \(-0.529414\pi\)
−0.0922763 + 0.995733i \(0.529414\pi\)
\(984\) 0 0
\(985\) 22.5631 0.718919
\(986\) 0 0
\(987\) 15.4637 0.492214
\(988\) 0 0
\(989\) 19.8945 0.632608
\(990\) 0 0
\(991\) 4.97362 0.157992 0.0789961 0.996875i \(-0.474829\pi\)
0.0789961 + 0.996875i \(0.474829\pi\)
\(992\) 0 0
\(993\) 10.0445 0.318752
\(994\) 0 0
\(995\) −48.1503 −1.52647
\(996\) 0 0
\(997\) −22.3402 −0.707521 −0.353760 0.935336i \(-0.615097\pi\)
−0.353760 + 0.935336i \(0.615097\pi\)
\(998\) 0 0
\(999\) 3.39028 0.107264
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2816.2.a.q.1.4 5
4.3 odd 2 2816.2.a.r.1.2 5
8.3 odd 2 2816.2.a.o.1.4 5
8.5 even 2 2816.2.a.p.1.2 5
16.3 odd 4 88.2.c.a.45.3 10
16.5 even 4 352.2.c.a.177.4 10
16.11 odd 4 88.2.c.a.45.4 yes 10
16.13 even 4 352.2.c.a.177.7 10
48.5 odd 4 3168.2.f.g.1585.3 10
48.11 even 4 792.2.f.g.397.7 10
48.29 odd 4 3168.2.f.g.1585.8 10
48.35 even 4 792.2.f.g.397.8 10
176.3 odd 20 968.2.o.g.493.1 40
176.19 even 20 968.2.o.h.493.10 40
176.21 odd 4 3872.2.c.f.1937.4 10
176.27 odd 20 968.2.o.g.245.5 40
176.35 even 20 968.2.o.h.565.6 40
176.43 even 4 968.2.c.d.485.7 10
176.51 even 20 968.2.o.h.269.3 40
176.59 odd 20 968.2.o.g.269.1 40
176.75 odd 20 968.2.o.g.565.9 40
176.83 even 20 968.2.o.h.245.2 40
176.91 odd 20 968.2.o.g.493.8 40
176.107 even 20 968.2.o.h.493.3 40
176.109 odd 4 3872.2.c.f.1937.7 10
176.115 odd 20 968.2.o.g.245.9 40
176.123 even 20 968.2.o.h.565.2 40
176.131 even 4 968.2.c.d.485.8 10
176.139 even 20 968.2.o.h.269.10 40
176.147 odd 20 968.2.o.g.269.8 40
176.163 odd 20 968.2.o.g.565.5 40
176.171 even 20 968.2.o.h.245.6 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.c.a.45.3 10 16.3 odd 4
88.2.c.a.45.4 yes 10 16.11 odd 4
352.2.c.a.177.4 10 16.5 even 4
352.2.c.a.177.7 10 16.13 even 4
792.2.f.g.397.7 10 48.11 even 4
792.2.f.g.397.8 10 48.35 even 4
968.2.c.d.485.7 10 176.43 even 4
968.2.c.d.485.8 10 176.131 even 4
968.2.o.g.245.5 40 176.27 odd 20
968.2.o.g.245.9 40 176.115 odd 20
968.2.o.g.269.1 40 176.59 odd 20
968.2.o.g.269.8 40 176.147 odd 20
968.2.o.g.493.1 40 176.3 odd 20
968.2.o.g.493.8 40 176.91 odd 20
968.2.o.g.565.5 40 176.163 odd 20
968.2.o.g.565.9 40 176.75 odd 20
968.2.o.h.245.2 40 176.83 even 20
968.2.o.h.245.6 40 176.171 even 20
968.2.o.h.269.3 40 176.51 even 20
968.2.o.h.269.10 40 176.139 even 20
968.2.o.h.493.3 40 176.107 even 20
968.2.o.h.493.10 40 176.19 even 20
968.2.o.h.565.2 40 176.123 even 20
968.2.o.h.565.6 40 176.35 even 20
2816.2.a.o.1.4 5 8.3 odd 2
2816.2.a.p.1.2 5 8.5 even 2
2816.2.a.q.1.4 5 1.1 even 1 trivial
2816.2.a.r.1.2 5 4.3 odd 2
3168.2.f.g.1585.3 10 48.5 odd 4
3168.2.f.g.1585.8 10 48.29 odd 4
3872.2.c.f.1937.4 10 176.21 odd 4
3872.2.c.f.1937.7 10 176.109 odd 4