Properties

Label 2816.2.a.p.1.5
Level $2816$
Weight $2$
Character 2816.1
Self dual yes
Analytic conductor $22.486$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2816,2,Mod(1,2816)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2816.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2816, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2816 = 2^{8} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2816.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,-4,0,0,0,5,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.4858732092\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.380224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 8x^{3} - 2x^{2} + 5x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.874805\) of defining polynomial
Character \(\chi\) \(=\) 2816.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.35300 q^{3} -4.16794 q^{5} +0.933222 q^{7} +2.53661 q^{9} +1.00000 q^{11} -2.93322 q^{13} -9.80716 q^{15} +2.44626 q^{17} -2.68283 q^{19} +2.19587 q^{21} -3.47129 q^{23} +12.3717 q^{25} -1.09035 q^{27} +4.57245 q^{29} +3.65781 q^{31} +2.35300 q^{33} -3.88961 q^{35} -4.53806 q^{37} -6.90187 q^{39} -4.12618 q^{41} -11.4650 q^{43} -10.5724 q^{45} -3.26265 q^{47} -6.12910 q^{49} +5.75606 q^{51} +0.650132 q^{53} -4.16794 q^{55} -6.31271 q^{57} -2.90965 q^{59} -10.7060 q^{61} +2.36722 q^{63} +12.2255 q^{65} -5.42623 q^{67} -8.16794 q^{69} -7.75129 q^{71} -13.0650 q^{73} +29.1106 q^{75} +0.933222 q^{77} -4.83666 q^{79} -10.1754 q^{81} +0.659664 q^{83} -10.1959 q^{85} +10.7590 q^{87} +2.74629 q^{89} -2.73735 q^{91} +8.60683 q^{93} +11.1819 q^{95} +1.82905 q^{97} +2.53661 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{5} + 5 q^{9} + 5 q^{11} - 10 q^{13} - 4 q^{15} - 2 q^{17} - 12 q^{21} - 6 q^{23} + 3 q^{25} - 12 q^{27} - 10 q^{29} + 2 q^{31} - 16 q^{37} + 12 q^{39} - 2 q^{41} + 4 q^{43} - 20 q^{45} + 2 q^{47}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.35300 1.35851 0.679253 0.733904i \(-0.262304\pi\)
0.679253 + 0.733904i \(0.262304\pi\)
\(4\) 0 0
\(5\) −4.16794 −1.86396 −0.931979 0.362511i \(-0.881919\pi\)
−0.931979 + 0.362511i \(0.881919\pi\)
\(6\) 0 0
\(7\) 0.933222 0.352725 0.176362 0.984325i \(-0.443567\pi\)
0.176362 + 0.984325i \(0.443567\pi\)
\(8\) 0 0
\(9\) 2.53661 0.845538
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −2.93322 −0.813530 −0.406765 0.913533i \(-0.633343\pi\)
−0.406765 + 0.913533i \(0.633343\pi\)
\(14\) 0 0
\(15\) −9.80716 −2.53220
\(16\) 0 0
\(17\) 2.44626 0.593306 0.296653 0.954985i \(-0.404130\pi\)
0.296653 + 0.954985i \(0.404130\pi\)
\(18\) 0 0
\(19\) −2.68283 −0.615484 −0.307742 0.951470i \(-0.599573\pi\)
−0.307742 + 0.951470i \(0.599573\pi\)
\(20\) 0 0
\(21\) 2.19587 0.479179
\(22\) 0 0
\(23\) −3.47129 −0.723813 −0.361907 0.932214i \(-0.617874\pi\)
−0.361907 + 0.932214i \(0.617874\pi\)
\(24\) 0 0
\(25\) 12.3717 2.47434
\(26\) 0 0
\(27\) −1.09035 −0.209838
\(28\) 0 0
\(29\) 4.57245 0.849082 0.424541 0.905409i \(-0.360435\pi\)
0.424541 + 0.905409i \(0.360435\pi\)
\(30\) 0 0
\(31\) 3.65781 0.656962 0.328481 0.944511i \(-0.393463\pi\)
0.328481 + 0.944511i \(0.393463\pi\)
\(32\) 0 0
\(33\) 2.35300 0.409605
\(34\) 0 0
\(35\) −3.88961 −0.657465
\(36\) 0 0
\(37\) −4.53806 −0.746053 −0.373027 0.927821i \(-0.621680\pi\)
−0.373027 + 0.927821i \(0.621680\pi\)
\(38\) 0 0
\(39\) −6.90187 −1.10518
\(40\) 0 0
\(41\) −4.12618 −0.644402 −0.322201 0.946671i \(-0.604423\pi\)
−0.322201 + 0.946671i \(0.604423\pi\)
\(42\) 0 0
\(43\) −11.4650 −1.74839 −0.874196 0.485573i \(-0.838611\pi\)
−0.874196 + 0.485573i \(0.838611\pi\)
\(44\) 0 0
\(45\) −10.5724 −1.57605
\(46\) 0 0
\(47\) −3.26265 −0.475907 −0.237953 0.971277i \(-0.576477\pi\)
−0.237953 + 0.971277i \(0.576477\pi\)
\(48\) 0 0
\(49\) −6.12910 −0.875585
\(50\) 0 0
\(51\) 5.75606 0.806009
\(52\) 0 0
\(53\) 0.650132 0.0893025 0.0446512 0.999003i \(-0.485782\pi\)
0.0446512 + 0.999003i \(0.485782\pi\)
\(54\) 0 0
\(55\) −4.16794 −0.562005
\(56\) 0 0
\(57\) −6.31271 −0.836139
\(58\) 0 0
\(59\) −2.90965 −0.378804 −0.189402 0.981900i \(-0.560655\pi\)
−0.189402 + 0.981900i \(0.560655\pi\)
\(60\) 0 0
\(61\) −10.7060 −1.37076 −0.685382 0.728184i \(-0.740365\pi\)
−0.685382 + 0.728184i \(0.740365\pi\)
\(62\) 0 0
\(63\) 2.36722 0.298242
\(64\) 0 0
\(65\) 12.2255 1.51639
\(66\) 0 0
\(67\) −5.42623 −0.662919 −0.331460 0.943469i \(-0.607541\pi\)
−0.331460 + 0.943469i \(0.607541\pi\)
\(68\) 0 0
\(69\) −8.16794 −0.983304
\(70\) 0 0
\(71\) −7.75129 −0.919909 −0.459955 0.887942i \(-0.652134\pi\)
−0.459955 + 0.887942i \(0.652134\pi\)
\(72\) 0 0
\(73\) −13.0650 −1.52915 −0.764574 0.644536i \(-0.777051\pi\)
−0.764574 + 0.644536i \(0.777051\pi\)
\(74\) 0 0
\(75\) 29.1106 3.36141
\(76\) 0 0
\(77\) 0.933222 0.106351
\(78\) 0 0
\(79\) −4.83666 −0.544166 −0.272083 0.962274i \(-0.587713\pi\)
−0.272083 + 0.962274i \(0.587713\pi\)
\(80\) 0 0
\(81\) −10.1754 −1.13060
\(82\) 0 0
\(83\) 0.659664 0.0724075 0.0362038 0.999344i \(-0.488473\pi\)
0.0362038 + 0.999344i \(0.488473\pi\)
\(84\) 0 0
\(85\) −10.1959 −1.10590
\(86\) 0 0
\(87\) 10.7590 1.15348
\(88\) 0 0
\(89\) 2.74629 0.291107 0.145553 0.989350i \(-0.453504\pi\)
0.145553 + 0.989350i \(0.453504\pi\)
\(90\) 0 0
\(91\) −2.73735 −0.286952
\(92\) 0 0
\(93\) 8.60683 0.892487
\(94\) 0 0
\(95\) 11.1819 1.14724
\(96\) 0 0
\(97\) 1.82905 0.185712 0.0928561 0.995680i \(-0.470400\pi\)
0.0928561 + 0.995680i \(0.470400\pi\)
\(98\) 0 0
\(99\) 2.53661 0.254939
\(100\) 0 0
\(101\) 12.6811 1.26182 0.630908 0.775857i \(-0.282682\pi\)
0.630908 + 0.775857i \(0.282682\pi\)
\(102\) 0 0
\(103\) −3.86644 −0.380972 −0.190486 0.981690i \(-0.561006\pi\)
−0.190486 + 0.981690i \(0.561006\pi\)
\(104\) 0 0
\(105\) −9.15226 −0.893170
\(106\) 0 0
\(107\) 12.7821 1.23570 0.617848 0.786298i \(-0.288005\pi\)
0.617848 + 0.786298i \(0.288005\pi\)
\(108\) 0 0
\(109\) −1.85065 −0.177260 −0.0886299 0.996065i \(-0.528249\pi\)
−0.0886299 + 0.996065i \(0.528249\pi\)
\(110\) 0 0
\(111\) −10.6781 −1.01352
\(112\) 0 0
\(113\) 16.6815 1.56926 0.784632 0.619962i \(-0.212852\pi\)
0.784632 + 0.619962i \(0.212852\pi\)
\(114\) 0 0
\(115\) 14.4681 1.34916
\(116\) 0 0
\(117\) −7.44045 −0.687870
\(118\) 0 0
\(119\) 2.28291 0.209274
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −9.70891 −0.875423
\(124\) 0 0
\(125\) −30.7248 −2.74811
\(126\) 0 0
\(127\) 6.51013 0.577680 0.288840 0.957377i \(-0.406730\pi\)
0.288840 + 0.957377i \(0.406730\pi\)
\(128\) 0 0
\(129\) −26.9771 −2.37520
\(130\) 0 0
\(131\) −6.91569 −0.604227 −0.302114 0.953272i \(-0.597692\pi\)
−0.302114 + 0.953272i \(0.597692\pi\)
\(132\) 0 0
\(133\) −2.50368 −0.217097
\(134\) 0 0
\(135\) 4.54451 0.391129
\(136\) 0 0
\(137\) −5.81952 −0.497195 −0.248598 0.968607i \(-0.579970\pi\)
−0.248598 + 0.968607i \(0.579970\pi\)
\(138\) 0 0
\(139\) −9.53529 −0.808772 −0.404386 0.914588i \(-0.632515\pi\)
−0.404386 + 0.914588i \(0.632515\pi\)
\(140\) 0 0
\(141\) −7.67702 −0.646522
\(142\) 0 0
\(143\) −2.93322 −0.245288
\(144\) 0 0
\(145\) −19.0577 −1.58265
\(146\) 0 0
\(147\) −14.4218 −1.18949
\(148\) 0 0
\(149\) −13.9221 −1.14055 −0.570273 0.821455i \(-0.693162\pi\)
−0.570273 + 0.821455i \(0.693162\pi\)
\(150\) 0 0
\(151\) 15.2226 1.23880 0.619398 0.785077i \(-0.287377\pi\)
0.619398 + 0.785077i \(0.287377\pi\)
\(152\) 0 0
\(153\) 6.20522 0.501662
\(154\) 0 0
\(155\) −15.2455 −1.22455
\(156\) 0 0
\(157\) 0.873940 0.0697480 0.0348740 0.999392i \(-0.488897\pi\)
0.0348740 + 0.999392i \(0.488897\pi\)
\(158\) 0 0
\(159\) 1.52976 0.121318
\(160\) 0 0
\(161\) −3.23948 −0.255307
\(162\) 0 0
\(163\) 7.52686 0.589549 0.294775 0.955567i \(-0.404755\pi\)
0.294775 + 0.955567i \(0.404755\pi\)
\(164\) 0 0
\(165\) −9.80716 −0.763487
\(166\) 0 0
\(167\) 0.142904 0.0110583 0.00552913 0.999985i \(-0.498240\pi\)
0.00552913 + 0.999985i \(0.498240\pi\)
\(168\) 0 0
\(169\) −4.39621 −0.338170
\(170\) 0 0
\(171\) −6.80531 −0.520415
\(172\) 0 0
\(173\) 1.12910 0.0858436 0.0429218 0.999078i \(-0.486333\pi\)
0.0429218 + 0.999078i \(0.486333\pi\)
\(174\) 0 0
\(175\) 11.5456 0.872762
\(176\) 0 0
\(177\) −6.84641 −0.514608
\(178\) 0 0
\(179\) −15.1620 −1.13326 −0.566631 0.823972i \(-0.691754\pi\)
−0.566631 + 0.823972i \(0.691754\pi\)
\(180\) 0 0
\(181\) −16.9211 −1.25773 −0.628867 0.777513i \(-0.716481\pi\)
−0.628867 + 0.777513i \(0.716481\pi\)
\(182\) 0 0
\(183\) −25.1912 −1.86219
\(184\) 0 0
\(185\) 18.9144 1.39061
\(186\) 0 0
\(187\) 2.44626 0.178888
\(188\) 0 0
\(189\) −1.01754 −0.0740151
\(190\) 0 0
\(191\) 16.6720 1.20635 0.603174 0.797610i \(-0.293903\pi\)
0.603174 + 0.797610i \(0.293903\pi\)
\(192\) 0 0
\(193\) 0.180700 0.0130071 0.00650354 0.999979i \(-0.497930\pi\)
0.00650354 + 0.999979i \(0.497930\pi\)
\(194\) 0 0
\(195\) 28.7666 2.06002
\(196\) 0 0
\(197\) −8.38885 −0.597681 −0.298840 0.954303i \(-0.596600\pi\)
−0.298840 + 0.954303i \(0.596600\pi\)
\(198\) 0 0
\(199\) 22.0996 1.56660 0.783298 0.621646i \(-0.213536\pi\)
0.783298 + 0.621646i \(0.213536\pi\)
\(200\) 0 0
\(201\) −12.7679 −0.900579
\(202\) 0 0
\(203\) 4.26711 0.299492
\(204\) 0 0
\(205\) 17.1977 1.20114
\(206\) 0 0
\(207\) −8.80531 −0.612011
\(208\) 0 0
\(209\) −2.68283 −0.185575
\(210\) 0 0
\(211\) −15.0390 −1.03533 −0.517663 0.855585i \(-0.673198\pi\)
−0.517663 + 0.855585i \(0.673198\pi\)
\(212\) 0 0
\(213\) −18.2388 −1.24970
\(214\) 0 0
\(215\) 47.7853 3.25893
\(216\) 0 0
\(217\) 3.41355 0.231727
\(218\) 0 0
\(219\) −30.7421 −2.07736
\(220\) 0 0
\(221\) −7.17543 −0.482672
\(222\) 0 0
\(223\) 10.2766 0.688172 0.344086 0.938938i \(-0.388189\pi\)
0.344086 + 0.938938i \(0.388189\pi\)
\(224\) 0 0
\(225\) 31.3822 2.09215
\(226\) 0 0
\(227\) 15.6688 1.03998 0.519989 0.854173i \(-0.325936\pi\)
0.519989 + 0.854173i \(0.325936\pi\)
\(228\) 0 0
\(229\) 14.0747 0.930083 0.465041 0.885289i \(-0.346039\pi\)
0.465041 + 0.885289i \(0.346039\pi\)
\(230\) 0 0
\(231\) 2.19587 0.144478
\(232\) 0 0
\(233\) 12.0993 0.792652 0.396326 0.918110i \(-0.370285\pi\)
0.396326 + 0.918110i \(0.370285\pi\)
\(234\) 0 0
\(235\) 13.5985 0.887070
\(236\) 0 0
\(237\) −11.3807 −0.739253
\(238\) 0 0
\(239\) 21.7479 1.40675 0.703377 0.710817i \(-0.251675\pi\)
0.703377 + 0.710817i \(0.251675\pi\)
\(240\) 0 0
\(241\) −6.93967 −0.447024 −0.223512 0.974701i \(-0.571752\pi\)
−0.223512 + 0.974701i \(0.571752\pi\)
\(242\) 0 0
\(243\) −20.6718 −1.32609
\(244\) 0 0
\(245\) 25.5457 1.63205
\(246\) 0 0
\(247\) 7.86935 0.500714
\(248\) 0 0
\(249\) 1.55219 0.0983660
\(250\) 0 0
\(251\) 17.7279 1.11897 0.559486 0.828840i \(-0.310999\pi\)
0.559486 + 0.828840i \(0.310999\pi\)
\(252\) 0 0
\(253\) −3.47129 −0.218238
\(254\) 0 0
\(255\) −23.9909 −1.50237
\(256\) 0 0
\(257\) 17.7545 1.10750 0.553748 0.832684i \(-0.313197\pi\)
0.553748 + 0.832684i \(0.313197\pi\)
\(258\) 0 0
\(259\) −4.23502 −0.263152
\(260\) 0 0
\(261\) 11.5985 0.717931
\(262\) 0 0
\(263\) −27.6424 −1.70450 −0.852252 0.523132i \(-0.824763\pi\)
−0.852252 + 0.523132i \(0.824763\pi\)
\(264\) 0 0
\(265\) −2.70971 −0.166456
\(266\) 0 0
\(267\) 6.46203 0.395470
\(268\) 0 0
\(269\) −10.6283 −0.648020 −0.324010 0.946054i \(-0.605031\pi\)
−0.324010 + 0.946054i \(0.605031\pi\)
\(270\) 0 0
\(271\) −19.7481 −1.19961 −0.599805 0.800146i \(-0.704755\pi\)
−0.599805 + 0.800146i \(0.704755\pi\)
\(272\) 0 0
\(273\) −6.44098 −0.389826
\(274\) 0 0
\(275\) 12.3717 0.746042
\(276\) 0 0
\(277\) 12.5353 0.753172 0.376586 0.926382i \(-0.377098\pi\)
0.376586 + 0.926382i \(0.377098\pi\)
\(278\) 0 0
\(279\) 9.27845 0.555486
\(280\) 0 0
\(281\) 23.8037 1.42001 0.710006 0.704195i \(-0.248692\pi\)
0.710006 + 0.704195i \(0.248692\pi\)
\(282\) 0 0
\(283\) 27.7294 1.64834 0.824172 0.566340i \(-0.191641\pi\)
0.824172 + 0.566340i \(0.191641\pi\)
\(284\) 0 0
\(285\) 26.3110 1.55853
\(286\) 0 0
\(287\) −3.85065 −0.227297
\(288\) 0 0
\(289\) −11.0158 −0.647988
\(290\) 0 0
\(291\) 4.30376 0.252291
\(292\) 0 0
\(293\) 5.61389 0.327967 0.163984 0.986463i \(-0.447566\pi\)
0.163984 + 0.986463i \(0.447566\pi\)
\(294\) 0 0
\(295\) 12.1272 0.706075
\(296\) 0 0
\(297\) −1.09035 −0.0632685
\(298\) 0 0
\(299\) 10.1821 0.588843
\(300\) 0 0
\(301\) −10.6994 −0.616701
\(302\) 0 0
\(303\) 29.8386 1.71419
\(304\) 0 0
\(305\) 44.6220 2.55505
\(306\) 0 0
\(307\) −27.8554 −1.58979 −0.794895 0.606747i \(-0.792474\pi\)
−0.794895 + 0.606747i \(0.792474\pi\)
\(308\) 0 0
\(309\) −9.09775 −0.517553
\(310\) 0 0
\(311\) −24.4075 −1.38402 −0.692012 0.721886i \(-0.743276\pi\)
−0.692012 + 0.721886i \(0.743276\pi\)
\(312\) 0 0
\(313\) −9.13514 −0.516349 −0.258174 0.966098i \(-0.583121\pi\)
−0.258174 + 0.966098i \(0.583121\pi\)
\(314\) 0 0
\(315\) −9.86644 −0.555911
\(316\) 0 0
\(317\) 17.9501 1.00818 0.504088 0.863652i \(-0.331829\pi\)
0.504088 + 0.863652i \(0.331829\pi\)
\(318\) 0 0
\(319\) 4.57245 0.256008
\(320\) 0 0
\(321\) 30.0764 1.67870
\(322\) 0 0
\(323\) −6.56291 −0.365170
\(324\) 0 0
\(325\) −36.2890 −2.01295
\(326\) 0 0
\(327\) −4.35457 −0.240809
\(328\) 0 0
\(329\) −3.04478 −0.167864
\(330\) 0 0
\(331\) 13.1934 0.725173 0.362586 0.931950i \(-0.381894\pi\)
0.362586 + 0.931950i \(0.381894\pi\)
\(332\) 0 0
\(333\) −11.5113 −0.630816
\(334\) 0 0
\(335\) 22.6162 1.23565
\(336\) 0 0
\(337\) 23.8712 1.30035 0.650173 0.759787i \(-0.274697\pi\)
0.650173 + 0.759787i \(0.274697\pi\)
\(338\) 0 0
\(339\) 39.2516 2.13185
\(340\) 0 0
\(341\) 3.65781 0.198082
\(342\) 0 0
\(343\) −12.2524 −0.661566
\(344\) 0 0
\(345\) 34.0435 1.83284
\(346\) 0 0
\(347\) −37.2210 −1.99813 −0.999065 0.0432373i \(-0.986233\pi\)
−0.999065 + 0.0432373i \(0.986233\pi\)
\(348\) 0 0
\(349\) −28.4140 −1.52097 −0.760483 0.649358i \(-0.775038\pi\)
−0.760483 + 0.649358i \(0.775038\pi\)
\(350\) 0 0
\(351\) 3.19824 0.170709
\(352\) 0 0
\(353\) −6.72158 −0.357754 −0.178877 0.983871i \(-0.557246\pi\)
−0.178877 + 0.983871i \(0.557246\pi\)
\(354\) 0 0
\(355\) 32.3069 1.71467
\(356\) 0 0
\(357\) 5.37168 0.284300
\(358\) 0 0
\(359\) 19.8260 1.04638 0.523188 0.852217i \(-0.324743\pi\)
0.523188 + 0.852217i \(0.324743\pi\)
\(360\) 0 0
\(361\) −11.8024 −0.621179
\(362\) 0 0
\(363\) 2.35300 0.123501
\(364\) 0 0
\(365\) 54.4543 2.85027
\(366\) 0 0
\(367\) −4.54822 −0.237415 −0.118708 0.992929i \(-0.537875\pi\)
−0.118708 + 0.992929i \(0.537875\pi\)
\(368\) 0 0
\(369\) −10.4665 −0.544866
\(370\) 0 0
\(371\) 0.606718 0.0314992
\(372\) 0 0
\(373\) 33.3992 1.72934 0.864672 0.502336i \(-0.167526\pi\)
0.864672 + 0.502336i \(0.167526\pi\)
\(374\) 0 0
\(375\) −72.2956 −3.73333
\(376\) 0 0
\(377\) −13.4120 −0.690753
\(378\) 0 0
\(379\) −9.24843 −0.475060 −0.237530 0.971380i \(-0.576338\pi\)
−0.237530 + 0.971380i \(0.576338\pi\)
\(380\) 0 0
\(381\) 15.3183 0.784782
\(382\) 0 0
\(383\) −31.6080 −1.61509 −0.807547 0.589803i \(-0.799205\pi\)
−0.807547 + 0.589803i \(0.799205\pi\)
\(384\) 0 0
\(385\) −3.88961 −0.198233
\(386\) 0 0
\(387\) −29.0822 −1.47833
\(388\) 0 0
\(389\) 4.99543 0.253278 0.126639 0.991949i \(-0.459581\pi\)
0.126639 + 0.991949i \(0.459581\pi\)
\(390\) 0 0
\(391\) −8.49168 −0.429443
\(392\) 0 0
\(393\) −16.2726 −0.820846
\(394\) 0 0
\(395\) 20.1589 1.01430
\(396\) 0 0
\(397\) −17.7950 −0.893107 −0.446553 0.894757i \(-0.647349\pi\)
−0.446553 + 0.894757i \(0.647349\pi\)
\(398\) 0 0
\(399\) −5.89116 −0.294927
\(400\) 0 0
\(401\) −12.1739 −0.607934 −0.303967 0.952683i \(-0.598311\pi\)
−0.303967 + 0.952683i \(0.598311\pi\)
\(402\) 0 0
\(403\) −10.7292 −0.534458
\(404\) 0 0
\(405\) 42.4106 2.10740
\(406\) 0 0
\(407\) −4.53806 −0.224943
\(408\) 0 0
\(409\) −0.587997 −0.0290746 −0.0145373 0.999894i \(-0.504628\pi\)
−0.0145373 + 0.999894i \(0.504628\pi\)
\(410\) 0 0
\(411\) −13.6933 −0.675442
\(412\) 0 0
\(413\) −2.71535 −0.133614
\(414\) 0 0
\(415\) −2.74944 −0.134965
\(416\) 0 0
\(417\) −22.4365 −1.09872
\(418\) 0 0
\(419\) −11.1507 −0.544748 −0.272374 0.962191i \(-0.587809\pi\)
−0.272374 + 0.962191i \(0.587809\pi\)
\(420\) 0 0
\(421\) −34.8398 −1.69799 −0.848995 0.528401i \(-0.822792\pi\)
−0.848995 + 0.528401i \(0.822792\pi\)
\(422\) 0 0
\(423\) −8.27608 −0.402397
\(424\) 0 0
\(425\) 30.2645 1.46804
\(426\) 0 0
\(427\) −9.99108 −0.483502
\(428\) 0 0
\(429\) −6.90187 −0.333226
\(430\) 0 0
\(431\) 24.8647 1.19769 0.598846 0.800864i \(-0.295626\pi\)
0.598846 + 0.800864i \(0.295626\pi\)
\(432\) 0 0
\(433\) −0.547704 −0.0263210 −0.0131605 0.999913i \(-0.504189\pi\)
−0.0131605 + 0.999913i \(0.504189\pi\)
\(434\) 0 0
\(435\) −44.8427 −2.15004
\(436\) 0 0
\(437\) 9.31288 0.445495
\(438\) 0 0
\(439\) 27.5308 1.31397 0.656987 0.753902i \(-0.271831\pi\)
0.656987 + 0.753902i \(0.271831\pi\)
\(440\) 0 0
\(441\) −15.5471 −0.740340
\(442\) 0 0
\(443\) 8.05454 0.382683 0.191341 0.981524i \(-0.438716\pi\)
0.191341 + 0.981524i \(0.438716\pi\)
\(444\) 0 0
\(445\) −11.4464 −0.542611
\(446\) 0 0
\(447\) −32.7588 −1.54944
\(448\) 0 0
\(449\) −33.7705 −1.59373 −0.796865 0.604158i \(-0.793510\pi\)
−0.796865 + 0.604158i \(0.793510\pi\)
\(450\) 0 0
\(451\) −4.12618 −0.194294
\(452\) 0 0
\(453\) 35.8187 1.68291
\(454\) 0 0
\(455\) 11.4091 0.534867
\(456\) 0 0
\(457\) 3.83220 0.179263 0.0896313 0.995975i \(-0.471431\pi\)
0.0896313 + 0.995975i \(0.471431\pi\)
\(458\) 0 0
\(459\) −2.66728 −0.124498
\(460\) 0 0
\(461\) 15.8380 0.737649 0.368825 0.929499i \(-0.379760\pi\)
0.368825 + 0.929499i \(0.379760\pi\)
\(462\) 0 0
\(463\) −30.4131 −1.41341 −0.706707 0.707506i \(-0.749820\pi\)
−0.706707 + 0.707506i \(0.749820\pi\)
\(464\) 0 0
\(465\) −35.8727 −1.66356
\(466\) 0 0
\(467\) 20.1815 0.933887 0.466943 0.884287i \(-0.345355\pi\)
0.466943 + 0.884287i \(0.345355\pi\)
\(468\) 0 0
\(469\) −5.06388 −0.233828
\(470\) 0 0
\(471\) 2.05638 0.0947531
\(472\) 0 0
\(473\) −11.4650 −0.527160
\(474\) 0 0
\(475\) −33.1912 −1.52292
\(476\) 0 0
\(477\) 1.64913 0.0755086
\(478\) 0 0
\(479\) −12.5604 −0.573901 −0.286951 0.957945i \(-0.592642\pi\)
−0.286951 + 0.957945i \(0.592642\pi\)
\(480\) 0 0
\(481\) 13.3111 0.606936
\(482\) 0 0
\(483\) −7.62250 −0.346836
\(484\) 0 0
\(485\) −7.62338 −0.346160
\(486\) 0 0
\(487\) 14.2519 0.645814 0.322907 0.946431i \(-0.395340\pi\)
0.322907 + 0.946431i \(0.395340\pi\)
\(488\) 0 0
\(489\) 17.7107 0.800906
\(490\) 0 0
\(491\) 20.4046 0.920849 0.460424 0.887699i \(-0.347697\pi\)
0.460424 + 0.887699i \(0.347697\pi\)
\(492\) 0 0
\(493\) 11.1854 0.503765
\(494\) 0 0
\(495\) −10.5724 −0.475196
\(496\) 0 0
\(497\) −7.23368 −0.324475
\(498\) 0 0
\(499\) 33.3751 1.49407 0.747037 0.664782i \(-0.231476\pi\)
0.747037 + 0.664782i \(0.231476\pi\)
\(500\) 0 0
\(501\) 0.336253 0.0150227
\(502\) 0 0
\(503\) 14.8148 0.660561 0.330281 0.943883i \(-0.392857\pi\)
0.330281 + 0.943883i \(0.392857\pi\)
\(504\) 0 0
\(505\) −52.8541 −2.35197
\(506\) 0 0
\(507\) −10.3443 −0.459405
\(508\) 0 0
\(509\) 23.9464 1.06140 0.530702 0.847559i \(-0.321928\pi\)
0.530702 + 0.847559i \(0.321928\pi\)
\(510\) 0 0
\(511\) −12.1926 −0.539369
\(512\) 0 0
\(513\) 2.92523 0.129152
\(514\) 0 0
\(515\) 16.1151 0.710116
\(516\) 0 0
\(517\) −3.26265 −0.143491
\(518\) 0 0
\(519\) 2.65676 0.116619
\(520\) 0 0
\(521\) −20.6157 −0.903189 −0.451594 0.892223i \(-0.649145\pi\)
−0.451594 + 0.892223i \(0.649145\pi\)
\(522\) 0 0
\(523\) 22.6014 0.988292 0.494146 0.869379i \(-0.335481\pi\)
0.494146 + 0.869379i \(0.335481\pi\)
\(524\) 0 0
\(525\) 27.1667 1.18565
\(526\) 0 0
\(527\) 8.94797 0.389779
\(528\) 0 0
\(529\) −10.9502 −0.476095
\(530\) 0 0
\(531\) −7.38066 −0.320293
\(532\) 0 0
\(533\) 12.1030 0.524240
\(534\) 0 0
\(535\) −53.2752 −2.30329
\(536\) 0 0
\(537\) −35.6762 −1.53954
\(538\) 0 0
\(539\) −6.12910 −0.263999
\(540\) 0 0
\(541\) −5.25411 −0.225892 −0.112946 0.993601i \(-0.536029\pi\)
−0.112946 + 0.993601i \(0.536029\pi\)
\(542\) 0 0
\(543\) −39.8153 −1.70864
\(544\) 0 0
\(545\) 7.71338 0.330405
\(546\) 0 0
\(547\) 31.4365 1.34413 0.672064 0.740493i \(-0.265408\pi\)
0.672064 + 0.740493i \(0.265408\pi\)
\(548\) 0 0
\(549\) −27.1570 −1.15903
\(550\) 0 0
\(551\) −12.2671 −0.522596
\(552\) 0 0
\(553\) −4.51368 −0.191941
\(554\) 0 0
\(555\) 44.5055 1.88915
\(556\) 0 0
\(557\) 13.8905 0.588561 0.294280 0.955719i \(-0.404920\pi\)
0.294280 + 0.955719i \(0.404920\pi\)
\(558\) 0 0
\(559\) 33.6293 1.42237
\(560\) 0 0
\(561\) 5.75606 0.243021
\(562\) 0 0
\(563\) 20.5160 0.864647 0.432324 0.901719i \(-0.357694\pi\)
0.432324 + 0.901719i \(0.357694\pi\)
\(564\) 0 0
\(565\) −69.5275 −2.92504
\(566\) 0 0
\(567\) −9.49594 −0.398792
\(568\) 0 0
\(569\) 20.9308 0.877463 0.438731 0.898618i \(-0.355428\pi\)
0.438731 + 0.898618i \(0.355428\pi\)
\(570\) 0 0
\(571\) −6.00582 −0.251336 −0.125668 0.992072i \(-0.540107\pi\)
−0.125668 + 0.992072i \(0.540107\pi\)
\(572\) 0 0
\(573\) 39.2293 1.63883
\(574\) 0 0
\(575\) −42.9457 −1.79096
\(576\) 0 0
\(577\) −45.4212 −1.89091 −0.945455 0.325753i \(-0.894382\pi\)
−0.945455 + 0.325753i \(0.894382\pi\)
\(578\) 0 0
\(579\) 0.425187 0.0176702
\(580\) 0 0
\(581\) 0.615613 0.0255399
\(582\) 0 0
\(583\) 0.650132 0.0269257
\(584\) 0 0
\(585\) 31.0113 1.28216
\(586\) 0 0
\(587\) 4.95230 0.204403 0.102202 0.994764i \(-0.467411\pi\)
0.102202 + 0.994764i \(0.467411\pi\)
\(588\) 0 0
\(589\) −9.81329 −0.404350
\(590\) 0 0
\(591\) −19.7390 −0.811952
\(592\) 0 0
\(593\) −17.6332 −0.724110 −0.362055 0.932157i \(-0.617925\pi\)
−0.362055 + 0.932157i \(0.617925\pi\)
\(594\) 0 0
\(595\) −9.51502 −0.390078
\(596\) 0 0
\(597\) 52.0003 2.12823
\(598\) 0 0
\(599\) 45.1533 1.84491 0.922456 0.386101i \(-0.126178\pi\)
0.922456 + 0.386101i \(0.126178\pi\)
\(600\) 0 0
\(601\) 15.6375 0.637867 0.318933 0.947777i \(-0.396675\pi\)
0.318933 + 0.947777i \(0.396675\pi\)
\(602\) 0 0
\(603\) −13.7642 −0.560523
\(604\) 0 0
\(605\) −4.16794 −0.169451
\(606\) 0 0
\(607\) 41.9318 1.70196 0.850979 0.525200i \(-0.176010\pi\)
0.850979 + 0.525200i \(0.176010\pi\)
\(608\) 0 0
\(609\) 10.0405 0.406862
\(610\) 0 0
\(611\) 9.57008 0.387164
\(612\) 0 0
\(613\) 27.8914 1.12652 0.563262 0.826278i \(-0.309546\pi\)
0.563262 + 0.826278i \(0.309546\pi\)
\(614\) 0 0
\(615\) 40.4662 1.63175
\(616\) 0 0
\(617\) 14.7471 0.593697 0.296849 0.954925i \(-0.404064\pi\)
0.296849 + 0.954925i \(0.404064\pi\)
\(618\) 0 0
\(619\) 5.12150 0.205851 0.102925 0.994689i \(-0.467180\pi\)
0.102925 + 0.994689i \(0.467180\pi\)
\(620\) 0 0
\(621\) 3.78492 0.151883
\(622\) 0 0
\(623\) 2.56290 0.102681
\(624\) 0 0
\(625\) 66.2007 2.64803
\(626\) 0 0
\(627\) −6.31271 −0.252105
\(628\) 0 0
\(629\) −11.1013 −0.442638
\(630\) 0 0
\(631\) −48.5097 −1.93114 −0.965570 0.260142i \(-0.916231\pi\)
−0.965570 + 0.260142i \(0.916231\pi\)
\(632\) 0 0
\(633\) −35.3867 −1.40650
\(634\) 0 0
\(635\) −27.1338 −1.07677
\(636\) 0 0
\(637\) 17.9780 0.712314
\(638\) 0 0
\(639\) −19.6620 −0.777818
\(640\) 0 0
\(641\) −7.22155 −0.285234 −0.142617 0.989778i \(-0.545552\pi\)
−0.142617 + 0.989778i \(0.545552\pi\)
\(642\) 0 0
\(643\) −11.9607 −0.471684 −0.235842 0.971791i \(-0.575785\pi\)
−0.235842 + 0.971791i \(0.575785\pi\)
\(644\) 0 0
\(645\) 112.439 4.42728
\(646\) 0 0
\(647\) −26.1952 −1.02984 −0.514920 0.857238i \(-0.672178\pi\)
−0.514920 + 0.857238i \(0.672178\pi\)
\(648\) 0 0
\(649\) −2.90965 −0.114214
\(650\) 0 0
\(651\) 8.03209 0.314802
\(652\) 0 0
\(653\) −34.2180 −1.33906 −0.669528 0.742787i \(-0.733503\pi\)
−0.669528 + 0.742787i \(0.733503\pi\)
\(654\) 0 0
\(655\) 28.8242 1.12625
\(656\) 0 0
\(657\) −33.1410 −1.29295
\(658\) 0 0
\(659\) −2.73052 −0.106366 −0.0531831 0.998585i \(-0.516937\pi\)
−0.0531831 + 0.998585i \(0.516937\pi\)
\(660\) 0 0
\(661\) −11.2478 −0.437488 −0.218744 0.975782i \(-0.570196\pi\)
−0.218744 + 0.975782i \(0.570196\pi\)
\(662\) 0 0
\(663\) −16.8838 −0.655713
\(664\) 0 0
\(665\) 10.4352 0.404659
\(666\) 0 0
\(667\) −15.8723 −0.614577
\(668\) 0 0
\(669\) 24.1808 0.934885
\(670\) 0 0
\(671\) −10.7060 −0.413301
\(672\) 0 0
\(673\) −20.0432 −0.772609 −0.386305 0.922371i \(-0.626249\pi\)
−0.386305 + 0.922371i \(0.626249\pi\)
\(674\) 0 0
\(675\) −13.4895 −0.519211
\(676\) 0 0
\(677\) 27.1414 1.04313 0.521564 0.853212i \(-0.325349\pi\)
0.521564 + 0.853212i \(0.325349\pi\)
\(678\) 0 0
\(679\) 1.70691 0.0655053
\(680\) 0 0
\(681\) 36.8688 1.41282
\(682\) 0 0
\(683\) −41.8019 −1.59951 −0.799753 0.600330i \(-0.795036\pi\)
−0.799753 + 0.600330i \(0.795036\pi\)
\(684\) 0 0
\(685\) 24.2554 0.926751
\(686\) 0 0
\(687\) 33.1178 1.26352
\(688\) 0 0
\(689\) −1.90698 −0.0726502
\(690\) 0 0
\(691\) −28.7753 −1.09466 −0.547332 0.836916i \(-0.684356\pi\)
−0.547332 + 0.836916i \(0.684356\pi\)
\(692\) 0 0
\(693\) 2.36722 0.0899234
\(694\) 0 0
\(695\) 39.7425 1.50752
\(696\) 0 0
\(697\) −10.0937 −0.382327
\(698\) 0 0
\(699\) 28.4697 1.07682
\(700\) 0 0
\(701\) 22.5826 0.852933 0.426467 0.904503i \(-0.359758\pi\)
0.426467 + 0.904503i \(0.359758\pi\)
\(702\) 0 0
\(703\) 12.1749 0.459184
\(704\) 0 0
\(705\) 31.9973 1.20509
\(706\) 0 0
\(707\) 11.8343 0.445074
\(708\) 0 0
\(709\) 14.5420 0.546138 0.273069 0.961994i \(-0.411961\pi\)
0.273069 + 0.961994i \(0.411961\pi\)
\(710\) 0 0
\(711\) −12.2687 −0.460113
\(712\) 0 0
\(713\) −12.6973 −0.475518
\(714\) 0 0
\(715\) 12.2255 0.457207
\(716\) 0 0
\(717\) 51.1728 1.91108
\(718\) 0 0
\(719\) 5.98413 0.223170 0.111585 0.993755i \(-0.464407\pi\)
0.111585 + 0.993755i \(0.464407\pi\)
\(720\) 0 0
\(721\) −3.60825 −0.134378
\(722\) 0 0
\(723\) −16.3291 −0.607284
\(724\) 0 0
\(725\) 56.5690 2.10092
\(726\) 0 0
\(727\) −13.7234 −0.508973 −0.254486 0.967076i \(-0.581906\pi\)
−0.254486 + 0.967076i \(0.581906\pi\)
\(728\) 0 0
\(729\) −18.1144 −0.670902
\(730\) 0 0
\(731\) −28.0463 −1.03733
\(732\) 0 0
\(733\) −46.4631 −1.71615 −0.858076 0.513522i \(-0.828340\pi\)
−0.858076 + 0.513522i \(0.828340\pi\)
\(734\) 0 0
\(735\) 60.1090 2.21716
\(736\) 0 0
\(737\) −5.42623 −0.199878
\(738\) 0 0
\(739\) −12.5779 −0.462686 −0.231343 0.972872i \(-0.574312\pi\)
−0.231343 + 0.972872i \(0.574312\pi\)
\(740\) 0 0
\(741\) 18.5166 0.680223
\(742\) 0 0
\(743\) −9.36221 −0.343466 −0.171733 0.985144i \(-0.554937\pi\)
−0.171733 + 0.985144i \(0.554937\pi\)
\(744\) 0 0
\(745\) 58.0266 2.12593
\(746\) 0 0
\(747\) 1.67331 0.0612233
\(748\) 0 0
\(749\) 11.9286 0.435861
\(750\) 0 0
\(751\) −3.96209 −0.144579 −0.0722894 0.997384i \(-0.523031\pi\)
−0.0722894 + 0.997384i \(0.523031\pi\)
\(752\) 0 0
\(753\) 41.7137 1.52013
\(754\) 0 0
\(755\) −63.4468 −2.30906
\(756\) 0 0
\(757\) −3.56879 −0.129710 −0.0648550 0.997895i \(-0.520658\pi\)
−0.0648550 + 0.997895i \(0.520658\pi\)
\(758\) 0 0
\(759\) −8.16794 −0.296477
\(760\) 0 0
\(761\) −49.8018 −1.80532 −0.902658 0.430359i \(-0.858387\pi\)
−0.902658 + 0.430359i \(0.858387\pi\)
\(762\) 0 0
\(763\) −1.72707 −0.0625240
\(764\) 0 0
\(765\) −25.8630 −0.935078
\(766\) 0 0
\(767\) 8.53465 0.308168
\(768\) 0 0
\(769\) 30.5772 1.10264 0.551321 0.834293i \(-0.314124\pi\)
0.551321 + 0.834293i \(0.314124\pi\)
\(770\) 0 0
\(771\) 41.7764 1.50454
\(772\) 0 0
\(773\) −23.9315 −0.860756 −0.430378 0.902649i \(-0.641620\pi\)
−0.430378 + 0.902649i \(0.641620\pi\)
\(774\) 0 0
\(775\) 45.2534 1.62555
\(776\) 0 0
\(777\) −9.96501 −0.357493
\(778\) 0 0
\(779\) 11.0699 0.396619
\(780\) 0 0
\(781\) −7.75129 −0.277363
\(782\) 0 0
\(783\) −4.98557 −0.178170
\(784\) 0 0
\(785\) −3.64253 −0.130007
\(786\) 0 0
\(787\) 13.4992 0.481196 0.240598 0.970625i \(-0.422656\pi\)
0.240598 + 0.970625i \(0.422656\pi\)
\(788\) 0 0
\(789\) −65.0426 −2.31558
\(790\) 0 0
\(791\) 15.5676 0.553519
\(792\) 0 0
\(793\) 31.4031 1.11516
\(794\) 0 0
\(795\) −6.37595 −0.226132
\(796\) 0 0
\(797\) 23.8879 0.846154 0.423077 0.906094i \(-0.360950\pi\)
0.423077 + 0.906094i \(0.360950\pi\)
\(798\) 0 0
\(799\) −7.98130 −0.282358
\(800\) 0 0
\(801\) 6.96629 0.246142
\(802\) 0 0
\(803\) −13.0650 −0.461056
\(804\) 0 0
\(805\) 13.5020 0.475882
\(806\) 0 0
\(807\) −25.0084 −0.880339
\(808\) 0 0
\(809\) −20.1858 −0.709694 −0.354847 0.934924i \(-0.615467\pi\)
−0.354847 + 0.934924i \(0.615467\pi\)
\(810\) 0 0
\(811\) 3.78003 0.132735 0.0663675 0.997795i \(-0.478859\pi\)
0.0663675 + 0.997795i \(0.478859\pi\)
\(812\) 0 0
\(813\) −46.4672 −1.62968
\(814\) 0 0
\(815\) −31.3715 −1.09890
\(816\) 0 0
\(817\) 30.7586 1.07611
\(818\) 0 0
\(819\) −6.94360 −0.242629
\(820\) 0 0
\(821\) −32.5119 −1.13467 −0.567336 0.823486i \(-0.692026\pi\)
−0.567336 + 0.823486i \(0.692026\pi\)
\(822\) 0 0
\(823\) 20.7651 0.723826 0.361913 0.932212i \(-0.382124\pi\)
0.361913 + 0.932212i \(0.382124\pi\)
\(824\) 0 0
\(825\) 29.1106 1.01350
\(826\) 0 0
\(827\) 11.2140 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(828\) 0 0
\(829\) 6.82205 0.236940 0.118470 0.992958i \(-0.462201\pi\)
0.118470 + 0.992958i \(0.462201\pi\)
\(830\) 0 0
\(831\) 29.4955 1.02319
\(832\) 0 0
\(833\) −14.9934 −0.519490
\(834\) 0 0
\(835\) −0.595616 −0.0206121
\(836\) 0 0
\(837\) −3.98829 −0.137856
\(838\) 0 0
\(839\) −19.3720 −0.668796 −0.334398 0.942432i \(-0.608533\pi\)
−0.334398 + 0.942432i \(0.608533\pi\)
\(840\) 0 0
\(841\) −8.09273 −0.279060
\(842\) 0 0
\(843\) 56.0102 1.92910
\(844\) 0 0
\(845\) 18.3231 0.630334
\(846\) 0 0
\(847\) 0.933222 0.0320659
\(848\) 0 0
\(849\) 65.2474 2.23928
\(850\) 0 0
\(851\) 15.7529 0.540003
\(852\) 0 0
\(853\) −11.1509 −0.381800 −0.190900 0.981609i \(-0.561141\pi\)
−0.190900 + 0.981609i \(0.561141\pi\)
\(854\) 0 0
\(855\) 28.3641 0.970032
\(856\) 0 0
\(857\) 30.4078 1.03871 0.519355 0.854558i \(-0.326172\pi\)
0.519355 + 0.854558i \(0.326172\pi\)
\(858\) 0 0
\(859\) 27.7908 0.948210 0.474105 0.880468i \(-0.342772\pi\)
0.474105 + 0.880468i \(0.342772\pi\)
\(860\) 0 0
\(861\) −9.06058 −0.308784
\(862\) 0 0
\(863\) −0.221827 −0.00755109 −0.00377554 0.999993i \(-0.501202\pi\)
−0.00377554 + 0.999993i \(0.501202\pi\)
\(864\) 0 0
\(865\) −4.70600 −0.160009
\(866\) 0 0
\(867\) −25.9202 −0.880295
\(868\) 0 0
\(869\) −4.83666 −0.164072
\(870\) 0 0
\(871\) 15.9163 0.539304
\(872\) 0 0
\(873\) 4.63960 0.157027
\(874\) 0 0
\(875\) −28.6731 −0.969328
\(876\) 0 0
\(877\) −15.5470 −0.524985 −0.262492 0.964934i \(-0.584544\pi\)
−0.262492 + 0.964934i \(0.584544\pi\)
\(878\) 0 0
\(879\) 13.2095 0.445545
\(880\) 0 0
\(881\) 21.4338 0.722125 0.361062 0.932542i \(-0.382414\pi\)
0.361062 + 0.932542i \(0.382414\pi\)
\(882\) 0 0
\(883\) −14.2700 −0.480224 −0.240112 0.970745i \(-0.577184\pi\)
−0.240112 + 0.970745i \(0.577184\pi\)
\(884\) 0 0
\(885\) 28.5354 0.959207
\(886\) 0 0
\(887\) 23.6109 0.792775 0.396388 0.918083i \(-0.370264\pi\)
0.396388 + 0.918083i \(0.370264\pi\)
\(888\) 0 0
\(889\) 6.07540 0.203762
\(890\) 0 0
\(891\) −10.1754 −0.340890
\(892\) 0 0
\(893\) 8.75315 0.292913
\(894\) 0 0
\(895\) 63.1944 2.11235
\(896\) 0 0
\(897\) 23.9584 0.799947
\(898\) 0 0
\(899\) 16.7251 0.557815
\(900\) 0 0
\(901\) 1.59039 0.0529837
\(902\) 0 0
\(903\) −25.1756 −0.837792
\(904\) 0 0
\(905\) 70.5260 2.34436
\(906\) 0 0
\(907\) 45.2882 1.50377 0.751885 0.659294i \(-0.229145\pi\)
0.751885 + 0.659294i \(0.229145\pi\)
\(908\) 0 0
\(909\) 32.1670 1.06691
\(910\) 0 0
\(911\) 22.4539 0.743931 0.371966 0.928247i \(-0.378684\pi\)
0.371966 + 0.928247i \(0.378684\pi\)
\(912\) 0 0
\(913\) 0.659664 0.0218317
\(914\) 0 0
\(915\) 104.995 3.47104
\(916\) 0 0
\(917\) −6.45388 −0.213126
\(918\) 0 0
\(919\) 41.5329 1.37004 0.685022 0.728522i \(-0.259793\pi\)
0.685022 + 0.728522i \(0.259793\pi\)
\(920\) 0 0
\(921\) −65.5437 −2.15974
\(922\) 0 0
\(923\) 22.7363 0.748373
\(924\) 0 0
\(925\) −56.1436 −1.84599
\(926\) 0 0
\(927\) −9.80767 −0.322126
\(928\) 0 0
\(929\) −37.2997 −1.22376 −0.611882 0.790949i \(-0.709587\pi\)
−0.611882 + 0.790949i \(0.709587\pi\)
\(930\) 0 0
\(931\) 16.4433 0.538909
\(932\) 0 0
\(933\) −57.4310 −1.88021
\(934\) 0 0
\(935\) −10.1959 −0.333441
\(936\) 0 0
\(937\) −13.1897 −0.430888 −0.215444 0.976516i \(-0.569120\pi\)
−0.215444 + 0.976516i \(0.569120\pi\)
\(938\) 0 0
\(939\) −21.4950 −0.701463
\(940\) 0 0
\(941\) −24.6716 −0.804270 −0.402135 0.915580i \(-0.631732\pi\)
−0.402135 + 0.915580i \(0.631732\pi\)
\(942\) 0 0
\(943\) 14.3232 0.466426
\(944\) 0 0
\(945\) 4.24104 0.137961
\(946\) 0 0
\(947\) 38.8667 1.26300 0.631500 0.775376i \(-0.282440\pi\)
0.631500 + 0.775376i \(0.282440\pi\)
\(948\) 0 0
\(949\) 38.3227 1.24401
\(950\) 0 0
\(951\) 42.2365 1.36961
\(952\) 0 0
\(953\) −52.5807 −1.70326 −0.851628 0.524147i \(-0.824384\pi\)
−0.851628 + 0.524147i \(0.824384\pi\)
\(954\) 0 0
\(955\) −69.4881 −2.24858
\(956\) 0 0
\(957\) 10.7590 0.347788
\(958\) 0 0
\(959\) −5.43091 −0.175373
\(960\) 0 0
\(961\) −17.6204 −0.568401
\(962\) 0 0
\(963\) 32.4233 1.04483
\(964\) 0 0
\(965\) −0.753147 −0.0242447
\(966\) 0 0
\(967\) −2.98370 −0.0959493 −0.0479746 0.998849i \(-0.515277\pi\)
−0.0479746 + 0.998849i \(0.515277\pi\)
\(968\) 0 0
\(969\) −15.4425 −0.496086
\(970\) 0 0
\(971\) −15.0443 −0.482793 −0.241397 0.970427i \(-0.577605\pi\)
−0.241397 + 0.970427i \(0.577605\pi\)
\(972\) 0 0
\(973\) −8.89854 −0.285274
\(974\) 0 0
\(975\) −85.3880 −2.73460
\(976\) 0 0
\(977\) −11.4313 −0.365720 −0.182860 0.983139i \(-0.558536\pi\)
−0.182860 + 0.983139i \(0.558536\pi\)
\(978\) 0 0
\(979\) 2.74629 0.0877720
\(980\) 0 0
\(981\) −4.69438 −0.149880
\(982\) 0 0
\(983\) 58.1032 1.85321 0.926603 0.376042i \(-0.122715\pi\)
0.926603 + 0.376042i \(0.122715\pi\)
\(984\) 0 0
\(985\) 34.9642 1.11405
\(986\) 0 0
\(987\) −7.16437 −0.228044
\(988\) 0 0
\(989\) 39.7982 1.26551
\(990\) 0 0
\(991\) −30.2307 −0.960311 −0.480156 0.877183i \(-0.659420\pi\)
−0.480156 + 0.877183i \(0.659420\pi\)
\(992\) 0 0
\(993\) 31.0440 0.985152
\(994\) 0 0
\(995\) −92.1096 −2.92007
\(996\) 0 0
\(997\) 13.3996 0.424368 0.212184 0.977230i \(-0.431942\pi\)
0.212184 + 0.977230i \(0.431942\pi\)
\(998\) 0 0
\(999\) 4.94808 0.156550
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2816.2.a.p.1.5 5
4.3 odd 2 2816.2.a.o.1.1 5
8.3 odd 2 2816.2.a.r.1.5 5
8.5 even 2 2816.2.a.q.1.1 5
16.3 odd 4 88.2.c.a.45.7 10
16.5 even 4 352.2.c.a.177.2 10
16.11 odd 4 88.2.c.a.45.8 yes 10
16.13 even 4 352.2.c.a.177.9 10
48.5 odd 4 3168.2.f.g.1585.10 10
48.11 even 4 792.2.f.g.397.3 10
48.29 odd 4 3168.2.f.g.1585.1 10
48.35 even 4 792.2.f.g.397.4 10
176.3 odd 20 968.2.o.g.493.4 40
176.19 even 20 968.2.o.h.493.7 40
176.21 odd 4 3872.2.c.f.1937.2 10
176.27 odd 20 968.2.o.g.245.2 40
176.35 even 20 968.2.o.h.565.9 40
176.43 even 4 968.2.c.d.485.3 10
176.51 even 20 968.2.o.h.269.1 40
176.59 odd 20 968.2.o.g.269.4 40
176.75 odd 20 968.2.o.g.565.6 40
176.83 even 20 968.2.o.h.245.5 40
176.91 odd 20 968.2.o.g.493.10 40
176.107 even 20 968.2.o.h.493.1 40
176.109 odd 4 3872.2.c.f.1937.9 10
176.115 odd 20 968.2.o.g.245.6 40
176.123 even 20 968.2.o.h.565.5 40
176.131 even 4 968.2.c.d.485.4 10
176.139 even 20 968.2.o.h.269.7 40
176.147 odd 20 968.2.o.g.269.10 40
176.163 odd 20 968.2.o.g.565.2 40
176.171 even 20 968.2.o.h.245.9 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.c.a.45.7 10 16.3 odd 4
88.2.c.a.45.8 yes 10 16.11 odd 4
352.2.c.a.177.2 10 16.5 even 4
352.2.c.a.177.9 10 16.13 even 4
792.2.f.g.397.3 10 48.11 even 4
792.2.f.g.397.4 10 48.35 even 4
968.2.c.d.485.3 10 176.43 even 4
968.2.c.d.485.4 10 176.131 even 4
968.2.o.g.245.2 40 176.27 odd 20
968.2.o.g.245.6 40 176.115 odd 20
968.2.o.g.269.4 40 176.59 odd 20
968.2.o.g.269.10 40 176.147 odd 20
968.2.o.g.493.4 40 176.3 odd 20
968.2.o.g.493.10 40 176.91 odd 20
968.2.o.g.565.2 40 176.163 odd 20
968.2.o.g.565.6 40 176.75 odd 20
968.2.o.h.245.5 40 176.83 even 20
968.2.o.h.245.9 40 176.171 even 20
968.2.o.h.269.1 40 176.51 even 20
968.2.o.h.269.7 40 176.139 even 20
968.2.o.h.493.1 40 176.107 even 20
968.2.o.h.493.7 40 176.19 even 20
968.2.o.h.565.5 40 176.123 even 20
968.2.o.h.565.9 40 176.35 even 20
2816.2.a.o.1.1 5 4.3 odd 2
2816.2.a.p.1.5 5 1.1 even 1 trivial
2816.2.a.q.1.1 5 8.5 even 2
2816.2.a.r.1.5 5 8.3 odd 2
3168.2.f.g.1585.1 10 48.29 odd 4
3168.2.f.g.1585.10 10 48.5 odd 4
3872.2.c.f.1937.2 10 176.21 odd 4
3872.2.c.f.1937.9 10 176.109 odd 4