Properties

Label 2816.1.r.a
Level $2816$
Weight $1$
Character orbit 2816.r
Analytic conductor $1.405$
Analytic rank $0$
Dimension $4$
Projective image $D_{10}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2816,1,Mod(513,2816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2816, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2816.513");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2816 = 2^{8} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2816.r (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 704)
Projective image: \(D_{10}\)
Projective field: Galois closure of 10.0.9658153742336.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + (\zeta_{10}^{2} - \zeta_{10}) q^{3} + (\zeta_{10}^{4} + \cdots + \zeta_{10}^{2}) q^{9} - \zeta_{10}^{4} q^{11} + ( - \zeta_{10}^{3} + \zeta_{10}) q^{17} + ( - \zeta_{10}^{3} - 1) q^{19} - \zeta_{10}^{4} q^{25} + \cdots + (\zeta_{10}^{3} - \zeta_{10}^{2} + \zeta_{10}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 3 q^{9} + q^{11} - 5 q^{19} + q^{25} + q^{27} - 3 q^{33} - q^{49} + 5 q^{51} + 5 q^{57} - 3 q^{59} + 2 q^{67} - 3 q^{75} + 5 q^{83} + 2 q^{89} + 3 q^{97} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2816\mathbb{Z}\right)^\times\).

\(n\) \(1025\) \(1541\) \(2047\)
\(\chi(n)\) \(\zeta_{10}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
513.1
−0.309017 0.951057i
0.809017 + 0.587785i
−0.309017 + 0.951057i
0.809017 0.587785i
0 −0.500000 + 1.53884i 0 0 0 0 0 −1.30902 0.951057i 0
1025.1 0 −0.500000 + 0.363271i 0 0 0 0 0 −0.190983 + 0.587785i 0
1537.1 0 −0.500000 1.53884i 0 0 0 0 0 −1.30902 + 0.951057i 0
2305.1 0 −0.500000 0.363271i 0 0 0 0 0 −0.190983 0.587785i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
11.d odd 10 1 inner
88.k even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2816.1.r.a 4
4.b odd 2 1 2816.1.r.b 4
8.b even 2 1 2816.1.r.b 4
8.d odd 2 1 CM 2816.1.r.a 4
11.d odd 10 1 inner 2816.1.r.a 4
16.e even 4 2 704.1.x.a 8
16.f odd 4 2 704.1.x.a 8
44.g even 10 1 2816.1.r.b 4
88.k even 10 1 inner 2816.1.r.a 4
88.p odd 10 1 2816.1.r.b 4
176.u odd 20 2 704.1.x.a 8
176.x even 20 2 704.1.x.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
704.1.x.a 8 16.e even 4 2
704.1.x.a 8 16.f odd 4 2
704.1.x.a 8 176.u odd 20 2
704.1.x.a 8 176.x even 20 2
2816.1.r.a 4 1.a even 1 1 trivial
2816.1.r.a 4 8.d odd 2 1 CM
2816.1.r.a 4 11.d odd 10 1 inner
2816.1.r.a 4 88.k even 10 1 inner
2816.1.r.b 4 4.b odd 2 1
2816.1.r.b 4 8.b even 2 1
2816.1.r.b 4 44.g even 10 1
2816.1.r.b 4 88.p odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 2T_{3}^{3} + 4T_{3}^{2} + 3T_{3} + 1 \) acting on \(S_{1}^{\mathrm{new}}(2816, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 5T + 5 \) Copy content Toggle raw display
$19$ \( T^{4} + 5 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + 5T + 5 \) Copy content Toggle raw display
$43$ \( T^{4} + 5T^{2} + 5 \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - T - 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 5T + 5 \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} - 5 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$89$ \( (T^{2} - T - 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
show more
show less