Properties

Label 2816.1.l.d
Level $2816$
Weight $1$
Character orbit 2816.l
Analytic conductor $1.405$
Analytic rank $0$
Dimension $8$
Projective image $D_{12}$
CM discriminant -11
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2816,1,Mod(65,2816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2816, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2816.65");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2816 = 2^{8} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2816.l (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Projective image: \(D_{12}\)
Projective field: Galois closure of 12.2.60870372462952448.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + (\zeta_{24}^{11} + \zeta_{24}^{7}) q^{3} + (\zeta_{24}^{10} - \zeta_{24}^{8}) q^{5} + ( - \zeta_{24}^{10} + \cdots - \zeta_{24}^{2}) q^{9} - \zeta_{24}^{3} q^{11} + ( - \zeta_{24}^{9} + \cdots + \zeta_{24}^{3}) q^{15} + \cdots + (\zeta_{24}^{9} + \zeta_{24}^{5} - \zeta_{24}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} + 4 q^{37} + 8 q^{45} - 8 q^{49} + 8 q^{53} - 12 q^{69} - 8 q^{81} - 12 q^{93} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2816\mathbb{Z}\right)^\times\).

\(n\) \(1025\) \(1541\) \(2047\)
\(\chi(n)\) \(-1\) \(\zeta_{24}^{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1
0.965926 0.258819i
0.258819 0.965926i
−0.965926 + 0.258819i
−0.258819 + 0.965926i
0.965926 + 0.258819i
0.258819 + 0.965926i
−0.965926 0.258819i
−0.258819 0.965926i
0 −1.22474 1.22474i 0 −0.366025 + 0.366025i 0 0 0 2.00000i 0
65.2 0 −1.22474 1.22474i 0 1.36603 1.36603i 0 0 0 2.00000i 0
65.3 0 1.22474 + 1.22474i 0 −0.366025 + 0.366025i 0 0 0 2.00000i 0
65.4 0 1.22474 + 1.22474i 0 1.36603 1.36603i 0 0 0 2.00000i 0
1473.1 0 −1.22474 + 1.22474i 0 −0.366025 0.366025i 0 0 0 2.00000i 0
1473.2 0 −1.22474 + 1.22474i 0 1.36603 + 1.36603i 0 0 0 2.00000i 0
1473.3 0 1.22474 1.22474i 0 −0.366025 0.366025i 0 0 0 2.00000i 0
1473.4 0 1.22474 1.22474i 0 1.36603 + 1.36603i 0 0 0 2.00000i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 65.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
4.b odd 2 1 inner
16.e even 4 1 inner
16.f odd 4 1 inner
44.c even 2 1 inner
176.i even 4 1 inner
176.l odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2816.1.l.d yes 8
4.b odd 2 1 inner 2816.1.l.d yes 8
8.b even 2 1 2816.1.l.c 8
8.d odd 2 1 2816.1.l.c 8
11.b odd 2 1 CM 2816.1.l.d yes 8
16.e even 4 1 2816.1.l.c 8
16.e even 4 1 inner 2816.1.l.d yes 8
16.f odd 4 1 2816.1.l.c 8
16.f odd 4 1 inner 2816.1.l.d yes 8
44.c even 2 1 inner 2816.1.l.d yes 8
88.b odd 2 1 2816.1.l.c 8
88.g even 2 1 2816.1.l.c 8
176.i even 4 1 2816.1.l.c 8
176.i even 4 1 inner 2816.1.l.d yes 8
176.l odd 4 1 2816.1.l.c 8
176.l odd 4 1 inner 2816.1.l.d yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2816.1.l.c 8 8.b even 2 1
2816.1.l.c 8 8.d odd 2 1
2816.1.l.c 8 16.e even 4 1
2816.1.l.c 8 16.f odd 4 1
2816.1.l.c 8 88.b odd 2 1
2816.1.l.c 8 88.g even 2 1
2816.1.l.c 8 176.i even 4 1
2816.1.l.c 8 176.l odd 4 1
2816.1.l.d yes 8 1.a even 1 1 trivial
2816.1.l.d yes 8 4.b odd 2 1 inner
2816.1.l.d yes 8 11.b odd 2 1 CM
2816.1.l.d yes 8 16.e even 4 1 inner
2816.1.l.d yes 8 16.f odd 4 1 inner
2816.1.l.d yes 8 44.c even 2 1 inner
2816.1.l.d yes 8 176.i even 4 1 inner
2816.1.l.d yes 8 176.l odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2816, [\chi])\):

\( T_{3}^{4} + 9 \) Copy content Toggle raw display
\( T_{5}^{4} - 2T_{5}^{3} + 2T_{5}^{2} + 2T_{5} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} + 9)^{2} \) Copy content Toggle raw display
$5$ \( (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( (T^{4} + 4 T^{2} + 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( (T^{4} - 4 T^{2} + 1)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( (T^{2} - 2)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} - 2 T + 2)^{4} \) Copy content Toggle raw display
$59$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 4 T^{2} + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( (T^{2} + 3)^{4} \) Copy content Toggle raw display
$97$ \( (T + 1)^{8} \) Copy content Toggle raw display
show more
show less