Properties

Label 2808.1.bs.a
Level $2808$
Weight $1$
Character orbit 2808.bs
Analytic conductor $1.401$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -104
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2808.bs (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.40137455547\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \(x^{6} - x^{3} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 936)
Projective image \(D_{9}\)
Projective field Galois closure of 9.1.62171080298496.1

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q -\zeta_{18}^{3} q^{2} + \zeta_{18}^{6} q^{4} + ( -\zeta_{18} + \zeta_{18}^{2} ) q^{5} + ( -\zeta_{18}^{2} - \zeta_{18}^{4} ) q^{7} + q^{8} +O(q^{10})\) \( q -\zeta_{18}^{3} q^{2} + \zeta_{18}^{6} q^{4} + ( -\zeta_{18} + \zeta_{18}^{2} ) q^{5} + ( -\zeta_{18}^{2} - \zeta_{18}^{4} ) q^{7} + q^{8} + ( \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{10} -\zeta_{18}^{6} q^{13} + ( \zeta_{18}^{5} + \zeta_{18}^{7} ) q^{14} -\zeta_{18}^{3} q^{16} + ( -\zeta_{18}^{2} + \zeta_{18}^{7} ) q^{17} + ( -\zeta_{18}^{7} + \zeta_{18}^{8} ) q^{20} + ( \zeta_{18}^{2} - \zeta_{18}^{3} + \zeta_{18}^{4} ) q^{25} - q^{26} + ( \zeta_{18} - \zeta_{18}^{8} ) q^{28} + \zeta_{18}^{6} q^{31} + \zeta_{18}^{6} q^{32} + ( \zeta_{18} + \zeta_{18}^{5} ) q^{34} + ( \zeta_{18}^{3} - \zeta_{18}^{4} + \zeta_{18}^{5} - \zeta_{18}^{6} ) q^{35} + ( -\zeta_{18}^{4} + \zeta_{18}^{5} ) q^{37} + ( -\zeta_{18} + \zeta_{18}^{2} ) q^{40} + ( -\zeta_{18} - \zeta_{18}^{5} ) q^{43} + ( -\zeta_{18} - \zeta_{18}^{5} ) q^{47} + ( \zeta_{18}^{4} + \zeta_{18}^{6} + \zeta_{18}^{8} ) q^{49} + ( -\zeta_{18}^{5} + \zeta_{18}^{6} - \zeta_{18}^{7} ) q^{50} + \zeta_{18}^{3} q^{52} + ( -\zeta_{18}^{2} - \zeta_{18}^{4} ) q^{56} + q^{62} + q^{64} + ( \zeta_{18}^{7} - \zeta_{18}^{8} ) q^{65} + ( -\zeta_{18}^{4} - \zeta_{18}^{8} ) q^{68} + ( -1 - \zeta_{18}^{6} + \zeta_{18}^{7} - \zeta_{18}^{8} ) q^{70} + ( -\zeta_{18} + \zeta_{18}^{8} ) q^{71} + ( \zeta_{18}^{7} - \zeta_{18}^{8} ) q^{74} + ( \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{80} + ( -1 + \zeta_{18}^{3} - \zeta_{18}^{4} - \zeta_{18}^{8} ) q^{85} + ( \zeta_{18}^{4} + \zeta_{18}^{8} ) q^{86} + ( -\zeta_{18} + \zeta_{18}^{8} ) q^{91} + ( \zeta_{18}^{4} + \zeta_{18}^{8} ) q^{94} + ( 1 + \zeta_{18}^{2} - \zeta_{18}^{7} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - 3q^{2} - 3q^{4} + 6q^{8} + O(q^{10}) \) \( 6q - 3q^{2} - 3q^{4} + 6q^{8} + 3q^{13} - 3q^{16} - 3q^{25} - 6q^{26} - 3q^{31} - 3q^{32} + 6q^{35} - 3q^{49} - 3q^{50} + 3q^{52} + 6q^{62} + 6q^{64} - 3q^{70} - 3q^{85} + 6q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(\zeta_{18}^{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
883.1
−0.173648 + 0.984808i
0.939693 0.342020i
−0.766044 0.642788i
−0.173648 0.984808i
0.939693 + 0.342020i
−0.766044 + 0.642788i
−0.500000 + 0.866025i 0 −0.500000 0.866025i −0.766044 1.32683i 0 0.173648 0.300767i 1.00000 0 1.53209
883.2 −0.500000 + 0.866025i 0 −0.500000 0.866025i −0.173648 0.300767i 0 −0.939693 + 1.62760i 1.00000 0 0.347296
883.3 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0.939693 + 1.62760i 0 0.766044 1.32683i 1.00000 0 −1.87939
1819.1 −0.500000 0.866025i 0 −0.500000 + 0.866025i −0.766044 + 1.32683i 0 0.173648 + 0.300767i 1.00000 0 1.53209
1819.2 −0.500000 0.866025i 0 −0.500000 + 0.866025i −0.173648 + 0.300767i 0 −0.939693 1.62760i 1.00000 0 0.347296
1819.3 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0.939693 1.62760i 0 0.766044 + 1.32683i 1.00000 0 −1.87939
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1819.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.h odd 2 1 CM by \(\Q(\sqrt{-26}) \)
9.c even 3 1 inner
936.bs odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2808.1.bs.a 6
3.b odd 2 1 936.1.bs.b yes 6
8.d odd 2 1 2808.1.bs.b 6
9.c even 3 1 inner 2808.1.bs.a 6
9.d odd 6 1 936.1.bs.b yes 6
12.b even 2 1 3744.1.ci.b 6
13.b even 2 1 2808.1.bs.b 6
24.f even 2 1 936.1.bs.a 6
24.h odd 2 1 3744.1.ci.a 6
36.h even 6 1 3744.1.ci.b 6
39.d odd 2 1 936.1.bs.a 6
72.j odd 6 1 3744.1.ci.a 6
72.l even 6 1 936.1.bs.a 6
72.p odd 6 1 2808.1.bs.b 6
104.h odd 2 1 CM 2808.1.bs.a 6
117.n odd 6 1 936.1.bs.a 6
117.t even 6 1 2808.1.bs.b 6
156.h even 2 1 3744.1.ci.a 6
312.b odd 2 1 3744.1.ci.b 6
312.h even 2 1 936.1.bs.b yes 6
468.x even 6 1 3744.1.ci.a 6
936.bs odd 6 1 inner 2808.1.bs.a 6
936.cl even 6 1 936.1.bs.b yes 6
936.cv odd 6 1 3744.1.ci.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
936.1.bs.a 6 24.f even 2 1
936.1.bs.a 6 39.d odd 2 1
936.1.bs.a 6 72.l even 6 1
936.1.bs.a 6 117.n odd 6 1
936.1.bs.b yes 6 3.b odd 2 1
936.1.bs.b yes 6 9.d odd 6 1
936.1.bs.b yes 6 312.h even 2 1
936.1.bs.b yes 6 936.cl even 6 1
2808.1.bs.a 6 1.a even 1 1 trivial
2808.1.bs.a 6 9.c even 3 1 inner
2808.1.bs.a 6 104.h odd 2 1 CM
2808.1.bs.a 6 936.bs odd 6 1 inner
2808.1.bs.b 6 8.d odd 2 1
2808.1.bs.b 6 13.b even 2 1
2808.1.bs.b 6 72.p odd 6 1
2808.1.bs.b 6 117.t even 6 1
3744.1.ci.a 6 24.h odd 2 1
3744.1.ci.a 6 72.j odd 6 1
3744.1.ci.a 6 156.h even 2 1
3744.1.ci.a 6 468.x even 6 1
3744.1.ci.b 6 12.b even 2 1
3744.1.ci.b 6 36.h even 6 1
3744.1.ci.b 6 312.b odd 2 1
3744.1.ci.b 6 936.cv odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + 3 T_{5}^{4} + 2 T_{5}^{3} + 9 T_{5}^{2} + 3 T_{5} + 1 \) acting on \(S_{1}^{\mathrm{new}}(2808, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T + T^{2} )^{3} \)
$3$ \( T^{6} \)
$5$ \( 1 + 3 T + 9 T^{2} + 2 T^{3} + 3 T^{4} + T^{6} \)
$7$ \( 1 - 3 T + 9 T^{2} - 2 T^{3} + 3 T^{4} + T^{6} \)
$11$ \( T^{6} \)
$13$ \( ( 1 - T + T^{2} )^{3} \)
$17$ \( ( -1 - 3 T + T^{3} )^{2} \)
$19$ \( T^{6} \)
$23$ \( T^{6} \)
$29$ \( T^{6} \)
$31$ \( ( 1 + T + T^{2} )^{3} \)
$37$ \( ( -1 - 3 T + T^{3} )^{2} \)
$41$ \( T^{6} \)
$43$ \( 1 + 3 T + 9 T^{2} + 2 T^{3} + 3 T^{4} + T^{6} \)
$47$ \( 1 + 3 T + 9 T^{2} + 2 T^{3} + 3 T^{4} + T^{6} \)
$53$ \( T^{6} \)
$59$ \( T^{6} \)
$61$ \( T^{6} \)
$67$ \( T^{6} \)
$71$ \( ( 1 - 3 T + T^{3} )^{2} \)
$73$ \( T^{6} \)
$79$ \( T^{6} \)
$83$ \( T^{6} \)
$89$ \( T^{6} \)
$97$ \( T^{6} \)
show more
show less