Properties

Label 2800.2.k.i
Level $2800$
Weight $2$
Character orbit 2800.k
Analytic conductor $22.358$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2800,2,Mod(2351,2800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2800.2351");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2800.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.3581125660\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + (\beta_{3} + \beta_1) q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{3} + (\beta_{3} + \beta_1) q^{7} - q^{9} - \beta_{3} q^{11} + \beta_{2} q^{13} + 2 \beta_{2} q^{17} + ( - \beta_{2} + 2) q^{21} - \beta_{3} q^{23} - 4 \beta_1 q^{27} - q^{29} + 5 \beta_1 q^{31} + \beta_{2} q^{33} + 5 q^{37} - 2 \beta_{3} q^{39} + 3 \beta_{2} q^{41} - 3 \beta_{3} q^{43} - 2 \beta_1 q^{47} + ( - 2 \beta_{2} - 3) q^{49} - 4 \beta_{3} q^{51} + 5 \beta_1 q^{59} + \beta_{2} q^{61} + ( - \beta_{3} - \beta_1) q^{63} + 5 \beta_{3} q^{67} + \beta_{2} q^{69} - 7 \beta_{3} q^{71} - 3 \beta_{2} q^{73} + (\beta_{2} + 5) q^{77} - 3 \beta_{3} q^{79} - 5 q^{81} + 9 \beta_1 q^{83} - \beta_1 q^{87} - 3 \beta_{2} q^{89} + ( - 2 \beta_{3} + 5 \beta_1) q^{91} + 10 q^{93} - \beta_{2} q^{97} + \beta_{3} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{9} + 8 q^{21} - 4 q^{29} + 20 q^{37} - 12 q^{49} + 20 q^{77} - 20 q^{81} + 40 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 4x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + \nu ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 7\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{2} + 7\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2800\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(801\) \(2101\) \(2577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2351.1
0.707107 1.58114i
0.707107 + 1.58114i
−0.707107 + 1.58114i
−0.707107 1.58114i
0 −1.41421 0 0 0 −1.41421 2.23607i 0 −1.00000 0
2351.2 0 −1.41421 0 0 0 −1.41421 + 2.23607i 0 −1.00000 0
2351.3 0 1.41421 0 0 0 1.41421 2.23607i 0 −1.00000 0
2351.4 0 1.41421 0 0 0 1.41421 + 2.23607i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
7.b odd 2 1 inner
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2800.2.k.i yes 4
4.b odd 2 1 inner 2800.2.k.i yes 4
5.b even 2 1 2800.2.k.h 4
5.c odd 4 2 2800.2.e.k 8
7.b odd 2 1 inner 2800.2.k.i yes 4
20.d odd 2 1 2800.2.k.h 4
20.e even 4 2 2800.2.e.k 8
28.d even 2 1 inner 2800.2.k.i yes 4
35.c odd 2 1 2800.2.k.h 4
35.f even 4 2 2800.2.e.k 8
140.c even 2 1 2800.2.k.h 4
140.j odd 4 2 2800.2.e.k 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2800.2.e.k 8 5.c odd 4 2
2800.2.e.k 8 20.e even 4 2
2800.2.e.k 8 35.f even 4 2
2800.2.e.k 8 140.j odd 4 2
2800.2.k.h 4 5.b even 2 1
2800.2.k.h 4 20.d odd 2 1
2800.2.k.h 4 35.c odd 2 1
2800.2.k.h 4 140.c even 2 1
2800.2.k.i yes 4 1.a even 1 1 trivial
2800.2.k.i yes 4 4.b odd 2 1 inner
2800.2.k.i yes 4 7.b odd 2 1 inner
2800.2.k.i yes 4 28.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2800, [\chi])\):

\( T_{3}^{2} - 2 \) Copy content Toggle raw display
\( T_{11}^{2} + 5 \) Copy content Toggle raw display
\( T_{19} \) Copy content Toggle raw display
\( T_{37} - 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 6T^{2} + 49 \) Copy content Toggle raw display
$11$ \( (T^{2} + 5)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 10)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 40)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 5)^{2} \) Copy content Toggle raw display
$29$ \( (T + 1)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 50)^{2} \) Copy content Toggle raw display
$37$ \( (T - 5)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 90)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 45)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} - 50)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 10)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 125)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 245)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 90)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 45)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 162)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 90)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 10)^{2} \) Copy content Toggle raw display
show more
show less