# Properties

 Label 2800.2.g.t Level $2800$ Weight $2$ Character orbit 2800.g Analytic conductor $22.358$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2800,2,Mod(449,2800)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2800, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2800.449");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2800 = 2^{4} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2800.g (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$22.3581125660$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(i, \sqrt{17})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{4} + 9x^{2} + 16$$ x^4 + 9*x^2 + 16 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 35) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_1 q^{3} + \beta_{2} q^{7} + (\beta_{3} - 2) q^{9}+O(q^{10})$$ q + b1 * q^3 + b2 * q^7 + (b3 - 2) * q^9 $$q + \beta_1 q^{3} + \beta_{2} q^{7} + (\beta_{3} - 2) q^{9} + (\beta_{3} - 1) q^{11} + ( - 2 \beta_{2} + \beta_1) q^{13} + ( - 2 \beta_{2} + \beta_1) q^{17} + ( - 2 \beta_{3} - 2) q^{19} + ( - \beta_{3} + 1) q^{21} + 2 \beta_1 q^{23} + (4 \beta_{2} + \beta_1) q^{27} + ( - 3 \beta_{3} + 1) q^{29} + (4 \beta_{2} - \beta_1) q^{33} + 6 \beta_{2} q^{37} + (3 \beta_{3} - 7) q^{39} + 2 \beta_{3} q^{41} + (4 \beta_{2} - 2 \beta_1) q^{43} + (4 \beta_{2} + 3 \beta_1) q^{47} - q^{49} + (3 \beta_{3} - 7) q^{51} + (2 \beta_{2} + 2 \beta_1) q^{53} + ( - 8 \beta_{2} - 2 \beta_1) q^{57} - 4 q^{59} + 6 \beta_{3} q^{61} + ( - \beta_{2} + \beta_1) q^{63} + ( - 4 \beta_{2} - 4 \beta_1) q^{67} + (2 \beta_{3} - 10) q^{69} - 8 q^{71} + (6 \beta_{2} + 4 \beta_1) q^{73} + \beta_1 q^{77} + (\beta_{3} - 5) q^{79} - 7 q^{81} + 4 \beta_{2} q^{83} + ( - 12 \beta_{2} + \beta_1) q^{87} + (2 \beta_{3} - 4) q^{89} + ( - \beta_{3} + 3) q^{91} + ( - 2 \beta_{2} + 5 \beta_1) q^{97} + ( - 2 \beta_{3} + 6) q^{99}+O(q^{100})$$ q + b1 * q^3 + b2 * q^7 + (b3 - 2) * q^9 + (b3 - 1) * q^11 + (-2*b2 + b1) * q^13 + (-2*b2 + b1) * q^17 + (-2*b3 - 2) * q^19 + (-b3 + 1) * q^21 + 2*b1 * q^23 + (4*b2 + b1) * q^27 + (-3*b3 + 1) * q^29 + (4*b2 - b1) * q^33 + 6*b2 * q^37 + (3*b3 - 7) * q^39 + 2*b3 * q^41 + (4*b2 - 2*b1) * q^43 + (4*b2 + 3*b1) * q^47 - q^49 + (3*b3 - 7) * q^51 + (2*b2 + 2*b1) * q^53 + (-8*b2 - 2*b1) * q^57 - 4 * q^59 + 6*b3 * q^61 + (-b2 + b1) * q^63 + (-4*b2 - 4*b1) * q^67 + (2*b3 - 10) * q^69 - 8 * q^71 + (6*b2 + 4*b1) * q^73 + b1 * q^77 + (b3 - 5) * q^79 - 7 * q^81 + 4*b2 * q^83 + (-12*b2 + b1) * q^87 + (2*b3 - 4) * q^89 + (-b3 + 3) * q^91 + (-2*b2 + 5*b1) * q^97 + (-2*b3 + 6) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - 6 q^{9}+O(q^{10})$$ 4 * q - 6 * q^9 $$4 q - 6 q^{9} - 2 q^{11} - 12 q^{19} + 2 q^{21} - 2 q^{29} - 22 q^{39} + 4 q^{41} - 4 q^{49} - 22 q^{51} - 16 q^{59} + 12 q^{61} - 36 q^{69} - 32 q^{71} - 18 q^{79} - 28 q^{81} - 12 q^{89} + 10 q^{91} + 20 q^{99}+O(q^{100})$$ 4 * q - 6 * q^9 - 2 * q^11 - 12 * q^19 + 2 * q^21 - 2 * q^29 - 22 * q^39 + 4 * q^41 - 4 * q^49 - 22 * q^51 - 16 * q^59 + 12 * q^61 - 36 * q^69 - 32 * q^71 - 18 * q^79 - 28 * q^81 - 12 * q^89 + 10 * q^91 + 20 * q^99

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 9x^{2} + 16$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$( \nu^{3} + 5\nu ) / 4$$ (v^3 + 5*v) / 4 $$\beta_{3}$$ $$=$$ $$\nu^{2} + 5$$ v^2 + 5
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{3} - 5$$ b3 - 5 $$\nu^{3}$$ $$=$$ $$4\beta_{2} - 5\beta_1$$ 4*b2 - 5*b1

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2800\mathbb{Z}\right)^\times$$.

 $$n$$ $$351$$ $$801$$ $$2101$$ $$2577$$ $$\chi(n)$$ $$1$$ $$1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
449.1
 − 2.56155i − 1.56155i 1.56155i 2.56155i
0 2.56155i 0 0 0 1.00000i 0 −3.56155 0
449.2 0 1.56155i 0 0 0 1.00000i 0 0.561553 0
449.3 0 1.56155i 0 0 0 1.00000i 0 0.561553 0
449.4 0 2.56155i 0 0 0 1.00000i 0 −3.56155 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2800.2.g.t 4
4.b odd 2 1 175.2.b.b 4
5.b even 2 1 inner 2800.2.g.t 4
5.c odd 4 1 560.2.a.i 2
5.c odd 4 1 2800.2.a.bi 2
12.b even 2 1 1575.2.d.e 4
15.e even 4 1 5040.2.a.bt 2
20.d odd 2 1 175.2.b.b 4
20.e even 4 1 35.2.a.b 2
20.e even 4 1 175.2.a.f 2
28.d even 2 1 1225.2.b.f 4
35.f even 4 1 3920.2.a.bs 2
40.i odd 4 1 2240.2.a.bd 2
40.k even 4 1 2240.2.a.bh 2
60.h even 2 1 1575.2.d.e 4
60.l odd 4 1 315.2.a.e 2
60.l odd 4 1 1575.2.a.p 2
140.c even 2 1 1225.2.b.f 4
140.j odd 4 1 245.2.a.d 2
140.j odd 4 1 1225.2.a.s 2
140.w even 12 2 245.2.e.i 4
140.x odd 12 2 245.2.e.h 4
220.i odd 4 1 4235.2.a.m 2
260.p even 4 1 5915.2.a.l 2
420.w even 4 1 2205.2.a.x 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.2.a.b 2 20.e even 4 1
175.2.a.f 2 20.e even 4 1
175.2.b.b 4 4.b odd 2 1
175.2.b.b 4 20.d odd 2 1
245.2.a.d 2 140.j odd 4 1
245.2.e.h 4 140.x odd 12 2
245.2.e.i 4 140.w even 12 2
315.2.a.e 2 60.l odd 4 1
560.2.a.i 2 5.c odd 4 1
1225.2.a.s 2 140.j odd 4 1
1225.2.b.f 4 28.d even 2 1
1225.2.b.f 4 140.c even 2 1
1575.2.a.p 2 60.l odd 4 1
1575.2.d.e 4 12.b even 2 1
1575.2.d.e 4 60.h even 2 1
2205.2.a.x 2 420.w even 4 1
2240.2.a.bd 2 40.i odd 4 1
2240.2.a.bh 2 40.k even 4 1
2800.2.a.bi 2 5.c odd 4 1
2800.2.g.t 4 1.a even 1 1 trivial
2800.2.g.t 4 5.b even 2 1 inner
3920.2.a.bs 2 35.f even 4 1
4235.2.a.m 2 220.i odd 4 1
5040.2.a.bt 2 15.e even 4 1
5915.2.a.l 2 260.p even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2800, [\chi])$$:

 $$T_{3}^{4} + 9T_{3}^{2} + 16$$ T3^4 + 9*T3^2 + 16 $$T_{11}^{2} + T_{11} - 4$$ T11^2 + T11 - 4 $$T_{13}^{4} + 21T_{13}^{2} + 4$$ T13^4 + 21*T13^2 + 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$T^{4} + 9T^{2} + 16$$
$5$ $$T^{4}$$
$7$ $$(T^{2} + 1)^{2}$$
$11$ $$(T^{2} + T - 4)^{2}$$
$13$ $$T^{4} + 21T^{2} + 4$$
$17$ $$T^{4} + 21T^{2} + 4$$
$19$ $$(T^{2} + 6 T - 8)^{2}$$
$23$ $$T^{4} + 36T^{2} + 256$$
$29$ $$(T^{2} + T - 38)^{2}$$
$31$ $$T^{4}$$
$37$ $$(T^{2} + 36)^{2}$$
$41$ $$(T^{2} - 2 T - 16)^{2}$$
$43$ $$T^{4} + 84T^{2} + 64$$
$47$ $$T^{4} + 89T^{2} + 1024$$
$53$ $$T^{4} + 36T^{2} + 256$$
$59$ $$(T + 4)^{4}$$
$61$ $$(T^{2} - 6 T - 144)^{2}$$
$67$ $$T^{4} + 144T^{2} + 4096$$
$71$ $$(T + 8)^{4}$$
$73$ $$T^{4} + 168T^{2} + 2704$$
$79$ $$(T^{2} + 9 T + 16)^{2}$$
$83$ $$(T^{2} + 16)^{2}$$
$89$ $$(T^{2} + 6 T - 8)^{2}$$
$97$ $$T^{4} + 253T^{2} + 7396$$