# Properties

 Label 2800.2.g.n Level $2800$ Weight $2$ Character orbit 2800.g Analytic conductor $22.358$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2800,2,Mod(449,2800)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2800, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2800.449");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2800 = 2^{4} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2800.g (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$22.3581125660$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 70) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{7} + 3 q^{9}+O(q^{10})$$ q + i * q^7 + 3 * q^9 $$q + i q^{7} + 3 q^{9} - 4 q^{11} + 6 i q^{13} + 2 i q^{17} - 6 q^{29} - 8 q^{31} - 10 i q^{37} + 2 q^{41} + 4 i q^{43} - 8 i q^{47} - q^{49} + 2 i q^{53} - 8 q^{59} - 14 q^{61} + 3 i q^{63} + 12 i q^{67} + 16 q^{71} - 2 i q^{73} - 4 i q^{77} - 8 q^{79} + 9 q^{81} + 8 i q^{83} - 10 q^{89} - 6 q^{91} + 2 i q^{97} - 12 q^{99} +O(q^{100})$$ q + i * q^7 + 3 * q^9 - 4 * q^11 + 6*i * q^13 + 2*i * q^17 - 6 * q^29 - 8 * q^31 - 10*i * q^37 + 2 * q^41 + 4*i * q^43 - 8*i * q^47 - q^49 + 2*i * q^53 - 8 * q^59 - 14 * q^61 + 3*i * q^63 + 12*i * q^67 + 16 * q^71 - 2*i * q^73 - 4*i * q^77 - 8 * q^79 + 9 * q^81 + 8*i * q^83 - 10 * q^89 - 6 * q^91 + 2*i * q^97 - 12 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 6 q^{9}+O(q^{10})$$ 2 * q + 6 * q^9 $$2 q + 6 q^{9} - 8 q^{11} - 12 q^{29} - 16 q^{31} + 4 q^{41} - 2 q^{49} - 16 q^{59} - 28 q^{61} + 32 q^{71} - 16 q^{79} + 18 q^{81} - 20 q^{89} - 12 q^{91} - 24 q^{99}+O(q^{100})$$ 2 * q + 6 * q^9 - 8 * q^11 - 12 * q^29 - 16 * q^31 + 4 * q^41 - 2 * q^49 - 16 * q^59 - 28 * q^61 + 32 * q^71 - 16 * q^79 + 18 * q^81 - 20 * q^89 - 12 * q^91 - 24 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2800\mathbb{Z}\right)^\times$$.

 $$n$$ $$351$$ $$801$$ $$2101$$ $$2577$$ $$\chi(n)$$ $$1$$ $$1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
449.1
 − 1.00000i 1.00000i
0 0 0 0 0 1.00000i 0 3.00000 0
449.2 0 0 0 0 0 1.00000i 0 3.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2800.2.g.n 2
4.b odd 2 1 350.2.c.b 2
5.b even 2 1 inner 2800.2.g.n 2
5.c odd 4 1 560.2.a.d 1
5.c odd 4 1 2800.2.a.m 1
12.b even 2 1 3150.2.g.c 2
15.e even 4 1 5040.2.a.bm 1
20.d odd 2 1 350.2.c.b 2
20.e even 4 1 70.2.a.a 1
20.e even 4 1 350.2.a.b 1
28.d even 2 1 2450.2.c.k 2
35.f even 4 1 3920.2.a.t 1
40.i odd 4 1 2240.2.a.q 1
40.k even 4 1 2240.2.a.n 1
60.h even 2 1 3150.2.g.c 2
60.l odd 4 1 630.2.a.d 1
60.l odd 4 1 3150.2.a.bj 1
140.c even 2 1 2450.2.c.k 2
140.j odd 4 1 490.2.a.h 1
140.j odd 4 1 2450.2.a.l 1
140.w even 12 2 490.2.e.d 2
140.x odd 12 2 490.2.e.c 2
220.i odd 4 1 8470.2.a.j 1
420.w even 4 1 4410.2.a.b 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.a.a 1 20.e even 4 1
350.2.a.b 1 20.e even 4 1
350.2.c.b 2 4.b odd 2 1
350.2.c.b 2 20.d odd 2 1
490.2.a.h 1 140.j odd 4 1
490.2.e.c 2 140.x odd 12 2
490.2.e.d 2 140.w even 12 2
560.2.a.d 1 5.c odd 4 1
630.2.a.d 1 60.l odd 4 1
2240.2.a.n 1 40.k even 4 1
2240.2.a.q 1 40.i odd 4 1
2450.2.a.l 1 140.j odd 4 1
2450.2.c.k 2 28.d even 2 1
2450.2.c.k 2 140.c even 2 1
2800.2.a.m 1 5.c odd 4 1
2800.2.g.n 2 1.a even 1 1 trivial
2800.2.g.n 2 5.b even 2 1 inner
3150.2.a.bj 1 60.l odd 4 1
3150.2.g.c 2 12.b even 2 1
3150.2.g.c 2 60.h even 2 1
3920.2.a.t 1 35.f even 4 1
4410.2.a.b 1 420.w even 4 1
5040.2.a.bm 1 15.e even 4 1
8470.2.a.j 1 220.i odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2800, [\chi])$$:

 $$T_{3}$$ T3 $$T_{11} + 4$$ T11 + 4 $$T_{13}^{2} + 36$$ T13^2 + 36

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2} + 1$$
$11$ $$(T + 4)^{2}$$
$13$ $$T^{2} + 36$$
$17$ $$T^{2} + 4$$
$19$ $$T^{2}$$
$23$ $$T^{2}$$
$29$ $$(T + 6)^{2}$$
$31$ $$(T + 8)^{2}$$
$37$ $$T^{2} + 100$$
$41$ $$(T - 2)^{2}$$
$43$ $$T^{2} + 16$$
$47$ $$T^{2} + 64$$
$53$ $$T^{2} + 4$$
$59$ $$(T + 8)^{2}$$
$61$ $$(T + 14)^{2}$$
$67$ $$T^{2} + 144$$
$71$ $$(T - 16)^{2}$$
$73$ $$T^{2} + 4$$
$79$ $$(T + 8)^{2}$$
$83$ $$T^{2} + 64$$
$89$ $$(T + 10)^{2}$$
$97$ $$T^{2} + 4$$