# Properties

 Label 2800.2.g.l Level $2800$ Weight $2$ Character orbit 2800.g Analytic conductor $22.358$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2800 = 2^{4} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2800.g (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$22.3581125660$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 35) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{3} - i q^{7} + 2 q^{9} +O(q^{10})$$ q + i * q^3 - i * q^7 + 2 * q^9 $$q + i q^{3} - i q^{7} + 2 q^{9} + 3 q^{11} - 5 i q^{13} + 3 i q^{17} + 2 q^{19} + q^{21} - 6 i q^{23} + 5 i q^{27} - 3 q^{29} + 4 q^{31} + 3 i q^{33} + 2 i q^{37} + 5 q^{39} - 12 q^{41} - 10 i q^{43} - 9 i q^{47} - q^{49} - 3 q^{51} - 12 i q^{53} + 2 i q^{57} + 8 q^{61} - 2 i q^{63} + 4 i q^{67} + 6 q^{69} - 2 i q^{73} - 3 i q^{77} - q^{79} + q^{81} + 12 i q^{83} - 3 i q^{87} + 12 q^{89} - 5 q^{91} + 4 i q^{93} - i q^{97} + 6 q^{99} +O(q^{100})$$ q + i * q^3 - i * q^7 + 2 * q^9 + 3 * q^11 - 5*i * q^13 + 3*i * q^17 + 2 * q^19 + q^21 - 6*i * q^23 + 5*i * q^27 - 3 * q^29 + 4 * q^31 + 3*i * q^33 + 2*i * q^37 + 5 * q^39 - 12 * q^41 - 10*i * q^43 - 9*i * q^47 - q^49 - 3 * q^51 - 12*i * q^53 + 2*i * q^57 + 8 * q^61 - 2*i * q^63 + 4*i * q^67 + 6 * q^69 - 2*i * q^73 - 3*i * q^77 - q^79 + q^81 + 12*i * q^83 - 3*i * q^87 + 12 * q^89 - 5 * q^91 + 4*i * q^93 - i * q^97 + 6 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 4 q^{9}+O(q^{10})$$ 2 * q + 4 * q^9 $$2 q + 4 q^{9} + 6 q^{11} + 4 q^{19} + 2 q^{21} - 6 q^{29} + 8 q^{31} + 10 q^{39} - 24 q^{41} - 2 q^{49} - 6 q^{51} + 16 q^{61} + 12 q^{69} - 2 q^{79} + 2 q^{81} + 24 q^{89} - 10 q^{91} + 12 q^{99}+O(q^{100})$$ 2 * q + 4 * q^9 + 6 * q^11 + 4 * q^19 + 2 * q^21 - 6 * q^29 + 8 * q^31 + 10 * q^39 - 24 * q^41 - 2 * q^49 - 6 * q^51 + 16 * q^61 + 12 * q^69 - 2 * q^79 + 2 * q^81 + 24 * q^89 - 10 * q^91 + 12 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2800\mathbb{Z}\right)^\times$$.

 $$n$$ $$351$$ $$801$$ $$2101$$ $$2577$$ $$\chi(n)$$ $$1$$ $$1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
449.1
 − 1.00000i 1.00000i
0 1.00000i 0 0 0 1.00000i 0 2.00000 0
449.2 0 1.00000i 0 0 0 1.00000i 0 2.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2800.2.g.l 2
4.b odd 2 1 175.2.b.a 2
5.b even 2 1 inner 2800.2.g.l 2
5.c odd 4 1 560.2.a.b 1
5.c odd 4 1 2800.2.a.z 1
12.b even 2 1 1575.2.d.c 2
15.e even 4 1 5040.2.a.v 1
20.d odd 2 1 175.2.b.a 2
20.e even 4 1 35.2.a.a 1
20.e even 4 1 175.2.a.b 1
28.d even 2 1 1225.2.b.d 2
35.f even 4 1 3920.2.a.ba 1
40.i odd 4 1 2240.2.a.u 1
40.k even 4 1 2240.2.a.k 1
60.h even 2 1 1575.2.d.c 2
60.l odd 4 1 315.2.a.b 1
60.l odd 4 1 1575.2.a.f 1
140.c even 2 1 1225.2.b.d 2
140.j odd 4 1 245.2.a.c 1
140.j odd 4 1 1225.2.a.e 1
140.w even 12 2 245.2.e.a 2
140.x odd 12 2 245.2.e.b 2
220.i odd 4 1 4235.2.a.c 1
260.p even 4 1 5915.2.a.f 1
420.w even 4 1 2205.2.a.e 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.2.a.a 1 20.e even 4 1
175.2.a.b 1 20.e even 4 1
175.2.b.a 2 4.b odd 2 1
175.2.b.a 2 20.d odd 2 1
245.2.a.c 1 140.j odd 4 1
245.2.e.a 2 140.w even 12 2
245.2.e.b 2 140.x odd 12 2
315.2.a.b 1 60.l odd 4 1
560.2.a.b 1 5.c odd 4 1
1225.2.a.e 1 140.j odd 4 1
1225.2.b.d 2 28.d even 2 1
1225.2.b.d 2 140.c even 2 1
1575.2.a.f 1 60.l odd 4 1
1575.2.d.c 2 12.b even 2 1
1575.2.d.c 2 60.h even 2 1
2205.2.a.e 1 420.w even 4 1
2240.2.a.k 1 40.k even 4 1
2240.2.a.u 1 40.i odd 4 1
2800.2.a.z 1 5.c odd 4 1
2800.2.g.l 2 1.a even 1 1 trivial
2800.2.g.l 2 5.b even 2 1 inner
3920.2.a.ba 1 35.f even 4 1
4235.2.a.c 1 220.i odd 4 1
5040.2.a.v 1 15.e even 4 1
5915.2.a.f 1 260.p even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2800, [\chi])$$:

 $$T_{3}^{2} + 1$$ T3^2 + 1 $$T_{11} - 3$$ T11 - 3 $$T_{13}^{2} + 25$$ T13^2 + 25

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} + 1$$
$5$ $$T^{2}$$
$7$ $$T^{2} + 1$$
$11$ $$(T - 3)^{2}$$
$13$ $$T^{2} + 25$$
$17$ $$T^{2} + 9$$
$19$ $$(T - 2)^{2}$$
$23$ $$T^{2} + 36$$
$29$ $$(T + 3)^{2}$$
$31$ $$(T - 4)^{2}$$
$37$ $$T^{2} + 4$$
$41$ $$(T + 12)^{2}$$
$43$ $$T^{2} + 100$$
$47$ $$T^{2} + 81$$
$53$ $$T^{2} + 144$$
$59$ $$T^{2}$$
$61$ $$(T - 8)^{2}$$
$67$ $$T^{2} + 16$$
$71$ $$T^{2}$$
$73$ $$T^{2} + 4$$
$79$ $$(T + 1)^{2}$$
$83$ $$T^{2} + 144$$
$89$ $$(T - 12)^{2}$$
$97$ $$T^{2} + 1$$