Properties

Label 2800.2.g.l
Level $2800$
Weight $2$
Character orbit 2800.g
Analytic conductor $22.358$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2800.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(22.3581125660\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{3} - i q^{7} + 2 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + i q^{3} - i q^{7} + 2 q^{9} + 3 q^{11} - 5 i q^{13} + 3 i q^{17} + 2 q^{19} + q^{21} - 6 i q^{23} + 5 i q^{27} - 3 q^{29} + 4 q^{31} + 3 i q^{33} + 2 i q^{37} + 5 q^{39} - 12 q^{41} - 10 i q^{43} - 9 i q^{47} - q^{49} - 3 q^{51} - 12 i q^{53} + 2 i q^{57} + 8 q^{61} - 2 i q^{63} + 4 i q^{67} + 6 q^{69} - 2 i q^{73} - 3 i q^{77} - q^{79} + q^{81} + 12 i q^{83} - 3 i q^{87} + 12 q^{89} - 5 q^{91} + 4 i q^{93} - i q^{97} + 6 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{9} + 6 q^{11} + 4 q^{19} + 2 q^{21} - 6 q^{29} + 8 q^{31} + 10 q^{39} - 24 q^{41} - 2 q^{49} - 6 q^{51} + 16 q^{61} + 12 q^{69} - 2 q^{79} + 2 q^{81} + 24 q^{89} - 10 q^{91} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2800\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(801\) \(2101\) \(2577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
449.1
1.00000i
1.00000i
0 1.00000i 0 0 0 1.00000i 0 2.00000 0
449.2 0 1.00000i 0 0 0 1.00000i 0 2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2800.2.g.l 2
4.b odd 2 1 175.2.b.a 2
5.b even 2 1 inner 2800.2.g.l 2
5.c odd 4 1 560.2.a.b 1
5.c odd 4 1 2800.2.a.z 1
12.b even 2 1 1575.2.d.c 2
15.e even 4 1 5040.2.a.v 1
20.d odd 2 1 175.2.b.a 2
20.e even 4 1 35.2.a.a 1
20.e even 4 1 175.2.a.b 1
28.d even 2 1 1225.2.b.d 2
35.f even 4 1 3920.2.a.ba 1
40.i odd 4 1 2240.2.a.u 1
40.k even 4 1 2240.2.a.k 1
60.h even 2 1 1575.2.d.c 2
60.l odd 4 1 315.2.a.b 1
60.l odd 4 1 1575.2.a.f 1
140.c even 2 1 1225.2.b.d 2
140.j odd 4 1 245.2.a.c 1
140.j odd 4 1 1225.2.a.e 1
140.w even 12 2 245.2.e.a 2
140.x odd 12 2 245.2.e.b 2
220.i odd 4 1 4235.2.a.c 1
260.p even 4 1 5915.2.a.f 1
420.w even 4 1 2205.2.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.2.a.a 1 20.e even 4 1
175.2.a.b 1 20.e even 4 1
175.2.b.a 2 4.b odd 2 1
175.2.b.a 2 20.d odd 2 1
245.2.a.c 1 140.j odd 4 1
245.2.e.a 2 140.w even 12 2
245.2.e.b 2 140.x odd 12 2
315.2.a.b 1 60.l odd 4 1
560.2.a.b 1 5.c odd 4 1
1225.2.a.e 1 140.j odd 4 1
1225.2.b.d 2 28.d even 2 1
1225.2.b.d 2 140.c even 2 1
1575.2.a.f 1 60.l odd 4 1
1575.2.d.c 2 12.b even 2 1
1575.2.d.c 2 60.h even 2 1
2205.2.a.e 1 420.w even 4 1
2240.2.a.k 1 40.k even 4 1
2240.2.a.u 1 40.i odd 4 1
2800.2.a.z 1 5.c odd 4 1
2800.2.g.l 2 1.a even 1 1 trivial
2800.2.g.l 2 5.b even 2 1 inner
3920.2.a.ba 1 35.f even 4 1
4235.2.a.c 1 220.i odd 4 1
5040.2.a.v 1 15.e even 4 1
5915.2.a.f 1 260.p even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2800, [\chi])\):

\( T_{3}^{2} + 1 \) Copy content Toggle raw display
\( T_{11} - 3 \) Copy content Toggle raw display
\( T_{13}^{2} + 25 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( (T - 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 25 \) Copy content Toggle raw display
$17$ \( T^{2} + 9 \) Copy content Toggle raw display
$19$ \( (T - 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( (T + 3)^{2} \) Copy content Toggle raw display
$31$ \( (T - 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T + 12)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 100 \) Copy content Toggle raw display
$47$ \( T^{2} + 81 \) Copy content Toggle raw display
$53$ \( T^{2} + 144 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T - 8)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 16 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 4 \) Copy content Toggle raw display
$79$ \( (T + 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 144 \) Copy content Toggle raw display
$89$ \( (T - 12)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 1 \) Copy content Toggle raw display
show more
show less