Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2800,2,Mod(449,2800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2800.449");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2800.g (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(22.3581125660\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 350) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 449.1 | ||
Root | \(-1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 2800.449 |
Dual form | 2800.2.g.i.449.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2800\mathbb{Z}\right)^\times\).
\(n\) | \(351\) | \(801\) | \(2101\) | \(2577\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | − 1.00000i | − 0.577350i | −0.957427 | − | 0.288675i | \(-0.906785\pi\) | ||||
0.957427 | − | 0.288675i | \(-0.0932147\pi\) | |||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 1.00000i | 0.377964i | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 2.00000 | 0.666667 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −3.00000 | −0.904534 | −0.452267 | − | 0.891883i | \(-0.649385\pi\) | ||||
−0.452267 | + | 0.891883i | \(0.649385\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 2.00000i | 0.554700i | 0.960769 | + | 0.277350i | \(0.0894562\pi\) | ||||
−0.960769 | + | 0.277350i | \(0.910544\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | − 3.00000i | − 0.727607i | −0.931476 | − | 0.363803i | \(-0.881478\pi\) | ||||
0.931476 | − | 0.363803i | \(-0.118522\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −7.00000 | −1.60591 | −0.802955 | − | 0.596040i | \(-0.796740\pi\) | ||||
−0.802955 | + | 0.596040i | \(0.796740\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 1.00000 | 0.218218 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | − 5.00000i | − 0.962250i | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 6.00000 | 1.11417 | 0.557086 | − | 0.830455i | \(-0.311919\pi\) | ||||
0.557086 | + | 0.830455i | \(0.311919\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 4.00000 | 0.718421 | 0.359211 | − | 0.933257i | \(-0.383046\pi\) | ||||
0.359211 | + | 0.933257i | \(0.383046\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 3.00000i | 0.522233i | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 8.00000i | − 1.31519i | −0.753371 | − | 0.657596i | \(-0.771573\pi\) | ||||
0.753371 | − | 0.657596i | \(-0.228427\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 2.00000 | 0.320256 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −9.00000 | −1.40556 | −0.702782 | − | 0.711405i | \(-0.748059\pi\) | ||||
−0.702782 | + | 0.711405i | \(0.748059\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 8.00000i | − 1.21999i | −0.792406 | − | 0.609994i | \(-0.791172\pi\) | ||||
0.792406 | − | 0.609994i | \(-0.208828\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − 6.00000i | − 0.875190i | −0.899172 | − | 0.437595i | \(-0.855830\pi\) | ||||
0.899172 | − | 0.437595i | \(-0.144170\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −1.00000 | −0.142857 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | −3.00000 | −0.420084 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 12.0000i | − 1.64833i | −0.566352 | − | 0.824163i | \(-0.691646\pi\) | ||||
0.566352 | − | 0.824163i | \(-0.308354\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 7.00000i | 0.927173i | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 12.0000 | 1.56227 | 0.781133 | − | 0.624364i | \(-0.214642\pi\) | ||||
0.781133 | + | 0.624364i | \(0.214642\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −10.0000 | −1.28037 | −0.640184 | − | 0.768221i | \(-0.721142\pi\) | ||||
−0.640184 | + | 0.768221i | \(0.721142\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 2.00000i | 0.251976i | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 7.00000i | − 0.855186i | −0.903971 | − | 0.427593i | \(-0.859362\pi\) | ||||
0.903971 | − | 0.427593i | \(-0.140638\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −6.00000 | −0.712069 | −0.356034 | − | 0.934473i | \(-0.615871\pi\) | ||||
−0.356034 | + | 0.934473i | \(0.615871\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 5.00000i | 0.585206i | 0.956234 | + | 0.292603i | \(0.0945214\pi\) | ||||
−0.956234 | + | 0.292603i | \(0.905479\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | − 3.00000i | − 0.341882i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 14.0000 | 1.57512 | 0.787562 | − | 0.616236i | \(-0.211343\pi\) | ||||
0.787562 | + | 0.616236i | \(0.211343\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 1.00000 | 0.111111 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 9.00000i | 0.987878i | 0.869496 | + | 0.493939i | \(0.164443\pi\) | ||||
−0.869496 | + | 0.493939i | \(0.835557\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | − 6.00000i | − 0.643268i | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 15.0000 | 1.59000 | 0.794998 | − | 0.606612i | \(-0.207472\pi\) | ||||
0.794998 | + | 0.606612i | \(0.207472\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −2.00000 | −0.209657 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | − 4.00000i | − 0.414781i | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 10.0000i | 1.01535i | 0.861550 | + | 0.507673i | \(0.169494\pi\) | ||||
−0.861550 | + | 0.507673i | \(0.830506\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | −6.00000 | −0.603023 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | − 20.0000i | − 1.97066i | −0.170664 | − | 0.985329i | \(-0.554591\pi\) | ||||
0.170664 | − | 0.985329i | \(-0.445409\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 3.00000i | 0.290021i | 0.989430 | + | 0.145010i | \(0.0463216\pi\) | ||||
−0.989430 | + | 0.145010i | \(0.953678\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −14.0000 | −1.34096 | −0.670478 | − | 0.741929i | \(-0.733911\pi\) | ||||
−0.670478 | + | 0.741929i | \(0.733911\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | −8.00000 | −0.759326 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − 9.00000i | − 0.846649i | −0.905978 | − | 0.423324i | \(-0.860863\pi\) | ||||
0.905978 | − | 0.423324i | \(-0.139137\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 4.00000i | 0.369800i | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 3.00000 | 0.275010 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −2.00000 | −0.181818 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 9.00000i | 0.811503i | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 2.00000i | 0.177471i | 0.996055 | + | 0.0887357i | \(0.0282826\pi\) | ||||
−0.996055 | + | 0.0887357i | \(0.971717\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | −8.00000 | −0.704361 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 7.00000i | − 0.606977i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | − 21.0000i | − 1.79415i | −0.441877 | − | 0.897076i | \(-0.645687\pi\) | ||||
0.441877 | − | 0.897076i | \(-0.354313\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −7.00000 | −0.593732 | −0.296866 | − | 0.954919i | \(-0.595942\pi\) | ||||
−0.296866 | + | 0.954919i | \(0.595942\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | −6.00000 | −0.505291 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | − 6.00000i | − 0.501745i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 1.00000i | 0.0824786i | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −12.0000 | −0.983078 | −0.491539 | − | 0.870855i | \(-0.663566\pi\) | ||||
−0.491539 | + | 0.870855i | \(0.663566\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −8.00000 | −0.651031 | −0.325515 | − | 0.945537i | \(-0.605538\pi\) | ||||
−0.325515 | + | 0.945537i | \(0.605538\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | − 6.00000i | − 0.485071i | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 20.0000i | − 1.59617i | −0.602542 | − | 0.798087i | \(-0.705846\pi\) | ||||
0.602542 | − | 0.798087i | \(-0.294154\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | −12.0000 | −0.951662 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 5.00000i | − 0.391630i | −0.980641 | − | 0.195815i | \(-0.937265\pi\) | ||||
0.980641 | − | 0.195815i | \(-0.0627352\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 12.0000i | 0.928588i | 0.885681 | + | 0.464294i | \(0.153692\pi\) | ||||
−0.885681 | + | 0.464294i | \(0.846308\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 9.00000 | 0.692308 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | −14.0000 | −1.07061 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 6.00000i | − 0.456172i | −0.973641 | − | 0.228086i | \(-0.926753\pi\) | ||||
0.973641 | − | 0.228086i | \(-0.0732467\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | − 12.0000i | − 0.901975i | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 3.00000 | 0.224231 | 0.112115 | − | 0.993695i | \(-0.464237\pi\) | ||||
0.112115 | + | 0.993695i | \(0.464237\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 2.00000 | 0.148659 | 0.0743294 | − | 0.997234i | \(-0.476318\pi\) | ||||
0.0743294 | + | 0.997234i | \(0.476318\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 10.0000i | 0.739221i | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 9.00000i | 0.658145i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 5.00000 | 0.363696 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 6.00000 | 0.434145 | 0.217072 | − | 0.976156i | \(-0.430349\pi\) | ||||
0.217072 | + | 0.976156i | \(0.430349\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 5.00000i | 0.359908i | 0.983675 | + | 0.179954i | \(0.0575949\pi\) | ||||
−0.983675 | + | 0.179954i | \(0.942405\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 6.00000i | 0.427482i | 0.976890 | + | 0.213741i | \(0.0685649\pi\) | ||||
−0.976890 | + | 0.213741i | \(0.931435\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 14.0000 | 0.992434 | 0.496217 | − | 0.868199i | \(-0.334722\pi\) | ||||
0.496217 | + | 0.868199i | \(0.334722\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | −7.00000 | −0.493742 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 6.00000i | 0.421117i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 21.0000 | 1.45260 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −17.0000 | −1.17033 | −0.585164 | − | 0.810915i | \(-0.698970\pi\) | ||||
−0.585164 | + | 0.810915i | \(0.698970\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 6.00000i | 0.411113i | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 4.00000i | 0.271538i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 5.00000 | 0.337869 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 6.00000 | 0.403604 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 14.0000i | − 0.937509i | −0.883328 | − | 0.468755i | \(-0.844703\pi\) | ||||
0.883328 | − | 0.468755i | \(-0.155297\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 12.0000i | 0.796468i | 0.917284 | + | 0.398234i | \(0.130377\pi\) | ||||
−0.917284 | + | 0.398234i | \(0.869623\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −26.0000 | −1.71813 | −0.859064 | − | 0.511868i | \(-0.828954\pi\) | ||||
−0.859064 | + | 0.511868i | \(0.828954\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | −3.00000 | −0.197386 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 6.00000i | 0.393073i | 0.980497 | + | 0.196537i | \(0.0629694\pi\) | ||||
−0.980497 | + | 0.196537i | \(0.937031\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | − 14.0000i | − 0.909398i | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −12.0000 | −0.776215 | −0.388108 | − | 0.921614i | \(-0.626871\pi\) | ||||
−0.388108 | + | 0.921614i | \(0.626871\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −25.0000 | −1.61039 | −0.805196 | − | 0.593009i | \(-0.797940\pi\) | ||||
−0.805196 | + | 0.593009i | \(0.797940\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | − 16.0000i | − 1.02640i | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | − 14.0000i | − 0.890799i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 9.00000 | 0.570352 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −15.0000 | −0.946792 | −0.473396 | − | 0.880850i | \(-0.656972\pi\) | ||||
−0.473396 | + | 0.880850i | \(0.656972\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 30.0000i | 1.87135i | 0.352865 | + | 0.935674i | \(0.385208\pi\) | ||||
−0.352865 | + | 0.935674i | \(0.614792\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 8.00000 | 0.497096 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 12.0000 | 0.742781 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | − 6.00000i | − 0.369976i | −0.982741 | − | 0.184988i | \(-0.940775\pi\) | ||||
0.982741 | − | 0.184988i | \(-0.0592246\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | − 15.0000i | − 0.917985i | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 6.00000 | 0.365826 | 0.182913 | − | 0.983129i | \(-0.441447\pi\) | ||||
0.182913 | + | 0.983129i | \(0.441447\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −2.00000 | −0.121491 | −0.0607457 | − | 0.998153i | \(-0.519348\pi\) | ||||
−0.0607457 | + | 0.998153i | \(0.519348\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 2.00000i | 0.121046i | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 2.00000i | − 0.120168i | −0.998193 | − | 0.0600842i | \(-0.980863\pi\) | ||||
0.998193 | − | 0.0600842i | \(-0.0191369\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 8.00000 | 0.478947 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −18.0000 | −1.07379 | −0.536895 | − | 0.843649i | \(-0.680403\pi\) | ||||
−0.536895 | + | 0.843649i | \(0.680403\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 1.00000i | 0.0594438i | 0.999558 | + | 0.0297219i | \(0.00946217\pi\) | ||||
−0.999558 | + | 0.0297219i | \(0.990538\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | − 9.00000i | − 0.531253i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 8.00000 | 0.470588 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 10.0000 | 0.586210 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 6.00000i | − 0.350524i | −0.984522 | − | 0.175262i | \(-0.943923\pi\) | ||||
0.984522 | − | 0.175262i | \(-0.0560772\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 15.0000i | 0.870388i | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 8.00000 | 0.461112 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 7.00000i | − 0.399511i | −0.979846 | − | 0.199756i | \(-0.935985\pi\) | ||||
0.979846 | − | 0.199756i | \(-0.0640148\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | −20.0000 | −1.13776 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 18.0000 | 1.02069 | 0.510343 | − | 0.859971i | \(-0.329518\pi\) | ||||
0.510343 | + | 0.859971i | \(0.329518\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 10.0000i | − 0.565233i | −0.959233 | − | 0.282617i | \(-0.908798\pi\) | ||||
0.959233 | − | 0.282617i | \(-0.0912024\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 12.0000i | 0.673987i | 0.941507 | + | 0.336994i | \(0.109410\pi\) | ||||
−0.941507 | + | 0.336994i | \(0.890590\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −18.0000 | −1.00781 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 3.00000 | 0.167444 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 21.0000i | 1.16847i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 14.0000i | 0.774202i | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 6.00000 | 0.330791 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 25.0000 | 1.37412 | 0.687062 | − | 0.726599i | \(-0.258900\pi\) | ||||
0.687062 | + | 0.726599i | \(0.258900\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | − 16.0000i | − 0.876795i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 13.0000i | 0.708155i | 0.935216 | + | 0.354078i | \(0.115205\pi\) | ||||
−0.935216 | + | 0.354078i | \(0.884795\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | −9.00000 | −0.488813 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −12.0000 | −0.649836 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 1.00000i | − 0.0539949i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 21.0000i | − 1.12734i | −0.826000 | − | 0.563670i | \(-0.809389\pi\) | ||||
0.826000 | − | 0.563670i | \(-0.190611\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −8.00000 | −0.428230 | −0.214115 | − | 0.976808i | \(-0.568687\pi\) | ||||
−0.214115 | + | 0.976808i | \(0.568687\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 10.0000 | 0.533761 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 30.0000i | 1.59674i | 0.602168 | + | 0.798369i | \(0.294304\pi\) | ||||
−0.602168 | + | 0.798369i | \(0.705696\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | − 3.00000i | − 0.158777i | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −6.00000 | −0.316668 | −0.158334 | − | 0.987386i | \(-0.550612\pi\) | ||||
−0.158334 | + | 0.987386i | \(0.550612\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 30.0000 | 1.57895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 2.00000i | 0.104973i | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 8.00000i | 0.417597i | 0.977959 | + | 0.208798i | \(0.0669552\pi\) | ||||
−0.977959 | + | 0.208798i | \(0.933045\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | −18.0000 | −0.937043 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 12.0000 | 0.623009 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 4.00000i | − 0.207112i | −0.994624 | − | 0.103556i | \(-0.966978\pi\) | ||||
0.994624 | − | 0.103556i | \(-0.0330221\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 12.0000i | 0.618031i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 17.0000 | 0.873231 | 0.436616 | − | 0.899648i | \(-0.356177\pi\) | ||||
0.436616 | + | 0.899648i | \(0.356177\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 2.00000 | 0.102463 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 30.0000i | 1.53293i | 0.642287 | + | 0.766464i | \(0.277986\pi\) | ||||
−0.642287 | + | 0.766464i | \(0.722014\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | − 16.0000i | − 0.813326i | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 24.0000 | 1.21685 | 0.608424 | − | 0.793612i | \(-0.291802\pi\) | ||||
0.608424 | + | 0.793612i | \(0.291802\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 2.00000i | − 0.100377i | −0.998740 | − | 0.0501886i | \(-0.984018\pi\) | ||||
0.998740 | − | 0.0501886i | \(-0.0159822\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | −7.00000 | −0.350438 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −27.0000 | −1.34832 | −0.674158 | − | 0.738587i | \(-0.735493\pi\) | ||||
−0.674158 | + | 0.738587i | \(0.735493\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 8.00000i | 0.398508i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 24.0000i | 1.18964i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 25.0000 | 1.23617 | 0.618085 | − | 0.786111i | \(-0.287909\pi\) | ||||
0.618085 | + | 0.786111i | \(0.287909\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | −21.0000 | −1.03585 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 12.0000i | 0.590481i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 7.00000i | 0.342791i | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −3.00000 | −0.146560 | −0.0732798 | − | 0.997311i | \(-0.523347\pi\) | ||||
−0.0732798 | + | 0.997311i | \(0.523347\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 20.0000 | 0.974740 | 0.487370 | − | 0.873195i | \(-0.337956\pi\) | ||||
0.487370 | + | 0.873195i | \(0.337956\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | − 12.0000i | − 0.583460i | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 10.0000i | − 0.483934i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | −6.00000 | −0.289683 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 36.0000 | 1.73406 | 0.867029 | − | 0.498257i | \(-0.166026\pi\) | ||||
0.867029 | + | 0.498257i | \(0.166026\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 11.0000i | 0.528626i | 0.964437 | + | 0.264313i | \(0.0851452\pi\) | ||||
−0.964437 | + | 0.264313i | \(0.914855\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −4.00000 | −0.190910 | −0.0954548 | − | 0.995434i | \(-0.530431\pi\) | ||||
−0.0954548 | + | 0.995434i | \(0.530431\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | −2.00000 | −0.0952381 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 21.0000i | − 0.997740i | −0.866677 | − | 0.498870i | \(-0.833748\pi\) | ||||
0.866677 | − | 0.498870i | \(-0.166252\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 12.0000i | 0.567581i | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 15.0000 | 0.707894 | 0.353947 | − | 0.935266i | \(-0.384839\pi\) | ||||
0.353947 | + | 0.935266i | \(0.384839\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 27.0000 | 1.27138 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 8.00000i | 0.375873i | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − 17.0000i | − 0.795226i | −0.917553 | − | 0.397613i | \(-0.869839\pi\) | ||||
0.917553 | − | 0.397613i | \(-0.130161\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | −15.0000 | −0.700140 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 18.0000 | 0.838344 | 0.419172 | − | 0.907907i | \(-0.362320\pi\) | ||||
0.419172 | + | 0.907907i | \(0.362320\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 8.00000i | − 0.371792i | −0.982569 | − | 0.185896i | \(-0.940481\pi\) | ||||
0.982569 | − | 0.185896i | \(-0.0595187\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 36.0000i | 1.66588i | 0.553362 | + | 0.832941i | \(0.313345\pi\) | ||||
−0.553362 | + | 0.832941i | \(0.686655\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 7.00000 | 0.323230 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | −20.0000 | −0.921551 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 24.0000i | 1.10352i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | − 24.0000i | − 1.09888i | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 18.0000 | 0.822441 | 0.411220 | − | 0.911536i | \(-0.365103\pi\) | ||||
0.411220 | + | 0.911536i | \(0.365103\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 16.0000 | 0.729537 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | − 34.0000i | − 1.54069i | −0.637629 | − | 0.770344i | \(-0.720085\pi\) | ||||
0.637629 | − | 0.770344i | \(-0.279915\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | −5.00000 | −0.226108 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 12.0000 | 0.541552 | 0.270776 | − | 0.962642i | \(-0.412720\pi\) | ||||
0.270776 | + | 0.962642i | \(0.412720\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 18.0000i | − 0.810679i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | − 6.00000i | − 0.269137i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −28.0000 | −1.25345 | −0.626726 | − | 0.779240i | \(-0.715605\pi\) | ||||
−0.626726 | + | 0.779240i | \(0.715605\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 12.0000 | 0.536120 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 6.00000i | 0.267527i | 0.991013 | + | 0.133763i | \(0.0427062\pi\) | ||||
−0.991013 | + | 0.133763i | \(0.957294\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | − 9.00000i | − 0.399704i | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −42.0000 | −1.86162 | −0.930809 | − | 0.365507i | \(-0.880896\pi\) | ||||
−0.930809 | + | 0.365507i | \(0.880896\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −5.00000 | −0.221187 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 35.0000i | 1.54529i | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 18.0000i | 0.791639i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | −6.00000 | −0.263371 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 39.0000 | 1.70862 | 0.854311 | − | 0.519763i | \(-0.173980\pi\) | ||||
0.854311 | + | 0.519763i | \(0.173980\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 7.00000i | 0.306089i | 0.988219 | + | 0.153044i | \(0.0489077\pi\) | ||||
−0.988219 | + | 0.153044i | \(0.951092\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | − 12.0000i | − 0.522728i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 23.0000 | 1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 24.0000 | 1.04151 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | − 18.0000i | − 0.779667i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | − 3.00000i | − 0.129460i | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 3.00000 | 0.129219 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 38.0000 | 1.63375 | 0.816874 | − | 0.576816i | \(-0.195705\pi\) | ||||
0.816874 | + | 0.576816i | \(0.195705\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | − 2.00000i | − 0.0858282i | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 35.0000i | 1.49649i | 0.663421 | + | 0.748246i | \(0.269104\pi\) | ||||
−0.663421 | + | 0.748246i | \(0.730896\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | −20.0000 | −0.853579 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −42.0000 | −1.78926 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 14.0000i | 0.595341i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 36.0000i | − 1.52537i | −0.646771 | − | 0.762684i | \(-0.723881\pi\) | ||||
0.646771 | − | 0.762684i | \(-0.276119\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 16.0000 | 0.676728 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 9.00000 | 0.379980 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 12.0000i | − 0.505740i | −0.967500 | − | 0.252870i | \(-0.918626\pi\) | ||||
0.967500 | − | 0.252870i | \(-0.0813744\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 1.00000i | 0.0419961i | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 27.0000 | 1.13190 | 0.565949 | − | 0.824440i | \(-0.308510\pi\) | ||||
0.565949 | + | 0.824440i | \(0.308510\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 4.00000 | 0.167395 | 0.0836974 | − | 0.996491i | \(-0.473327\pi\) | ||||
0.0836974 | + | 0.996491i | \(0.473327\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | − 6.00000i | − 0.250654i | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 7.00000i | 0.291414i | 0.989328 | + | 0.145707i | \(0.0465456\pi\) | ||||
−0.989328 | + | 0.145707i | \(0.953454\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 5.00000 | 0.207793 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −9.00000 | −0.373383 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 36.0000i | 1.49097i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 39.0000i | 1.60970i | 0.593477 | + | 0.804851i | \(0.297755\pi\) | ||||
−0.593477 | + | 0.804851i | \(0.702245\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −28.0000 | −1.15372 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 6.00000 | 0.246807 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | − 27.0000i | − 1.10876i | −0.832265 | − | 0.554379i | \(-0.812956\pi\) | ||||
0.832265 | − | 0.554379i | \(-0.187044\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | − 14.0000i | − 0.572982i | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 24.0000 | 0.980613 | 0.490307 | − | 0.871550i | \(-0.336885\pi\) | ||||
0.490307 | + | 0.871550i | \(0.336885\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −7.00000 | −0.285536 | −0.142768 | − | 0.989756i | \(-0.545600\pi\) | ||||
−0.142768 | + | 0.989756i | \(0.545600\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | − 14.0000i | − 0.570124i | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 44.0000i | 1.78590i | 0.450151 | + | 0.892952i | \(0.351370\pi\) | ||||
−0.450151 | + | 0.892952i | \(0.648630\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 6.00000 | 0.243132 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 12.0000 | 0.485468 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 2.00000i | 0.0807792i | 0.999184 | + | 0.0403896i | \(0.0128599\pi\) | ||||
−0.999184 | + | 0.0403896i | \(0.987140\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 18.0000i | 0.724653i | 0.932051 | + | 0.362326i | \(0.118017\pi\) | ||||
−0.932051 | + | 0.362326i | \(0.881983\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −28.0000 | −1.12542 | −0.562708 | − | 0.826656i | \(-0.690240\pi\) | ||||
−0.562708 | + | 0.826656i | \(0.690240\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 15.0000i | 0.600962i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | − 21.0000i | − 0.838659i | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −24.0000 | −0.956943 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −32.0000 | −1.27390 | −0.636950 | − | 0.770905i | \(-0.719804\pi\) | ||||
−0.636950 | + | 0.770905i | \(0.719804\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 17.0000i | 0.675689i | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | − 2.00000i | − 0.0792429i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | −12.0000 | −0.474713 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −30.0000 | −1.18493 | −0.592464 | − | 0.805597i | \(-0.701845\pi\) | ||||
−0.592464 | + | 0.805597i | \(0.701845\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 40.0000i | 1.57745i | 0.614749 | + | 0.788723i | \(0.289257\pi\) | ||||
−0.614749 | + | 0.788723i | \(0.710743\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − 24.0000i | − 0.943537i | −0.881722 | − | 0.471769i | \(-0.843616\pi\) | ||||
0.881722 | − | 0.471769i | \(-0.156384\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −36.0000 | −1.41312 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 4.00000 | 0.156772 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 36.0000i | 1.40879i | 0.709809 | + | 0.704394i | \(0.248781\pi\) | ||||
−0.709809 | + | 0.704394i | \(0.751219\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 10.0000i | 0.390137i | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 9.00000 | 0.350590 | 0.175295 | − | 0.984516i | \(-0.443912\pi\) | ||||
0.175295 | + | 0.984516i | \(0.443912\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −10.0000 | −0.388955 | −0.194477 | − | 0.980907i | \(-0.562301\pi\) | ||||
−0.194477 | + | 0.980907i | \(0.562301\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | − 6.00000i | − 0.233021i | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | −14.0000 | −0.541271 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 30.0000 | 1.15814 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 2.00000i | 0.0770943i | 0.999257 | + | 0.0385472i | \(0.0122730\pi\) | ||||
−0.999257 | + | 0.0385472i | \(0.987727\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −10.0000 | −0.383765 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 12.0000 | 0.459841 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 3.00000i | − 0.114792i | −0.998351 | − | 0.0573959i | \(-0.981720\pi\) | ||||
0.998351 | − | 0.0573959i | \(-0.0182797\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 26.0000i | 0.991962i | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 24.0000 | 0.914327 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 19.0000 | 0.722794 | 0.361397 | − | 0.932412i | \(-0.382300\pi\) | ||||
0.361397 | + | 0.932412i | \(0.382300\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | − 6.00000i | − 0.227921i | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 27.0000i | 1.02270i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 6.00000 | 0.226941 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 56.0000i | 2.11208i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 28.0000 | 1.05156 | 0.525781 | − | 0.850620i | \(-0.323773\pi\) | ||||
0.525781 | + | 0.850620i | \(0.323773\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 28.0000 | 1.05008 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 12.0000i | 0.448148i | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 20.0000 | 0.744839 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 25.0000i | 0.929760i | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − 34.0000i | − 1.26099i | −0.776193 | − | 0.630495i | \(-0.782852\pi\) | ||||
0.776193 | − | 0.630495i | \(-0.217148\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −13.0000 | −0.481481 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −24.0000 | −0.887672 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 40.0000i | − 1.47743i | −0.674016 | − | 0.738717i | \(-0.735432\pi\) | ||||
0.674016 | − | 0.738717i | \(-0.264568\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 21.0000i | 0.773545i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 20.0000 | 0.735712 | 0.367856 | − | 0.929883i | \(-0.380092\pi\) | ||||
0.367856 | + | 0.929883i | \(0.380092\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | −14.0000 | −0.514303 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 24.0000i | 0.880475i | 0.897881 | + | 0.440237i | \(0.145106\pi\) | ||||
−0.897881 | + | 0.440237i | \(0.854894\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 18.0000i | 0.658586i | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −3.00000 | −0.109618 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 46.0000 | 1.67856 | 0.839282 | − | 0.543696i | \(-0.182976\pi\) | ||||
0.839282 | + | 0.543696i | \(0.182976\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 15.0000i | 0.546630i | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 34.0000i | 1.23575i | 0.786276 | + | 0.617876i | \(0.212006\pi\) | ||||
−0.786276 | + | 0.617876i | \(0.787994\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −9.00000 | −0.326250 | −0.163125 | − | 0.986605i | \(-0.552157\pi\) | ||||
−0.163125 | + | 0.986605i | \(0.552157\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 14.0000i | − 0.506834i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 24.0000i | 0.866590i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −23.0000 | −0.829401 | −0.414701 | − | 0.909958i | \(-0.636114\pi\) | ||||
−0.414701 | + | 0.909958i | \(0.636114\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 30.0000 | 1.08042 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 12.0000i | − 0.431610i | −0.976436 | − | 0.215805i | \(-0.930762\pi\) | ||||
0.976436 | − | 0.215805i | \(-0.0692376\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | − 8.00000i | − 0.286998i | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 63.0000 | 2.25721 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 18.0000 | 0.644091 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | − 30.0000i | − 1.07211i | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 4.00000i | − 0.142585i | −0.997455 | − | 0.0712923i | \(-0.977288\pi\) | ||||
0.997455 | − | 0.0712923i | \(-0.0227123\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | −6.00000 | −0.213606 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 9.00000 | 0.320003 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | − 20.0000i | − 0.710221i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 30.0000i | 1.06265i | 0.847167 | + | 0.531327i | \(0.178307\pi\) | ||||
−0.847167 | + | 0.531327i | \(0.821693\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −18.0000 | −0.636794 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 30.0000 | 1.06000 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 15.0000i | − 0.529339i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | − 6.00000i | − 0.211210i | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −6.00000 | −0.210949 | −0.105474 | − | 0.994422i | \(-0.533636\pi\) | ||||
−0.105474 | + | 0.994422i | \(0.533636\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −44.0000 | −1.54505 | −0.772524 | − | 0.634985i | \(-0.781006\pi\) | ||||
−0.772524 | + | 0.634985i | \(0.781006\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 2.00000i | 0.0701431i | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 56.0000i | 1.95919i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | −4.00000 | −0.139771 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 24.0000 | 0.837606 | 0.418803 | − | 0.908077i | \(-0.362450\pi\) | ||||
0.418803 | + | 0.908077i | \(0.362450\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − 26.0000i | − 0.906303i | −0.891434 | − | 0.453152i | \(-0.850300\pi\) | ||||
0.891434 | − | 0.453152i | \(-0.149700\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 9.00000i | 0.312961i | 0.987681 | + | 0.156480i | \(0.0500148\pi\) | ||||
−0.987681 | + | 0.156480i | \(0.949985\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 4.00000 | 0.138926 | 0.0694629 | − | 0.997585i | \(-0.477871\pi\) | ||||
0.0694629 | + | 0.997585i | \(0.477871\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | −2.00000 | −0.0693792 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 3.00000i | 0.103944i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | − 20.0000i | − 0.691301i | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −6.00000 | −0.207143 | −0.103572 | − | 0.994622i | \(-0.533027\pi\) | ||||
−0.103572 | + | 0.994622i | \(0.533027\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 18.0000i | 0.619953i | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 2.00000i | − 0.0687208i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 1.00000 | 0.0343199 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 10.0000i | − 0.342393i | −0.985237 | − | 0.171197i | \(-0.945237\pi\) | ||||
0.985237 | − | 0.171197i | \(-0.0547634\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | − 15.0000i | − 0.512390i | −0.966625 | − | 0.256195i | \(-0.917531\pi\) | ||||
0.966625 | − | 0.256195i | \(-0.0824690\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −31.0000 | −1.05771 | −0.528853 | − | 0.848713i | \(-0.677378\pi\) | ||||
−0.528853 | + | 0.848713i | \(0.677378\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | −9.00000 | −0.306719 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 12.0000i | 0.408485i | 0.978920 | + | 0.204242i | \(0.0654731\pi\) | ||||
−0.978920 | + | 0.204242i | \(0.934527\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | − 8.00000i | − 0.271694i | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −42.0000 | −1.42475 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 14.0000 | 0.474372 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 20.0000i | 0.676897i | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 32.0000i | − 1.08056i | −0.841484 | − | 0.540282i | \(-0.818318\pi\) | ||||
0.841484 | − | 0.540282i | \(-0.181682\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | −6.00000 | −0.202375 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −6.00000 | −0.202145 | −0.101073 | − | 0.994879i | \(-0.532227\pi\) | ||||
−0.101073 | + | 0.994879i | \(0.532227\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 47.0000i | − 1.58168i | −0.612026 | − | 0.790838i | \(-0.709645\pi\) | ||||
0.612026 | − | 0.790838i | \(-0.290355\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 6.00000i | 0.201460i | 0.994914 | + | 0.100730i | \(0.0321179\pi\) | ||||
−0.994914 | + | 0.100730i | \(0.967882\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −2.00000 | −0.0670778 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | −3.00000 | −0.100504 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 42.0000i | 1.40548i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 24.0000 | 0.800445 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −36.0000 | −1.19933 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | − 8.00000i | − 0.266223i | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 4.00000i | − 0.132818i | −0.997792 | − | 0.0664089i | \(-0.978846\pi\) | ||||
0.997792 | − | 0.0664089i | \(-0.0211542\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −36.0000 | −1.19273 | −0.596367 | − | 0.802712i | \(-0.703390\pi\) | ||||
−0.596367 | + | 0.802712i | \(0.703390\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | − 27.0000i | − 0.893570i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −34.0000 | −1.12156 | −0.560778 | − | 0.827966i | \(-0.689498\pi\) | ||||
−0.560778 | + | 0.827966i | \(0.689498\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | −7.00000 | −0.230658 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 12.0000i | − 0.394985i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | − 40.0000i | − 1.31377i | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 18.0000 | 0.590561 | 0.295280 | − | 0.955411i | \(-0.404587\pi\) | ||||
0.295280 | + | 0.955411i | \(0.404587\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 7.00000 | 0.229416 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | − 18.0000i | − 0.589294i | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − 29.0000i | − 0.947389i | −0.880689 | − | 0.473694i | \(-0.842920\pi\) | ||||
0.880689 | − | 0.473694i | \(-0.157080\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | −10.0000 | −0.326338 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 24.0000 | 0.782378 | 0.391189 | − | 0.920310i | \(-0.372064\pi\) | ||||
0.391189 | + | 0.920310i | \(0.372064\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 12.0000i | 0.389948i | 0.980808 | + | 0.194974i | \(0.0624622\pi\) | ||||
−0.980808 | + | 0.194974i | \(0.937538\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −10.0000 | −0.324614 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 12.0000 | 0.389127 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 57.0000i | 1.84641i | 0.384307 | + | 0.923206i | \(0.374441\pi\) | ||||
−0.384307 | + | 0.923206i | \(0.625559\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 18.0000i | 0.581857i | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 21.0000 | 0.678125 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −15.0000 | −0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 6.00000i | 0.193347i | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 34.0000i | − 1.09337i | −0.837340 | − | 0.546683i | \(-0.815890\pi\) | ||||
0.837340 | − | 0.546683i | \(-0.184110\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 21.0000 | 0.674617 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −9.00000 | −0.288824 | −0.144412 | − | 0.989518i | \(-0.546129\pi\) | ||||
−0.144412 | + | 0.989518i | \(0.546129\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 7.00000i | − 0.224410i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 3.00000i | 0.0959785i | 0.998848 | + | 0.0479893i | \(0.0152813\pi\) | ||||
−0.998848 | + | 0.0479893i | \(0.984719\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −45.0000 | −1.43821 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | −28.0000 | −0.893971 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 12.0000i | − 0.382741i | −0.981518 | − | 0.191370i | \(-0.938707\pi\) | ||||
0.981518 | − | 0.191370i | \(-0.0612931\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | − 6.00000i | − 0.190982i | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −20.0000 | −0.635321 | −0.317660 | − | 0.948205i | \(-0.602897\pi\) | ||||
−0.317660 | + | 0.948205i | \(0.602897\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | − 25.0000i | − 0.793351i | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 62.0000i | − 1.96356i | −0.190022 | − | 0.981780i | \(-0.560856\pi\) | ||||
0.190022 | − | 0.981780i | \(-0.439144\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | −40.0000 | −1.26554 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 2800.2.g.i.449.1 | 2 | ||
4.3 | odd | 2 | 350.2.c.c.99.1 | 2 | |||
5.2 | odd | 4 | 2800.2.a.h.1.1 | 1 | |||
5.3 | odd | 4 | 2800.2.a.x.1.1 | 1 | |||
5.4 | even | 2 | inner | 2800.2.g.i.449.2 | 2 | ||
12.11 | even | 2 | 3150.2.g.f.2899.2 | 2 | |||
20.3 | even | 4 | 350.2.a.a.1.1 | ✓ | 1 | ||
20.7 | even | 4 | 350.2.a.e.1.1 | yes | 1 | ||
20.19 | odd | 2 | 350.2.c.c.99.2 | 2 | |||
28.27 | even | 2 | 2450.2.c.h.99.1 | 2 | |||
60.23 | odd | 4 | 3150.2.a.x.1.1 | 1 | |||
60.47 | odd | 4 | 3150.2.a.m.1.1 | 1 | |||
60.59 | even | 2 | 3150.2.g.f.2899.1 | 2 | |||
140.27 | odd | 4 | 2450.2.a.x.1.1 | 1 | |||
140.83 | odd | 4 | 2450.2.a.m.1.1 | 1 | |||
140.139 | even | 2 | 2450.2.c.h.99.2 | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
350.2.a.a.1.1 | ✓ | 1 | 20.3 | even | 4 | ||
350.2.a.e.1.1 | yes | 1 | 20.7 | even | 4 | ||
350.2.c.c.99.1 | 2 | 4.3 | odd | 2 | |||
350.2.c.c.99.2 | 2 | 20.19 | odd | 2 | |||
2450.2.a.m.1.1 | 1 | 140.83 | odd | 4 | |||
2450.2.a.x.1.1 | 1 | 140.27 | odd | 4 | |||
2450.2.c.h.99.1 | 2 | 28.27 | even | 2 | |||
2450.2.c.h.99.2 | 2 | 140.139 | even | 2 | |||
2800.2.a.h.1.1 | 1 | 5.2 | odd | 4 | |||
2800.2.a.x.1.1 | 1 | 5.3 | odd | 4 | |||
2800.2.g.i.449.1 | 2 | 1.1 | even | 1 | trivial | ||
2800.2.g.i.449.2 | 2 | 5.4 | even | 2 | inner | ||
3150.2.a.m.1.1 | 1 | 60.47 | odd | 4 | |||
3150.2.a.x.1.1 | 1 | 60.23 | odd | 4 | |||
3150.2.g.f.2899.1 | 2 | 60.59 | even | 2 | |||
3150.2.g.f.2899.2 | 2 | 12.11 | even | 2 |