Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2800,2,Mod(449,2800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2800.449");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2800.g (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(22.3581125660\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 14) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 449.2 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 2800.449 |
Dual form | 2800.2.g.h.449.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2800\mathbb{Z}\right)^\times\).
\(n\) | \(351\) | \(801\) | \(2101\) | \(2577\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 2.00000i | 1.15470i | 0.816497 | + | 0.577350i | \(0.195913\pi\) | ||||
−0.816497 | + | 0.577350i | \(0.804087\pi\) | |||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 1.00000i | 0.377964i | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | −1.00000 | −0.333333 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | − 4.00000i | − 1.10940i | −0.832050 | − | 0.554700i | \(-0.812833\pi\) | ||||
0.832050 | − | 0.554700i | \(-0.187167\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | − 6.00000i | − 1.45521i | −0.685994 | − | 0.727607i | \(-0.740633\pi\) | ||||
0.685994 | − | 0.727607i | \(-0.259367\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 2.00000 | 0.458831 | 0.229416 | − | 0.973329i | \(-0.426318\pi\) | ||||
0.229416 | + | 0.973329i | \(0.426318\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | −2.00000 | −0.436436 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 4.00000i | 0.769800i | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 6.00000 | 1.11417 | 0.557086 | − | 0.830455i | \(-0.311919\pi\) | ||||
0.557086 | + | 0.830455i | \(0.311919\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 4.00000 | 0.718421 | 0.359211 | − | 0.933257i | \(-0.383046\pi\) | ||||
0.359211 | + | 0.933257i | \(0.383046\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 2.00000i | − 0.328798i | −0.986394 | − | 0.164399i | \(-0.947432\pi\) | ||||
0.986394 | − | 0.164399i | \(-0.0525685\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 8.00000 | 1.28103 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 6.00000 | 0.937043 | 0.468521 | − | 0.883452i | \(-0.344787\pi\) | ||||
0.468521 | + | 0.883452i | \(0.344787\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 8.00000i | − 1.21999i | −0.792406 | − | 0.609994i | \(-0.791172\pi\) | ||||
0.792406 | − | 0.609994i | \(-0.208828\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − 12.0000i | − 1.75038i | −0.483779 | − | 0.875190i | \(-0.660736\pi\) | ||||
0.483779 | − | 0.875190i | \(-0.339264\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −1.00000 | −0.142857 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 12.0000 | 1.68034 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 6.00000i | 0.824163i | 0.911147 | + | 0.412082i | \(0.135198\pi\) | ||||
−0.911147 | + | 0.412082i | \(0.864802\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 4.00000i | 0.529813i | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −6.00000 | −0.781133 | −0.390567 | − | 0.920575i | \(-0.627721\pi\) | ||||
−0.390567 | + | 0.920575i | \(0.627721\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 8.00000 | 1.02430 | 0.512148 | − | 0.858898i | \(-0.328850\pi\) | ||||
0.512148 | + | 0.858898i | \(0.328850\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | − 1.00000i | − 0.125988i | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 4.00000i | − 0.488678i | −0.969690 | − | 0.244339i | \(-0.921429\pi\) | ||||
0.969690 | − | 0.244339i | \(-0.0785709\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 2.00000i | 0.234082i | 0.993127 | + | 0.117041i | \(0.0373409\pi\) | ||||
−0.993127 | + | 0.117041i | \(0.962659\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 8.00000 | 0.900070 | 0.450035 | − | 0.893011i | \(-0.351411\pi\) | ||||
0.450035 | + | 0.893011i | \(0.351411\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | −11.0000 | −1.22222 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 6.00000i | 0.658586i | 0.944228 | + | 0.329293i | \(0.106810\pi\) | ||||
−0.944228 | + | 0.329293i | \(0.893190\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 12.0000i | 1.28654i | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 6.00000 | 0.635999 | 0.317999 | − | 0.948091i | \(-0.396989\pi\) | ||||
0.317999 | + | 0.948091i | \(0.396989\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 4.00000 | 0.419314 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 8.00000i | 0.829561i | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 10.0000i | 1.01535i | 0.861550 | + | 0.507673i | \(0.169494\pi\) | ||||
−0.861550 | + | 0.507673i | \(0.830506\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 4.00000i | 0.394132i | 0.980390 | + | 0.197066i | \(0.0631413\pi\) | ||||
−0.980390 | + | 0.197066i | \(0.936859\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 12.0000i | 1.16008i | 0.814587 | + | 0.580042i | \(0.196964\pi\) | ||||
−0.814587 | + | 0.580042i | \(0.803036\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −2.00000 | −0.191565 | −0.0957826 | − | 0.995402i | \(-0.530535\pi\) | ||||
−0.0957826 | + | 0.995402i | \(0.530535\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 4.00000 | 0.379663 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 6.00000i | 0.564433i | 0.959351 | + | 0.282216i | \(0.0910696\pi\) | ||||
−0.959351 | + | 0.282216i | \(0.908930\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 4.00000i | 0.369800i | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 6.00000 | 0.550019 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −11.0000 | −1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 12.0000i | 1.08200i | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 16.0000i | − 1.41977i | −0.704317 | − | 0.709885i | \(-0.748747\pi\) | ||||
0.704317 | − | 0.709885i | \(-0.251253\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 16.0000 | 1.40872 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −18.0000 | −1.57267 | −0.786334 | − | 0.617802i | \(-0.788023\pi\) | ||||
−0.786334 | + | 0.617802i | \(0.788023\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 2.00000i | 0.173422i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | − 18.0000i | − 1.53784i | −0.639343 | − | 0.768922i | \(-0.720793\pi\) | ||||
0.639343 | − | 0.768922i | \(-0.279207\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 14.0000 | 1.18746 | 0.593732 | − | 0.804663i | \(-0.297654\pi\) | ||||
0.593732 | + | 0.804663i | \(0.297654\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 24.0000 | 2.02116 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | − 2.00000i | − 0.164957i | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 18.0000 | 1.47462 | 0.737309 | − | 0.675556i | \(-0.236096\pi\) | ||||
0.737309 | + | 0.675556i | \(0.236096\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −8.00000 | −0.651031 | −0.325515 | − | 0.945537i | \(-0.605538\pi\) | ||||
−0.325515 | + | 0.945537i | \(0.605538\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 6.00000i | 0.485071i | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 4.00000i | 0.319235i | 0.987179 | + | 0.159617i | \(0.0510260\pi\) | ||||
−0.987179 | + | 0.159617i | \(0.948974\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | −12.0000 | −0.951662 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 16.0000i | 1.25322i | 0.779334 | + | 0.626608i | \(0.215557\pi\) | ||||
−0.779334 | + | 0.626608i | \(0.784443\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − 12.0000i | − 0.928588i | −0.885681 | − | 0.464294i | \(-0.846308\pi\) | ||||
0.885681 | − | 0.464294i | \(-0.153692\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −3.00000 | −0.230769 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | −2.00000 | −0.152944 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 12.0000i | − 0.912343i | −0.889892 | − | 0.456172i | \(-0.849220\pi\) | ||||
0.889892 | − | 0.456172i | \(-0.150780\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | − 12.0000i | − 0.901975i | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −12.0000 | −0.896922 | −0.448461 | − | 0.893802i | \(-0.648028\pi\) | ||||
−0.448461 | + | 0.893802i | \(0.648028\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 20.0000 | 1.48659 | 0.743294 | − | 0.668965i | \(-0.233262\pi\) | ||||
0.743294 | + | 0.668965i | \(0.233262\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 16.0000i | 1.18275i | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | −4.00000 | −0.290957 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −24.0000 | −1.73658 | −0.868290 | − | 0.496058i | \(-0.834780\pi\) | ||||
−0.868290 | + | 0.496058i | \(0.834780\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 14.0000i | 1.00774i | 0.863779 | + | 0.503871i | \(0.168091\pi\) | ||||
−0.863779 | + | 0.503871i | \(0.831909\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 18.0000i | 1.28245i | 0.767354 | + | 0.641223i | \(0.221573\pi\) | ||||
−0.767354 | + | 0.641223i | \(0.778427\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 20.0000 | 1.41776 | 0.708881 | − | 0.705328i | \(-0.249200\pi\) | ||||
0.708881 | + | 0.705328i | \(0.249200\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 8.00000 | 0.564276 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 6.00000i | 0.421117i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 4.00000 | 0.275371 | 0.137686 | − | 0.990476i | \(-0.456034\pi\) | ||||
0.137686 | + | 0.990476i | \(0.456034\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 4.00000i | 0.271538i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | −4.00000 | −0.270295 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −24.0000 | −1.61441 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 8.00000i | − 0.535720i | −0.963458 | − | 0.267860i | \(-0.913684\pi\) | ||||
0.963458 | − | 0.267860i | \(-0.0863164\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 18.0000i | 1.19470i | 0.801980 | + | 0.597351i | \(0.203780\pi\) | ||||
−0.801980 | + | 0.597351i | \(0.796220\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 4.00000 | 0.264327 | 0.132164 | − | 0.991228i | \(-0.457808\pi\) | ||||
0.132164 | + | 0.991228i | \(0.457808\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − 6.00000i | − 0.393073i | −0.980497 | − | 0.196537i | \(-0.937031\pi\) | ||||
0.980497 | − | 0.196537i | \(-0.0629694\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 16.0000i | 1.03931i | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 24.0000 | 1.55243 | 0.776215 | − | 0.630468i | \(-0.217137\pi\) | ||||
0.776215 | + | 0.630468i | \(0.217137\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −10.0000 | −0.644157 | −0.322078 | − | 0.946713i | \(-0.604381\pi\) | ||||
−0.322078 | + | 0.946713i | \(0.604381\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | − 10.0000i | − 0.641500i | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | − 8.00000i | − 0.509028i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | −12.0000 | −0.760469 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 18.0000 | 1.13615 | 0.568075 | − | 0.822977i | \(-0.307688\pi\) | ||||
0.568075 | + | 0.822977i | \(0.307688\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | − 18.0000i | − 1.12281i | −0.827541 | − | 0.561405i | \(-0.810261\pi\) | ||||
0.827541 | − | 0.561405i | \(-0.189739\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 2.00000 | 0.124274 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | −6.00000 | −0.371391 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 12.0000i | 0.734388i | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 12.0000 | 0.731653 | 0.365826 | − | 0.930683i | \(-0.380786\pi\) | ||||
0.365826 | + | 0.930683i | \(0.380786\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 16.0000 | 0.971931 | 0.485965 | − | 0.873978i | \(-0.338468\pi\) | ||||
0.485965 | + | 0.873978i | \(0.338468\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 8.00000i | 0.484182i | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 10.0000i | 0.600842i | 0.953807 | + | 0.300421i | \(0.0971271\pi\) | ||||
−0.953807 | + | 0.300421i | \(0.902873\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | −4.00000 | −0.239474 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −6.00000 | −0.357930 | −0.178965 | − | 0.983855i | \(-0.557275\pi\) | ||||
−0.178965 | + | 0.983855i | \(0.557275\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 22.0000i | 1.30776i | 0.756596 | + | 0.653882i | \(0.226861\pi\) | ||||
−0.756596 | + | 0.653882i | \(0.773139\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 6.00000i | 0.354169i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −19.0000 | −1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | −20.0000 | −1.17242 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 24.0000i | 1.40209i | 0.713115 | + | 0.701047i | \(0.247284\pi\) | ||||
−0.713115 | + | 0.701047i | \(0.752716\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 8.00000 | 0.461112 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 2.00000i | 0.114146i | 0.998370 | + | 0.0570730i | \(0.0181768\pi\) | ||||
−0.998370 | + | 0.0570730i | \(0.981823\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | −8.00000 | −0.455104 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 24.0000 | 1.36092 | 0.680458 | − | 0.732787i | \(-0.261781\pi\) | ||||
0.680458 | + | 0.732787i | \(0.261781\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 10.0000i | − 0.565233i | −0.959233 | − | 0.282617i | \(-0.908798\pi\) | ||||
0.959233 | − | 0.282617i | \(-0.0912024\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 6.00000i | − 0.336994i | −0.985702 | − | 0.168497i | \(-0.946109\pi\) | ||||
0.985702 | − | 0.168497i | \(-0.0538913\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | −24.0000 | −1.33955 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 12.0000i | − 0.667698i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | − 4.00000i | − 0.221201i | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 12.0000 | 0.661581 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −8.00000 | −0.439720 | −0.219860 | − | 0.975531i | \(-0.570560\pi\) | ||||
−0.219860 | + | 0.975531i | \(0.570560\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 2.00000i | 0.109599i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − 14.0000i | − 0.762629i | −0.924445 | − | 0.381314i | \(-0.875472\pi\) | ||||
0.924445 | − | 0.381314i | \(-0.124528\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | −12.0000 | −0.651751 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 1.00000i | − 0.0539949i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 24.0000i | − 1.28839i | −0.764862 | − | 0.644194i | \(-0.777193\pi\) | ||||
0.764862 | − | 0.644194i | \(-0.222807\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 28.0000 | 1.49881 | 0.749403 | − | 0.662114i | \(-0.230341\pi\) | ||||
0.749403 | + | 0.662114i | \(0.230341\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 16.0000 | 0.854017 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 18.0000i | 0.958043i | 0.877803 | + | 0.479022i | \(0.159008\pi\) | ||||
−0.877803 | + | 0.479022i | \(0.840992\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 12.0000i | 0.635107i | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −24.0000 | −1.26667 | −0.633336 | − | 0.773877i | \(-0.718315\pi\) | ||||
−0.633336 | + | 0.773877i | \(0.718315\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −15.0000 | −0.789474 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | − 22.0000i | − 1.15470i | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 8.00000i | 0.417597i | 0.977959 | + | 0.208798i | \(0.0669552\pi\) | ||||
−0.977959 | + | 0.208798i | \(0.933045\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | −6.00000 | −0.312348 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −6.00000 | −0.311504 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 14.0000i | 0.724893i | 0.932005 | + | 0.362446i | \(0.118058\pi\) | ||||
−0.932005 | + | 0.362446i | \(0.881942\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | − 24.0000i | − 1.23606i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −16.0000 | −0.821865 | −0.410932 | − | 0.911666i | \(-0.634797\pi\) | ||||
−0.410932 | + | 0.911666i | \(0.634797\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 32.0000 | 1.63941 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 36.0000i | − 1.83951i | −0.392488 | − | 0.919757i | \(-0.628386\pi\) | ||||
0.392488 | − | 0.919757i | \(-0.371614\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 8.00000i | 0.406663i | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −18.0000 | −0.912636 | −0.456318 | − | 0.889817i | \(-0.650832\pi\) | ||||
−0.456318 | + | 0.889817i | \(0.650832\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | − 36.0000i | − 1.81596i | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 20.0000i | − 1.00377i | −0.864934 | − | 0.501886i | \(-0.832640\pi\) | ||||
0.864934 | − | 0.501886i | \(-0.167360\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | −4.00000 | −0.200250 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −18.0000 | −0.898877 | −0.449439 | − | 0.893311i | \(-0.648376\pi\) | ||||
−0.449439 | + | 0.893311i | \(0.648376\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 16.0000i | − 0.797017i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −14.0000 | −0.692255 | −0.346128 | − | 0.938187i | \(-0.612504\pi\) | ||||
−0.346128 | + | 0.938187i | \(0.612504\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 36.0000 | 1.77575 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | − 6.00000i | − 0.295241i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 28.0000i | 1.37117i | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 6.00000 | 0.293119 | 0.146560 | − | 0.989202i | \(-0.453180\pi\) | ||||
0.146560 | + | 0.989202i | \(0.453180\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −10.0000 | −0.487370 | −0.243685 | − | 0.969854i | \(-0.578356\pi\) | ||||
−0.243685 | + | 0.969854i | \(0.578356\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 12.0000i | 0.583460i | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 8.00000i | 0.387147i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −24.0000 | −1.15604 | −0.578020 | − | 0.816023i | \(-0.696174\pi\) | ||||
−0.578020 | + | 0.816023i | \(0.696174\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | − 34.0000i | − 1.63394i | −0.576683 | − | 0.816968i | \(-0.695653\pi\) | ||||
0.576683 | − | 0.816968i | \(-0.304347\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 8.00000 | 0.381819 | 0.190910 | − | 0.981608i | \(-0.438856\pi\) | ||||
0.190910 | + | 0.981608i | \(0.438856\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 1.00000 | 0.0476190 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 12.0000i | 0.570137i | 0.958507 | + | 0.285069i | \(0.0920164\pi\) | ||||
−0.958507 | + | 0.285069i | \(0.907984\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 36.0000i | 1.70274i | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −18.0000 | −0.849473 | −0.424736 | − | 0.905317i | \(-0.639633\pi\) | ||||
−0.424736 | + | 0.905317i | \(0.639633\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | − 16.0000i | − 0.751746i | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 10.0000i | 0.467780i | 0.972263 | + | 0.233890i | \(0.0751456\pi\) | ||||
−0.972263 | + | 0.233890i | \(0.924854\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 24.0000 | 1.12022 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 12.0000 | 0.558896 | 0.279448 | − | 0.960161i | \(-0.409849\pi\) | ||||
0.279448 | + | 0.960161i | \(0.409849\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 32.0000i | − 1.48717i | −0.668644 | − | 0.743583i | \(-0.733125\pi\) | ||||
0.668644 | − | 0.743583i | \(-0.266875\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 6.00000i | − 0.277647i | −0.990317 | − | 0.138823i | \(-0.955668\pi\) | ||||
0.990317 | − | 0.138823i | \(-0.0443321\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 4.00000 | 0.184703 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | −8.00000 | −0.368621 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | − 6.00000i | − 0.274721i | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −36.0000 | −1.64488 | −0.822441 | − | 0.568850i | \(-0.807388\pi\) | ||||
−0.822441 | + | 0.568850i | \(0.807388\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −8.00000 | −0.364769 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | − 16.0000i | − 0.725029i | −0.931978 | − | 0.362515i | \(-0.881918\pi\) | ||||
0.931978 | − | 0.362515i | \(-0.118082\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | −32.0000 | −1.44709 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 12.0000 | 0.541552 | 0.270776 | − | 0.962642i | \(-0.412720\pi\) | ||||
0.270776 | + | 0.962642i | \(0.412720\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 36.0000i | − 1.62136i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −4.00000 | −0.179065 | −0.0895323 | − | 0.995984i | \(-0.528537\pi\) | ||||
−0.0895323 | + | 0.995984i | \(0.528537\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 24.0000 | 1.07224 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | − 6.00000i | − 0.266469i | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −36.0000 | −1.59567 | −0.797836 | − | 0.602875i | \(-0.794022\pi\) | ||||
−0.797836 | + | 0.602875i | \(0.794022\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −2.00000 | −0.0884748 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 8.00000i | 0.353209i | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 24.0000 | 1.05348 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 6.00000 | 0.262865 | 0.131432 | − | 0.991325i | \(-0.458042\pi\) | ||||
0.131432 | + | 0.991325i | \(0.458042\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | − 2.00000i | − 0.0874539i | −0.999044 | − | 0.0437269i | \(-0.986077\pi\) | ||||
0.999044 | − | 0.0437269i | \(-0.0139232\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | − 24.0000i | − 1.04546i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 23.0000 | 1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 6.00000 | 0.260378 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | − 24.0000i | − 1.03956i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | − 24.0000i | − 1.03568i | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 38.0000 | 1.63375 | 0.816874 | − | 0.576816i | \(-0.195705\pi\) | ||||
0.816874 | + | 0.576816i | \(0.195705\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 40.0000i | 1.71656i | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 8.00000i | 0.342055i | 0.985266 | + | 0.171028i | \(0.0547087\pi\) | ||||
−0.985266 | + | 0.171028i | \(0.945291\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | −8.00000 | −0.341432 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 12.0000 | 0.511217 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 8.00000i | 0.340195i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 6.00000i | − 0.254228i | −0.991888 | − | 0.127114i | \(-0.959429\pi\) | ||||
0.991888 | − | 0.127114i | \(-0.0405714\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −32.0000 | −1.35346 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 30.0000i | − 1.26435i | −0.774826 | − | 0.632175i | \(-0.782163\pi\) | ||||
0.774826 | − | 0.632175i | \(-0.217837\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | − 11.0000i | − 0.461957i | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −6.00000 | −0.251533 | −0.125767 | − | 0.992060i | \(-0.540139\pi\) | ||||
−0.125767 | + | 0.992060i | \(0.540139\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −32.0000 | −1.33916 | −0.669579 | − | 0.742741i | \(-0.733526\pi\) | ||||
−0.669579 | + | 0.742741i | \(0.733526\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | − 48.0000i | − 2.00523i | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 2.00000i | − 0.0832611i | −0.999133 | − | 0.0416305i | \(-0.986745\pi\) | ||||
0.999133 | − | 0.0416305i | \(-0.0132552\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | −28.0000 | −1.16364 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −6.00000 | −0.248922 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 42.0000i | − 1.73353i | −0.498721 | − | 0.866763i | \(-0.666197\pi\) | ||||
0.498721 | − | 0.866763i | \(-0.333803\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 8.00000 | 0.329634 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | −36.0000 | −1.48084 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | − 6.00000i | − 0.246390i | −0.992382 | − | 0.123195i | \(-0.960686\pi\) | ||||
0.992382 | − | 0.123195i | \(-0.0393141\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 40.0000i | 1.63709i | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −24.0000 | −0.980613 | −0.490307 | − | 0.871550i | \(-0.663115\pi\) | ||||
−0.490307 | + | 0.871550i | \(0.663115\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 26.0000 | 1.06056 | 0.530281 | − | 0.847822i | \(-0.322086\pi\) | ||||
0.530281 | + | 0.847822i | \(0.322086\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 4.00000i | 0.162893i | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 32.0000i | 1.29884i | 0.760430 | + | 0.649420i | \(0.224988\pi\) | ||||
−0.760430 | + | 0.649420i | \(0.775012\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | −12.0000 | −0.486265 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −48.0000 | −1.94187 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 2.00000i | 0.0807792i | 0.999184 | + | 0.0403896i | \(0.0128599\pi\) | ||||
−0.999184 | + | 0.0403896i | \(0.987140\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 6.00000i | − 0.241551i | −0.992680 | − | 0.120775i | \(-0.961462\pi\) | ||||
0.992680 | − | 0.120775i | \(-0.0385381\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 26.0000 | 1.04503 | 0.522514 | − | 0.852631i | \(-0.324994\pi\) | ||||
0.522514 | + | 0.852631i | \(0.324994\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 6.00000i | 0.240385i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −12.0000 | −0.478471 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 16.0000 | 0.636950 | 0.318475 | − | 0.947931i | \(-0.396829\pi\) | ||||
0.318475 | + | 0.947931i | \(0.396829\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 8.00000i | 0.317971i | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 4.00000i | 0.158486i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −18.0000 | −0.710957 | −0.355479 | − | 0.934684i | \(-0.615682\pi\) | ||||
−0.355479 | + | 0.934684i | \(0.615682\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 14.0000i | − 0.552106i | −0.961142 | − | 0.276053i | \(-0.910973\pi\) | ||||
0.961142 | − | 0.276053i | \(-0.0890266\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − 12.0000i | − 0.471769i | −0.971781 | − | 0.235884i | \(-0.924201\pi\) | ||||
0.971781 | − | 0.235884i | \(-0.0757987\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | −8.00000 | −0.313545 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 18.0000i | 0.704394i | 0.935926 | + | 0.352197i | \(0.114565\pi\) | ||||
−0.935926 | + | 0.352197i | \(0.885435\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | − 2.00000i | − 0.0780274i | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −24.0000 | −0.934907 | −0.467454 | − | 0.884018i | \(-0.654829\pi\) | ||||
−0.467454 | + | 0.884018i | \(0.654829\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −40.0000 | −1.55582 | −0.777910 | − | 0.628376i | \(-0.783720\pi\) | ||||
−0.777910 | + | 0.628376i | \(0.783720\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | − 48.0000i | − 1.86417i | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 16.0000 | 0.618596 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 26.0000i | 1.00223i | 0.865382 | + | 0.501113i | \(0.167076\pi\) | ||||
−0.865382 | + | 0.501113i | \(0.832924\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 12.0000i | 0.461197i | 0.973049 | + | 0.230599i | \(0.0740685\pi\) | ||||
−0.973049 | + | 0.230599i | \(0.925932\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −10.0000 | −0.383765 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | −36.0000 | −1.37952 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 12.0000i | 0.459167i | 0.973289 | + | 0.229584i | \(0.0737364\pi\) | ||||
−0.973289 | + | 0.229584i | \(0.926264\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 8.00000i | 0.305219i | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 24.0000 | 0.914327 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 46.0000 | 1.74992 | 0.874961 | − | 0.484193i | \(-0.160887\pi\) | ||||
0.874961 | + | 0.484193i | \(0.160887\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 36.0000i | − 1.36360i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 12.0000 | 0.453882 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 18.0000 | 0.679851 | 0.339925 | − | 0.940452i | \(-0.389598\pi\) | ||||
0.339925 | + | 0.940452i | \(0.389598\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − 4.00000i | − 0.150863i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 46.0000 | 1.72757 | 0.863783 | − | 0.503864i | \(-0.168089\pi\) | ||||
0.863783 | + | 0.503864i | \(0.168089\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | −8.00000 | −0.300023 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 48.0000i | 1.79259i | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 12.0000 | 0.447524 | 0.223762 | − | 0.974644i | \(-0.428166\pi\) | ||||
0.223762 | + | 0.974644i | \(0.428166\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −4.00000 | −0.148968 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | − 20.0000i | − 0.743808i | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 44.0000i | 1.63187i | 0.578144 | + | 0.815935i | \(0.303777\pi\) | ||||
−0.578144 | + | 0.815935i | \(0.696223\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −13.0000 | −0.481481 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −48.0000 | −1.77534 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 40.0000i | − 1.47743i | −0.674016 | − | 0.738717i | \(-0.735432\pi\) | ||||
0.674016 | − | 0.738717i | \(-0.264568\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −16.0000 | −0.588570 | −0.294285 | − | 0.955718i | \(-0.595081\pi\) | ||||
−0.294285 | + | 0.955718i | \(0.595081\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 16.0000 | 0.587775 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 24.0000i | − 0.880475i | −0.897881 | − | 0.440237i | \(-0.854894\pi\) | ||||
0.897881 | − | 0.440237i | \(-0.145106\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | − 6.00000i | − 0.219529i | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −12.0000 | −0.438470 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 40.0000 | 1.45962 | 0.729810 | − | 0.683650i | \(-0.239608\pi\) | ||||
0.729810 | + | 0.683650i | \(0.239608\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 36.0000i | 1.31191i | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 2.00000i | − 0.0726912i | −0.999339 | − | 0.0363456i | \(-0.988428\pi\) | ||||
0.999339 | − | 0.0363456i | \(-0.0115717\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −18.0000 | −0.652499 | −0.326250 | − | 0.945284i | \(-0.605785\pi\) | ||||
−0.326250 | + | 0.945284i | \(0.605785\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 2.00000i | − 0.0724049i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 24.0000i | 0.866590i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −14.0000 | −0.504853 | −0.252426 | − | 0.967616i | \(-0.581229\pi\) | ||||
−0.252426 | + | 0.967616i | \(0.581229\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 36.0000 | 1.29651 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 24.0000i | 0.863220i | 0.902060 | + | 0.431610i | \(0.142054\pi\) | ||||
−0.902060 | + | 0.431610i | \(0.857946\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 4.00000i | 0.143499i | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 12.0000 | 0.429945 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 24.0000i | 0.857690i | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 22.0000i | − 0.784215i | −0.919919 | − | 0.392108i | \(-0.871746\pi\) | ||||
0.919919 | − | 0.392108i | \(-0.128254\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −6.00000 | −0.213335 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | − 32.0000i | − 1.13635i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 12.0000i | 0.425062i | 0.977154 | + | 0.212531i | \(0.0681706\pi\) | ||||
−0.977154 | + | 0.212531i | \(0.931829\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −72.0000 | −2.54718 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | −6.00000 | −0.212000 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 24.0000i | 0.844840i | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −6.00000 | −0.210949 | −0.105474 | − | 0.994422i | \(-0.533636\pi\) | ||||
−0.105474 | + | 0.994422i | \(0.533636\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −2.00000 | −0.0702295 | −0.0351147 | − | 0.999383i | \(-0.511180\pi\) | ||||
−0.0351147 | + | 0.999383i | \(0.511180\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 32.0000i | 1.12229i | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 16.0000i | − 0.559769i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | −4.00000 | −0.139771 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 6.00000 | 0.209401 | 0.104701 | − | 0.994504i | \(-0.466612\pi\) | ||||
0.104701 | + | 0.994504i | \(0.466612\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 40.0000i | 1.39431i | 0.716919 | + | 0.697156i | \(0.245552\pi\) | ||||
−0.716919 | + | 0.697156i | \(0.754448\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 36.0000i | − 1.25184i | −0.779886 | − | 0.625921i | \(-0.784723\pi\) | ||||
0.779886 | − | 0.625921i | \(-0.215277\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −56.0000 | −1.94496 | −0.972480 | − | 0.232986i | \(-0.925151\pi\) | ||||
−0.972480 | + | 0.232986i | \(0.925151\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | −20.0000 | −0.693792 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 6.00000i | 0.207888i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 16.0000i | 0.553041i | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 12.0000 | 0.414286 | 0.207143 | − | 0.978311i | \(-0.433583\pi\) | ||||
0.207143 | + | 0.978311i | \(0.433583\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | − 12.0000i | − 0.413302i | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 11.0000i | − 0.377964i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | −44.0000 | −1.51008 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 44.0000i | 1.50653i | 0.657716 | + | 0.753266i | \(0.271523\pi\) | ||||
−0.657716 | + | 0.753266i | \(0.728477\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 18.0000i | 0.614868i | 0.951569 | + | 0.307434i | \(0.0994704\pi\) | ||||
−0.951569 | + | 0.307434i | \(0.900530\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 14.0000 | 0.477674 | 0.238837 | − | 0.971060i | \(-0.423234\pi\) | ||||
0.238837 | + | 0.971060i | \(0.423234\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | −12.0000 | −0.408959 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 24.0000i | 0.816970i | 0.912765 | + | 0.408485i | \(0.133943\pi\) | ||||
−0.912765 | + | 0.408485i | \(0.866057\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | − 38.0000i | − 1.29055i | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −16.0000 | −0.542139 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | − 10.0000i | − 0.338449i | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 22.0000i | 0.742887i | 0.928456 | + | 0.371444i | \(0.121137\pi\) | ||||
−0.928456 | + | 0.371444i | \(0.878863\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | −48.0000 | −1.61900 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −54.0000 | −1.81931 | −0.909653 | − | 0.415369i | \(-0.863653\pi\) | ||||
−0.909653 | + | 0.415369i | \(0.863653\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 20.0000i | − 0.673054i | −0.941674 | − | 0.336527i | \(-0.890748\pi\) | ||||
0.941674 | − | 0.336527i | \(-0.109252\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | − 36.0000i | − 1.20876i | −0.796696 | − | 0.604381i | \(-0.793421\pi\) | ||||
0.796696 | − | 0.604381i | \(-0.206579\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 16.0000 | 0.536623 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | − 24.0000i | − 0.803129i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 24.0000 | 0.800445 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 36.0000 | 1.19933 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 16.0000i | 0.532447i | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 44.0000i | 1.46100i | 0.682915 | + | 0.730498i | \(0.260712\pi\) | ||||
−0.682915 | + | 0.730498i | \(0.739288\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −48.0000 | −1.59031 | −0.795155 | − | 0.606406i | \(-0.792611\pi\) | ||||
−0.795155 | + | 0.606406i | \(0.792611\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | − 18.0000i | − 0.594412i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 56.0000 | 1.84727 | 0.923635 | − | 0.383274i | \(-0.125203\pi\) | ||||
0.923635 | + | 0.383274i | \(0.125203\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | −4.00000 | −0.131804 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | − 4.00000i | − 0.131377i | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −6.00000 | −0.196854 | −0.0984268 | − | 0.995144i | \(-0.531381\pi\) | ||||
−0.0984268 | + | 0.995144i | \(0.531381\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −2.00000 | −0.0655474 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 48.0000i | 1.57145i | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − 2.00000i | − 0.0653372i | −0.999466 | − | 0.0326686i | \(-0.989599\pi\) | ||||
0.999466 | − | 0.0326686i | \(-0.0104006\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 20.0000 | 0.652675 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −24.0000 | −0.782378 | −0.391189 | − | 0.920310i | \(-0.627936\pi\) | ||||
−0.391189 | + | 0.920310i | \(0.627936\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 24.0000i | 0.779895i | 0.920837 | + | 0.389948i | \(0.127507\pi\) | ||||
−0.920837 | + | 0.389948i | \(0.872493\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 8.00000 | 0.259691 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 12.0000 | 0.389127 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | − 54.0000i | − 1.74923i | −0.484817 | − | 0.874616i | \(-0.661114\pi\) | ||||
0.484817 | − | 0.874616i | \(-0.338886\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 18.0000 | 0.581250 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −15.0000 | −0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | − 12.0000i | − 0.386695i | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 32.0000i | 1.02905i | 0.857475 | + | 0.514525i | \(0.172032\pi\) | ||||
−0.857475 | + | 0.514525i | \(0.827968\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 24.0000 | 0.770991 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 6.00000 | 0.192549 | 0.0962746 | − | 0.995355i | \(-0.469307\pi\) | ||||
0.0962746 | + | 0.995355i | \(0.469307\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 14.0000i | 0.448819i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 6.00000i | 0.191957i | 0.995383 | + | 0.0959785i | \(0.0305980\pi\) | ||||
−0.995383 | + | 0.0959785i | \(0.969402\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 2.00000 | 0.0638551 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 36.0000i | 1.14822i | 0.818778 | + | 0.574111i | \(0.194652\pi\) | ||||
−0.818778 | + | 0.574111i | \(0.805348\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 24.0000i | 0.763928i | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 16.0000 | 0.508257 | 0.254128 | − | 0.967170i | \(-0.418211\pi\) | ||||
0.254128 | + | 0.967170i | \(0.418211\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | − 16.0000i | − 0.507745i | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 8.00000i | − 0.253363i | −0.991943 | − | 0.126681i | \(-0.959567\pi\) | ||||
0.991943 | − | 0.126681i | \(-0.0404325\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 8.00000 | 0.253109 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))