Properties

Label 2800.2.g.g.449.2
Level $2800$
Weight $2$
Character 2800.449
Analytic conductor $22.358$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2800.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(22.3581125660\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2800.449
Dual form 2800.2.g.g.449.1

$q$-expansion

\(f(q)\) \(=\) \(q+2.00000i q^{3} -1.00000i q^{7} -1.00000 q^{9} +O(q^{10})\) \(q+2.00000i q^{3} -1.00000i q^{7} -1.00000 q^{9} -2.00000i q^{17} -2.00000 q^{19} +2.00000 q^{21} +8.00000i q^{23} +4.00000i q^{27} -2.00000 q^{29} -4.00000 q^{31} -6.00000i q^{37} -2.00000 q^{41} +8.00000i q^{43} +4.00000i q^{47} -1.00000 q^{49} +4.00000 q^{51} +10.0000i q^{53} -4.00000i q^{57} +6.00000 q^{59} +4.00000 q^{61} +1.00000i q^{63} +12.0000i q^{67} -16.0000 q^{69} +14.0000i q^{73} -8.00000 q^{79} -11.0000 q^{81} +6.00000i q^{83} -4.00000i q^{87} -10.0000 q^{89} -8.00000i q^{93} -2.00000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{9} + O(q^{10}) \) \( 2q - 2q^{9} - 4q^{19} + 4q^{21} - 4q^{29} - 8q^{31} - 4q^{41} - 2q^{49} + 8q^{51} + 12q^{59} + 8q^{61} - 32q^{69} - 16q^{79} - 22q^{81} - 20q^{89} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2800\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(801\) \(2101\) \(2577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000i 1.15470i 0.816497 + 0.577350i \(0.195913\pi\)
−0.816497 + 0.577350i \(0.804087\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 1.00000i − 0.377964i
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 2.00000i − 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) 8.00000i 1.66812i 0.551677 + 0.834058i \(0.313988\pi\)
−0.551677 + 0.834058i \(0.686012\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 6.00000i − 0.986394i −0.869918 0.493197i \(-0.835828\pi\)
0.869918 0.493197i \(-0.164172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 8.00000i 1.21999i 0.792406 + 0.609994i \(0.208828\pi\)
−0.792406 + 0.609994i \(0.791172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000i 0.583460i 0.956501 + 0.291730i \(0.0942309\pi\)
−0.956501 + 0.291730i \(0.905769\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 4.00000 0.560112
\(52\) 0 0
\(53\) 10.0000i 1.37361i 0.726844 + 0.686803i \(0.240986\pi\)
−0.726844 + 0.686803i \(0.759014\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 4.00000i − 0.529813i
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 4.00000 0.512148 0.256074 0.966657i \(-0.417571\pi\)
0.256074 + 0.966657i \(0.417571\pi\)
\(62\) 0 0
\(63\) 1.00000i 0.125988i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 12.0000i 1.46603i 0.680211 + 0.733017i \(0.261888\pi\)
−0.680211 + 0.733017i \(0.738112\pi\)
\(68\) 0 0
\(69\) −16.0000 −1.92617
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 14.0000i 1.63858i 0.573382 + 0.819288i \(0.305631\pi\)
−0.573382 + 0.819288i \(0.694369\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 4.00000i − 0.428845i
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) − 8.00000i − 0.829561i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 2.00000i − 0.203069i −0.994832 0.101535i \(-0.967625\pi\)
0.994832 0.101535i \(-0.0323753\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) − 12.0000i − 1.18240i −0.806527 0.591198i \(-0.798655\pi\)
0.806527 0.591198i \(-0.201345\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000i 1.16008i 0.814587 + 0.580042i \(0.196964\pi\)
−0.814587 + 0.580042i \(0.803036\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 12.0000 1.13899
\(112\) 0 0
\(113\) − 6.00000i − 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.00000 −0.183340
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) − 4.00000i − 0.360668i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 8.00000i − 0.709885i −0.934888 0.354943i \(-0.884500\pi\)
0.934888 0.354943i \(-0.115500\pi\)
\(128\) 0 0
\(129\) −16.0000 −1.40872
\(130\) 0 0
\(131\) −14.0000 −1.22319 −0.611593 0.791173i \(-0.709471\pi\)
−0.611593 + 0.791173i \(0.709471\pi\)
\(132\) 0 0
\(133\) 2.00000i 0.173422i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.00000i 0.170872i 0.996344 + 0.0854358i \(0.0272282\pi\)
−0.996344 + 0.0854358i \(0.972772\pi\)
\(138\) 0 0
\(139\) 18.0000 1.52674 0.763370 0.645961i \(-0.223543\pi\)
0.763370 + 0.645961i \(0.223543\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 2.00000i − 0.164957i
\(148\) 0 0
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) 2.00000i 0.161690i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) −20.0000 −1.58610
\(160\) 0 0
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) 16.0000i 1.25322i 0.779334 + 0.626608i \(0.215557\pi\)
−0.779334 + 0.626608i \(0.784443\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 12.0000i − 0.928588i −0.885681 0.464294i \(-0.846308\pi\)
0.885681 0.464294i \(-0.153692\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 2.00000 0.152944
\(172\) 0 0
\(173\) − 8.00000i − 0.608229i −0.952636 0.304114i \(-0.901639\pi\)
0.952636 0.304114i \(-0.0983605\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 12.0000i 0.901975i
\(178\) 0 0
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) 0 0
\(183\) 8.00000i 0.591377i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 4.00000 0.290957
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 18.0000i 1.29567i 0.761781 + 0.647834i \(0.224325\pi\)
−0.761781 + 0.647834i \(0.775675\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 18.0000i − 1.28245i −0.767354 0.641223i \(-0.778427\pi\)
0.767354 0.641223i \(-0.221573\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) 0 0
\(201\) −24.0000 −1.69283
\(202\) 0 0
\(203\) 2.00000i 0.140372i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 8.00000i − 0.556038i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4.00000i 0.271538i
\(218\) 0 0
\(219\) −28.0000 −1.89206
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 24.0000i − 1.60716i −0.595198 0.803579i \(-0.702926\pi\)
0.595198 0.803579i \(-0.297074\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 14.0000i − 0.929213i −0.885517 0.464606i \(-0.846196\pi\)
0.885517 0.464606i \(-0.153804\pi\)
\(228\) 0 0
\(229\) 16.0000 1.05731 0.528655 0.848837i \(-0.322697\pi\)
0.528655 + 0.848837i \(0.322697\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 26.0000i − 1.70332i −0.524097 0.851658i \(-0.675597\pi\)
0.524097 0.851658i \(-0.324403\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 16.0000i − 1.03931i
\(238\) 0 0
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 0 0
\(243\) − 10.0000i − 0.641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) 14.0000 0.883672 0.441836 0.897096i \(-0.354327\pi\)
0.441836 + 0.897096i \(0.354327\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.0000i 1.12281i 0.827541 + 0.561405i \(0.189739\pi\)
−0.827541 + 0.561405i \(0.810261\pi\)
\(258\) 0 0
\(259\) −6.00000 −0.372822
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 20.0000i − 1.22398i
\(268\) 0 0
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 0 0
\(271\) −32.0000 −1.94386 −0.971931 0.235267i \(-0.924404\pi\)
−0.971931 + 0.235267i \(0.924404\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 22.0000i 1.32185i 0.750451 + 0.660926i \(0.229836\pi\)
−0.750451 + 0.660926i \(0.770164\pi\)
\(278\) 0 0
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) − 10.0000i − 0.594438i −0.954809 0.297219i \(-0.903941\pi\)
0.954809 0.297219i \(-0.0960592\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.00000i 0.118056i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) 4.00000 0.234484
\(292\) 0 0
\(293\) 12.0000i 0.701047i 0.936554 + 0.350524i \(0.113996\pi\)
−0.936554 + 0.350524i \(0.886004\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) 0 0
\(303\) 24.0000i 1.37876i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.00000i 0.114146i 0.998370 + 0.0570730i \(0.0181768\pi\)
−0.998370 + 0.0570730i \(0.981823\pi\)
\(308\) 0 0
\(309\) 24.0000 1.36531
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) − 14.0000i − 0.791327i −0.918396 0.395663i \(-0.870515\pi\)
0.918396 0.395663i \(-0.129485\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.00000i 0.336994i 0.985702 + 0.168497i \(0.0538913\pi\)
−0.985702 + 0.168497i \(0.946109\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −24.0000 −1.33955
\(322\) 0 0
\(323\) 4.00000i 0.222566i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 20.0000i − 1.10600i
\(328\) 0 0
\(329\) 4.00000 0.220527
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 0 0
\(333\) 6.00000i 0.328798i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 14.0000i 0.762629i 0.924445 + 0.381314i \(0.124528\pi\)
−0.924445 + 0.381314i \(0.875472\pi\)
\(338\) 0 0
\(339\) 12.0000 0.651751
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 24.0000i 1.28839i 0.764862 + 0.644194i \(0.222807\pi\)
−0.764862 + 0.644194i \(0.777193\pi\)
\(348\) 0 0
\(349\) −8.00000 −0.428230 −0.214115 0.976808i \(-0.568687\pi\)
−0.214115 + 0.976808i \(0.568687\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 30.0000i 1.59674i 0.602168 + 0.798369i \(0.294304\pi\)
−0.602168 + 0.798369i \(0.705696\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 4.00000i − 0.211702i
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) − 22.0000i − 1.15470i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 8.00000i − 0.417597i −0.977959 0.208798i \(-0.933045\pi\)
0.977959 0.208798i \(-0.0669552\pi\)
\(368\) 0 0
\(369\) 2.00000 0.104116
\(370\) 0 0
\(371\) 10.0000 0.519174
\(372\) 0 0
\(373\) 34.0000i 1.76045i 0.474554 + 0.880227i \(0.342610\pi\)
−0.474554 + 0.880227i \(0.657390\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 16.0000 0.819705
\(382\) 0 0
\(383\) 12.0000i 0.613171i 0.951843 + 0.306586i \(0.0991866\pi\)
−0.951843 + 0.306586i \(0.900813\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 8.00000i − 0.406663i
\(388\) 0 0
\(389\) −10.0000 −0.507020 −0.253510 0.967333i \(-0.581585\pi\)
−0.253510 + 0.967333i \(0.581585\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) 0 0
\(393\) − 28.0000i − 1.41241i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 8.00000i − 0.401508i −0.979642 0.200754i \(-0.935661\pi\)
0.979642 0.200754i \(-0.0643393\pi\)
\(398\) 0 0
\(399\) −4.00000 −0.200250
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −6.00000 −0.296681 −0.148340 0.988936i \(-0.547393\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(410\) 0 0
\(411\) −4.00000 −0.197305
\(412\) 0 0
\(413\) − 6.00000i − 0.295241i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 36.0000i 1.76293i
\(418\) 0 0
\(419\) 26.0000 1.27018 0.635092 0.772437i \(-0.280962\pi\)
0.635092 + 0.772437i \(0.280962\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 0 0
\(423\) − 4.00000i − 0.194487i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 4.00000i − 0.193574i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 26.0000i 1.24948i 0.780833 + 0.624740i \(0.214795\pi\)
−0.780833 + 0.624740i \(0.785205\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 16.0000i − 0.765384i
\(438\) 0 0
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) − 4.00000i − 0.190046i −0.995475 0.0950229i \(-0.969708\pi\)
0.995475 0.0950229i \(-0.0302924\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 4.00000i 0.189194i
\(448\) 0 0
\(449\) 14.0000 0.660701 0.330350 0.943858i \(-0.392833\pi\)
0.330350 + 0.943858i \(0.392833\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) − 32.0000i − 1.50349i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 22.0000i 1.02912i 0.857455 + 0.514558i \(0.172044\pi\)
−0.857455 + 0.514558i \(0.827956\pi\)
\(458\) 0 0
\(459\) 8.00000 0.373408
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) − 16.0000i − 0.743583i −0.928316 0.371792i \(-0.878744\pi\)
0.928316 0.371792i \(-0.121256\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 6.00000i − 0.277647i −0.990317 0.138823i \(-0.955668\pi\)
0.990317 0.138823i \(-0.0443321\pi\)
\(468\) 0 0
\(469\) 12.0000 0.554109
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 10.0000i − 0.457869i
\(478\) 0 0
\(479\) 4.00000 0.182765 0.0913823 0.995816i \(-0.470871\pi\)
0.0913823 + 0.995816i \(0.470871\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 16.0000i 0.728025i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 8.00000i 0.362515i 0.983436 + 0.181257i \(0.0580167\pi\)
−0.983436 + 0.181257i \(0.941983\pi\)
\(488\) 0 0
\(489\) −32.0000 −1.44709
\(490\) 0 0
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) 0 0
\(493\) 4.00000i 0.180151i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 0 0
\(501\) 24.0000 1.07224
\(502\) 0 0
\(503\) − 32.0000i − 1.42681i −0.700752 0.713405i \(-0.747152\pi\)
0.700752 0.713405i \(-0.252848\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 26.0000i 1.15470i
\(508\) 0 0
\(509\) 24.0000 1.06378 0.531891 0.846813i \(-0.321482\pi\)
0.531891 + 0.846813i \(0.321482\pi\)
\(510\) 0 0
\(511\) 14.0000 0.619324
\(512\) 0 0
\(513\) − 8.00000i − 0.353209i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 16.0000 0.702322
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) − 34.0000i − 1.48672i −0.668894 0.743358i \(-0.733232\pi\)
0.668894 0.743358i \(-0.266768\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.00000i 0.348485i
\(528\) 0 0
\(529\) −41.0000 −1.78261
\(530\) 0 0
\(531\) −6.00000 −0.260378
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 8.00000i − 0.345225i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 22.0000 0.945854 0.472927 0.881102i \(-0.343197\pi\)
0.472927 + 0.881102i \(0.343197\pi\)
\(542\) 0 0
\(543\) 16.0000i 0.686626i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.00000i 0.342055i 0.985266 + 0.171028i \(0.0547087\pi\)
−0.985266 + 0.171028i \(0.945291\pi\)
\(548\) 0 0
\(549\) −4.00000 −0.170716
\(550\) 0 0
\(551\) 4.00000 0.170406
\(552\) 0 0
\(553\) 8.00000i 0.340195i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 26.0000i − 1.10166i −0.834619 0.550828i \(-0.814312\pi\)
0.834619 0.550828i \(-0.185688\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 34.0000i 1.43293i 0.697623 + 0.716465i \(0.254241\pi\)
−0.697623 + 0.716465i \(0.745759\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 11.0000i 0.461957i
\(568\) 0 0
\(569\) 42.0000 1.76073 0.880366 0.474295i \(-0.157297\pi\)
0.880366 + 0.474295i \(0.157297\pi\)
\(570\) 0 0
\(571\) 16.0000 0.669579 0.334790 0.942293i \(-0.391335\pi\)
0.334790 + 0.942293i \(0.391335\pi\)
\(572\) 0 0
\(573\) 16.0000i 0.668410i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 18.0000i 0.749350i 0.927156 + 0.374675i \(0.122246\pi\)
−0.927156 + 0.374675i \(0.877754\pi\)
\(578\) 0 0
\(579\) −36.0000 −1.49611
\(580\) 0 0
\(581\) 6.00000 0.248922
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 10.0000i − 0.412744i −0.978474 0.206372i \(-0.933834\pi\)
0.978474 0.206372i \(-0.0661657\pi\)
\(588\) 0 0
\(589\) 8.00000 0.329634
\(590\) 0 0
\(591\) 36.0000 1.48084
\(592\) 0 0
\(593\) − 42.0000i − 1.72473i −0.506284 0.862367i \(-0.668981\pi\)
0.506284 0.862367i \(-0.331019\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 8.00000i − 0.327418i
\(598\) 0 0
\(599\) 40.0000 1.63436 0.817178 0.576386i \(-0.195537\pi\)
0.817178 + 0.576386i \(0.195537\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) − 12.0000i − 0.488678i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 32.0000i 1.29884i 0.760430 + 0.649420i \(0.224988\pi\)
−0.760430 + 0.649420i \(0.775012\pi\)
\(608\) 0 0
\(609\) −4.00000 −0.162088
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 10.0000i − 0.403896i −0.979396 0.201948i \(-0.935273\pi\)
0.979396 0.201948i \(-0.0647272\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.00000i 0.241551i 0.992680 + 0.120775i \(0.0385381\pi\)
−0.992680 + 0.120775i \(0.961462\pi\)
\(618\) 0 0
\(619\) 6.00000 0.241160 0.120580 0.992704i \(-0.461525\pi\)
0.120580 + 0.992704i \(0.461525\pi\)
\(620\) 0 0
\(621\) −32.0000 −1.28412
\(622\) 0 0
\(623\) 10.0000i 0.400642i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −32.0000 −1.27390 −0.636950 0.770905i \(-0.719804\pi\)
−0.636950 + 0.770905i \(0.719804\pi\)
\(632\) 0 0
\(633\) − 40.0000i − 1.58986i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) 0 0
\(643\) − 14.0000i − 0.552106i −0.961142 0.276053i \(-0.910973\pi\)
0.961142 0.276053i \(-0.0890266\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 36.0000i 1.41531i 0.706560 + 0.707653i \(0.250246\pi\)
−0.706560 + 0.707653i \(0.749754\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −8.00000 −0.313545
\(652\) 0 0
\(653\) 22.0000i 0.860927i 0.902608 + 0.430463i \(0.141650\pi\)
−0.902608 + 0.430463i \(0.858350\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 14.0000i − 0.546192i
\(658\) 0 0
\(659\) −40.0000 −1.55818 −0.779089 0.626913i \(-0.784318\pi\)
−0.779089 + 0.626913i \(0.784318\pi\)
\(660\) 0 0
\(661\) 20.0000 0.777910 0.388955 0.921257i \(-0.372836\pi\)
0.388955 + 0.921257i \(0.372836\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 16.0000i − 0.619522i
\(668\) 0 0
\(669\) 48.0000 1.85579
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 10.0000i − 0.385472i −0.981251 0.192736i \(-0.938264\pi\)
0.981251 0.192736i \(-0.0617360\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 24.0000i − 0.922395i −0.887298 0.461197i \(-0.847420\pi\)
0.887298 0.461197i \(-0.152580\pi\)
\(678\) 0 0
\(679\) −2.00000 −0.0767530
\(680\) 0 0
\(681\) 28.0000 1.07296
\(682\) 0 0
\(683\) 12.0000i 0.459167i 0.973289 + 0.229584i \(0.0737364\pi\)
−0.973289 + 0.229584i \(0.926264\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 32.0000i 1.22088i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −14.0000 −0.532585 −0.266293 0.963892i \(-0.585799\pi\)
−0.266293 + 0.963892i \(0.585799\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 4.00000i 0.151511i
\(698\) 0 0
\(699\) 52.0000 1.96682
\(700\) 0 0
\(701\) 10.0000 0.377695 0.188847 0.982006i \(-0.439525\pi\)
0.188847 + 0.982006i \(0.439525\pi\)
\(702\) 0 0
\(703\) 12.0000i 0.452589i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 12.0000i − 0.451306i
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) 0 0
\(713\) − 32.0000i − 1.19841i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 32.0000i − 1.19506i
\(718\) 0 0
\(719\) 36.0000 1.34257 0.671287 0.741198i \(-0.265742\pi\)
0.671287 + 0.741198i \(0.265742\pi\)
\(720\) 0 0
\(721\) −12.0000 −0.446903
\(722\) 0 0
\(723\) − 4.00000i − 0.148762i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 20.0000i − 0.741759i −0.928681 0.370879i \(-0.879056\pi\)
0.928681 0.370879i \(-0.120944\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 16.0000 0.591781
\(732\) 0 0
\(733\) − 52.0000i − 1.92066i −0.278859 0.960332i \(-0.589956\pi\)
0.278859 0.960332i \(-0.410044\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 16.0000 0.588570 0.294285 0.955718i \(-0.404919\pi\)
0.294285 + 0.955718i \(0.404919\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 16.0000i − 0.586983i −0.955962 0.293492i \(-0.905183\pi\)
0.955962 0.293492i \(-0.0948173\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 6.00000i − 0.219529i
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 0 0
\(753\) 28.0000i 1.02038i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 10.0000i 0.363456i 0.983349 + 0.181728i \(0.0581691\pi\)
−0.983349 + 0.181728i \(0.941831\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −42.0000 −1.52250 −0.761249 0.648459i \(-0.775414\pi\)
−0.761249 + 0.648459i \(0.775414\pi\)
\(762\) 0 0
\(763\) 10.0000i 0.362024i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 26.0000 0.937584 0.468792 0.883309i \(-0.344689\pi\)
0.468792 + 0.883309i \(0.344689\pi\)
\(770\) 0 0
\(771\) −36.0000 −1.29651
\(772\) 0 0
\(773\) − 4.00000i − 0.143870i −0.997409 0.0719350i \(-0.977083\pi\)
0.997409 0.0719350i \(-0.0229174\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 12.0000i − 0.430498i
\(778\) 0 0
\(779\) 4.00000 0.143315
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) − 8.00000i − 0.285897i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 22.0000i − 0.784215i −0.919919 0.392108i \(-0.871746\pi\)
0.919919 0.392108i \(-0.128254\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6.00000 −0.213335
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 24.0000i − 0.850124i −0.905164 0.425062i \(-0.860252\pi\)
0.905164 0.425062i \(-0.139748\pi\)
\(798\) 0 0
\(799\) 8.00000 0.283020
\(800\) 0 0
\(801\) 10.0000 0.353333
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 48.0000i 1.68968i
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) −30.0000 −1.05344 −0.526721 0.850038i \(-0.676579\pi\)
−0.526721 + 0.850038i \(0.676579\pi\)
\(812\) 0 0
\(813\) − 64.0000i − 2.24458i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 16.0000i − 0.559769i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.00000 0.209401 0.104701 0.994504i \(-0.466612\pi\)
0.104701 + 0.994504i \(0.466612\pi\)
\(822\) 0 0
\(823\) 8.00000i 0.278862i 0.990232 + 0.139431i \(0.0445274\pi\)
−0.990232 + 0.139431i \(0.955473\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 36.0000i − 1.25184i −0.779886 0.625921i \(-0.784723\pi\)
0.779886 0.625921i \(-0.215277\pi\)
\(828\) 0 0
\(829\) −20.0000 −0.694629 −0.347314 0.937749i \(-0.612906\pi\)
−0.347314 + 0.937749i \(0.612906\pi\)
\(830\) 0 0
\(831\) −44.0000 −1.52634
\(832\) 0 0
\(833\) 2.00000i 0.0692959i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 16.0000i − 0.553041i
\(838\) 0 0
\(839\) 36.0000 1.24286 0.621429 0.783470i \(-0.286552\pi\)
0.621429 + 0.783470i \(0.286552\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) − 12.0000i − 0.413302i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 11.0000i 0.377964i
\(848\) 0 0
\(849\) 20.0000 0.686398
\(850\) 0 0
\(851\) 48.0000 1.64542
\(852\) 0 0
\(853\) 32.0000i 1.09566i 0.836590 + 0.547830i \(0.184546\pi\)
−0.836590 + 0.547830i \(0.815454\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.00000i 0.204956i 0.994735 + 0.102478i \(0.0326771\pi\)
−0.994735 + 0.102478i \(0.967323\pi\)
\(858\) 0 0
\(859\) −14.0000 −0.477674 −0.238837 0.971060i \(-0.576766\pi\)
−0.238837 + 0.971060i \(0.576766\pi\)
\(860\) 0 0
\(861\) −4.00000 −0.136320
\(862\) 0 0
\(863\) 8.00000i 0.272323i 0.990687 + 0.136162i \(0.0434766\pi\)
−0.990687 + 0.136162i \(0.956523\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 26.0000i 0.883006i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 2.00000i 0.0676897i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.00000i 0.0675352i 0.999430 + 0.0337676i \(0.0107506\pi\)
−0.999430 + 0.0337676i \(0.989249\pi\)
\(878\) 0 0
\(879\) −24.0000 −0.809500
\(880\) 0 0
\(881\) 10.0000 0.336909 0.168454 0.985709i \(-0.446122\pi\)
0.168454 + 0.985709i \(0.446122\pi\)
\(882\) 0 0
\(883\) − 20.0000i − 0.673054i −0.941674 0.336527i \(-0.890748\pi\)
0.941674 0.336527i \(-0.109252\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 36.0000i − 1.20876i −0.796696 0.604381i \(-0.793421\pi\)
0.796696 0.604381i \(-0.206579\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 8.00000i − 0.267710i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 8.00000 0.266815
\(900\) 0 0
\(901\) 20.0000 0.666297
\(902\) 0 0
\(903\) 16.0000i 0.532447i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 28.0000i 0.929725i 0.885383 + 0.464862i \(0.153896\pi\)
−0.885383 + 0.464862i \(0.846104\pi\)
\(908\) 0 0
\(909\) −12.0000 −0.398015
\(910\) 0 0
\(911\) 8.00000 0.265052 0.132526 0.991180i \(-0.457691\pi\)
0.132526 + 0.991180i \(0.457691\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 14.0000i 0.462321i
\(918\) 0 0
\(919\) 40.0000 1.31948 0.659739 0.751495i \(-0.270667\pi\)
0.659739 + 0.751495i \(0.270667\pi\)
\(920\) 0 0
\(921\) −4.00000 −0.131804
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 12.0000i 0.394132i
\(928\) 0 0
\(929\) 2.00000 0.0656179 0.0328089 0.999462i \(-0.489555\pi\)
0.0328089 + 0.999462i \(0.489555\pi\)
\(930\) 0 0
\(931\) 2.00000 0.0655474
\(932\) 0 0
\(933\) 48.0000i 1.57145i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 18.0000i 0.588034i 0.955800 + 0.294017i \(0.0949923\pi\)
−0.955800 + 0.294017i \(0.905008\pi\)
\(938\) 0 0
\(939\) 28.0000 0.913745
\(940\) 0 0
\(941\) −12.0000 −0.391189 −0.195594 0.980685i \(-0.562664\pi\)
−0.195594 + 0.980685i \(0.562664\pi\)
\(942\) 0 0
\(943\) − 16.0000i − 0.521032i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 40.0000i − 1.29983i −0.760009 0.649913i \(-0.774805\pi\)
0.760009 0.649913i \(-0.225195\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −12.0000 −0.389127
\(952\) 0 0
\(953\) − 10.0000i − 0.323932i −0.986796 0.161966i \(-0.948217\pi\)
0.986796 0.161966i \(-0.0517835\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.00000 0.0645834
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) − 12.0000i − 0.386695i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 24.0000i 0.771788i 0.922543 + 0.385894i \(0.126107\pi\)
−0.922543 + 0.385894i \(0.873893\pi\)
\(968\) 0 0
\(969\) −8.00000 −0.256997
\(970\) 0 0
\(971\) 26.0000 0.834380 0.417190 0.908819i \(-0.363015\pi\)
0.417190 + 0.908819i \(0.363015\pi\)
\(972\) 0 0
\(973\) − 18.0000i − 0.577054i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 54.0000i − 1.72761i −0.503824 0.863807i \(-0.668074\pi\)
0.503824 0.863807i \(-0.331926\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 10.0000 0.319275
\(982\) 0 0
\(983\) − 12.0000i − 0.382741i −0.981518 0.191370i \(-0.938707\pi\)
0.981518 0.191370i \(-0.0612931\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 8.00000i 0.254643i
\(988\) 0 0
\(989\) −64.0000 −2.03508
\(990\) 0 0
\(991\) 48.0000 1.52477 0.762385 0.647124i \(-0.224028\pi\)
0.762385 + 0.647124i \(0.224028\pi\)
\(992\) 0 0
\(993\) − 16.0000i − 0.507745i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 52.0000i 1.64686i 0.567420 + 0.823428i \(0.307941\pi\)
−0.567420 + 0.823428i \(0.692059\pi\)
\(998\) 0 0
\(999\) 24.0000 0.759326
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2800.2.g.g.449.2 2
4.3 odd 2 1400.2.g.b.449.1 2
5.2 odd 4 2800.2.a.bd.1.1 1
5.3 odd 4 112.2.a.a.1.1 1
5.4 even 2 inner 2800.2.g.g.449.1 2
15.8 even 4 1008.2.a.m.1.1 1
20.3 even 4 56.2.a.b.1.1 1
20.7 even 4 1400.2.a.a.1.1 1
20.19 odd 2 1400.2.g.b.449.2 2
35.3 even 12 784.2.i.b.177.1 2
35.13 even 4 784.2.a.i.1.1 1
35.18 odd 12 784.2.i.j.177.1 2
35.23 odd 12 784.2.i.j.753.1 2
35.33 even 12 784.2.i.b.753.1 2
40.3 even 4 448.2.a.c.1.1 1
40.13 odd 4 448.2.a.h.1.1 1
60.23 odd 4 504.2.a.h.1.1 1
80.3 even 4 1792.2.b.a.897.2 2
80.13 odd 4 1792.2.b.h.897.1 2
80.43 even 4 1792.2.b.a.897.1 2
80.53 odd 4 1792.2.b.h.897.2 2
105.83 odd 4 7056.2.a.c.1.1 1
120.53 even 4 4032.2.a.a.1.1 1
120.83 odd 4 4032.2.a.d.1.1 1
140.3 odd 12 392.2.i.e.177.1 2
140.23 even 12 392.2.i.a.361.1 2
140.27 odd 4 9800.2.a.bj.1.1 1
140.83 odd 4 392.2.a.b.1.1 1
140.103 odd 12 392.2.i.e.361.1 2
140.123 even 12 392.2.i.a.177.1 2
220.43 odd 4 6776.2.a.h.1.1 1
260.103 even 4 9464.2.a.h.1.1 1
280.13 even 4 3136.2.a.c.1.1 1
280.83 odd 4 3136.2.a.w.1.1 1
420.23 odd 12 3528.2.s.a.361.1 2
420.83 even 4 3528.2.a.b.1.1 1
420.143 even 12 3528.2.s.ba.3313.1 2
420.263 odd 12 3528.2.s.a.3313.1 2
420.383 even 12 3528.2.s.ba.361.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.a.b.1.1 1 20.3 even 4
112.2.a.a.1.1 1 5.3 odd 4
392.2.a.b.1.1 1 140.83 odd 4
392.2.i.a.177.1 2 140.123 even 12
392.2.i.a.361.1 2 140.23 even 12
392.2.i.e.177.1 2 140.3 odd 12
392.2.i.e.361.1 2 140.103 odd 12
448.2.a.c.1.1 1 40.3 even 4
448.2.a.h.1.1 1 40.13 odd 4
504.2.a.h.1.1 1 60.23 odd 4
784.2.a.i.1.1 1 35.13 even 4
784.2.i.b.177.1 2 35.3 even 12
784.2.i.b.753.1 2 35.33 even 12
784.2.i.j.177.1 2 35.18 odd 12
784.2.i.j.753.1 2 35.23 odd 12
1008.2.a.m.1.1 1 15.8 even 4
1400.2.a.a.1.1 1 20.7 even 4
1400.2.g.b.449.1 2 4.3 odd 2
1400.2.g.b.449.2 2 20.19 odd 2
1792.2.b.a.897.1 2 80.43 even 4
1792.2.b.a.897.2 2 80.3 even 4
1792.2.b.h.897.1 2 80.13 odd 4
1792.2.b.h.897.2 2 80.53 odd 4
2800.2.a.bd.1.1 1 5.2 odd 4
2800.2.g.g.449.1 2 5.4 even 2 inner
2800.2.g.g.449.2 2 1.1 even 1 trivial
3136.2.a.c.1.1 1 280.13 even 4
3136.2.a.w.1.1 1 280.83 odd 4
3528.2.a.b.1.1 1 420.83 even 4
3528.2.s.a.361.1 2 420.23 odd 12
3528.2.s.a.3313.1 2 420.263 odd 12
3528.2.s.ba.361.1 2 420.383 even 12
3528.2.s.ba.3313.1 2 420.143 even 12
4032.2.a.a.1.1 1 120.53 even 4
4032.2.a.d.1.1 1 120.83 odd 4
6776.2.a.h.1.1 1 220.43 odd 4
7056.2.a.c.1.1 1 105.83 odd 4
9464.2.a.h.1.1 1 260.103 even 4
9800.2.a.bj.1.1 1 140.27 odd 4