Properties

Label 2800.2.g.g
Level $2800$
Weight $2$
Character orbit 2800.g
Analytic conductor $22.358$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2800,2,Mod(449,2800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2800.449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2800.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.3581125660\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 i q^{3} - i q^{7} - q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + 2 i q^{3} - i q^{7} - q^{9} - 2 i q^{17} - 2 q^{19} + 2 q^{21} + 8 i q^{23} + 4 i q^{27} - 2 q^{29} - 4 q^{31} - 6 i q^{37} - 2 q^{41} + 8 i q^{43} + 4 i q^{47} - q^{49} + 4 q^{51} + 10 i q^{53} - 4 i q^{57} + 6 q^{59} + 4 q^{61} + i q^{63} + 12 i q^{67} - 16 q^{69} + 14 i q^{73} - 8 q^{79} - 11 q^{81} + 6 i q^{83} - 4 i q^{87} - 10 q^{89} - 8 i q^{93} - 2 i q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{9} - 4 q^{19} + 4 q^{21} - 4 q^{29} - 8 q^{31} - 4 q^{41} - 2 q^{49} + 8 q^{51} + 12 q^{59} + 8 q^{61} - 32 q^{69} - 16 q^{79} - 22 q^{81} - 20 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2800\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(801\) \(2101\) \(2577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
449.1
1.00000i
1.00000i
0 2.00000i 0 0 0 1.00000i 0 −1.00000 0
449.2 0 2.00000i 0 0 0 1.00000i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2800.2.g.g 2
4.b odd 2 1 1400.2.g.b 2
5.b even 2 1 inner 2800.2.g.g 2
5.c odd 4 1 112.2.a.a 1
5.c odd 4 1 2800.2.a.bd 1
15.e even 4 1 1008.2.a.m 1
20.d odd 2 1 1400.2.g.b 2
20.e even 4 1 56.2.a.b 1
20.e even 4 1 1400.2.a.a 1
35.f even 4 1 784.2.a.i 1
35.k even 12 2 784.2.i.b 2
35.l odd 12 2 784.2.i.j 2
40.i odd 4 1 448.2.a.h 1
40.k even 4 1 448.2.a.c 1
60.l odd 4 1 504.2.a.h 1
80.i odd 4 1 1792.2.b.h 2
80.j even 4 1 1792.2.b.a 2
80.s even 4 1 1792.2.b.a 2
80.t odd 4 1 1792.2.b.h 2
105.k odd 4 1 7056.2.a.c 1
120.q odd 4 1 4032.2.a.d 1
120.w even 4 1 4032.2.a.a 1
140.j odd 4 1 392.2.a.b 1
140.j odd 4 1 9800.2.a.bj 1
140.w even 12 2 392.2.i.a 2
140.x odd 12 2 392.2.i.e 2
220.i odd 4 1 6776.2.a.h 1
260.p even 4 1 9464.2.a.h 1
280.s even 4 1 3136.2.a.c 1
280.y odd 4 1 3136.2.a.w 1
420.w even 4 1 3528.2.a.b 1
420.bp odd 12 2 3528.2.s.a 2
420.br even 12 2 3528.2.s.ba 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.2.a.b 1 20.e even 4 1
112.2.a.a 1 5.c odd 4 1
392.2.a.b 1 140.j odd 4 1
392.2.i.a 2 140.w even 12 2
392.2.i.e 2 140.x odd 12 2
448.2.a.c 1 40.k even 4 1
448.2.a.h 1 40.i odd 4 1
504.2.a.h 1 60.l odd 4 1
784.2.a.i 1 35.f even 4 1
784.2.i.b 2 35.k even 12 2
784.2.i.j 2 35.l odd 12 2
1008.2.a.m 1 15.e even 4 1
1400.2.a.a 1 20.e even 4 1
1400.2.g.b 2 4.b odd 2 1
1400.2.g.b 2 20.d odd 2 1
1792.2.b.a 2 80.j even 4 1
1792.2.b.a 2 80.s even 4 1
1792.2.b.h 2 80.i odd 4 1
1792.2.b.h 2 80.t odd 4 1
2800.2.a.bd 1 5.c odd 4 1
2800.2.g.g 2 1.a even 1 1 trivial
2800.2.g.g 2 5.b even 2 1 inner
3136.2.a.c 1 280.s even 4 1
3136.2.a.w 1 280.y odd 4 1
3528.2.a.b 1 420.w even 4 1
3528.2.s.a 2 420.bp odd 12 2
3528.2.s.ba 2 420.br even 12 2
4032.2.a.a 1 120.w even 4 1
4032.2.a.d 1 120.q odd 4 1
6776.2.a.h 1 220.i odd 4 1
7056.2.a.c 1 105.k odd 4 1
9464.2.a.h 1 260.p even 4 1
9800.2.a.bj 1 140.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2800, [\chi])\):

\( T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 4 \) Copy content Toggle raw display
$19$ \( (T + 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 64 \) Copy content Toggle raw display
$29$ \( (T + 2)^{2} \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 36 \) Copy content Toggle raw display
$41$ \( (T + 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 64 \) Copy content Toggle raw display
$47$ \( T^{2} + 16 \) Copy content Toggle raw display
$53$ \( T^{2} + 100 \) Copy content Toggle raw display
$59$ \( (T - 6)^{2} \) Copy content Toggle raw display
$61$ \( (T - 4)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 144 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 196 \) Copy content Toggle raw display
$79$ \( (T + 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 36 \) Copy content Toggle raw display
$89$ \( (T + 10)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 4 \) Copy content Toggle raw display
show more
show less