Properties

Label 2800.2.e.c.2799.4
Level $2800$
Weight $2$
Character 2800.2799
Analytic conductor $22.358$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2800,2,Mod(2799,2800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2800.2799");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2800.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.3581125660\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2799.4
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2800.2799
Dual form 2800.2.e.c.2799.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{3} +(1.73205 + 2.00000i) q^{7} -1.00000 q^{9} -3.46410i q^{11} +3.46410 q^{13} +2.00000 q^{19} +(-4.00000 + 3.46410i) q^{21} +3.46410 q^{23} +4.00000i q^{27} -6.00000 q^{29} +8.00000 q^{31} +6.92820 q^{33} -2.00000i q^{37} +6.92820i q^{39} -6.92820i q^{41} +10.3923 q^{43} +(-1.00000 + 6.92820i) q^{49} -6.00000i q^{53} +4.00000i q^{57} +6.00000 q^{59} +3.46410i q^{61} +(-1.73205 - 2.00000i) q^{63} +3.46410 q^{67} +6.92820i q^{69} -3.46410i q^{71} +6.92820 q^{73} +(6.92820 - 6.00000i) q^{77} +3.46410i q^{79} -11.0000 q^{81} -6.00000i q^{83} -12.0000i q^{87} +6.92820i q^{89} +(6.00000 + 6.92820i) q^{91} +16.0000i q^{93} -13.8564 q^{97} +3.46410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} + 8 q^{19} - 16 q^{21} - 24 q^{29} + 32 q^{31} - 4 q^{49} + 24 q^{59} - 44 q^{81} + 24 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2800\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(801\) \(2101\) \(2577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000i 1.15470i 0.816497 + 0.577350i \(0.195913\pi\)
−0.816497 + 0.577350i \(0.804087\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.73205 + 2.00000i 0.654654 + 0.755929i
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 3.46410i 1.04447i −0.852803 0.522233i \(-0.825099\pi\)
0.852803 0.522233i \(-0.174901\pi\)
\(12\) 0 0
\(13\) 3.46410 0.960769 0.480384 0.877058i \(-0.340497\pi\)
0.480384 + 0.877058i \(0.340497\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) −4.00000 + 3.46410i −0.872872 + 0.755929i
\(22\) 0 0
\(23\) 3.46410 0.722315 0.361158 0.932505i \(-0.382382\pi\)
0.361158 + 0.932505i \(0.382382\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) 6.92820 1.20605
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000i 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 0 0
\(39\) 6.92820i 1.10940i
\(40\) 0 0
\(41\) 6.92820i 1.08200i −0.841021 0.541002i \(-0.818045\pi\)
0.841021 0.541002i \(-0.181955\pi\)
\(42\) 0 0
\(43\) 10.3923 1.58481 0.792406 0.609994i \(-0.208828\pi\)
0.792406 + 0.609994i \(0.208828\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) −1.00000 + 6.92820i −0.142857 + 0.989743i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000i 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.00000i 0.529813i
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 3.46410i 0.443533i 0.975100 + 0.221766i \(0.0711822\pi\)
−0.975100 + 0.221766i \(0.928818\pi\)
\(62\) 0 0
\(63\) −1.73205 2.00000i −0.218218 0.251976i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3.46410 0.423207 0.211604 0.977356i \(-0.432131\pi\)
0.211604 + 0.977356i \(0.432131\pi\)
\(68\) 0 0
\(69\) 6.92820i 0.834058i
\(70\) 0 0
\(71\) 3.46410i 0.411113i −0.978645 0.205557i \(-0.934100\pi\)
0.978645 0.205557i \(-0.0659005\pi\)
\(72\) 0 0
\(73\) 6.92820 0.810885 0.405442 0.914121i \(-0.367117\pi\)
0.405442 + 0.914121i \(0.367117\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.92820 6.00000i 0.789542 0.683763i
\(78\) 0 0
\(79\) 3.46410i 0.389742i 0.980829 + 0.194871i \(0.0624288\pi\)
−0.980829 + 0.194871i \(0.937571\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 6.00000i 0.658586i −0.944228 0.329293i \(-0.893190\pi\)
0.944228 0.329293i \(-0.106810\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 12.0000i 1.28654i
\(88\) 0 0
\(89\) 6.92820i 0.734388i 0.930144 + 0.367194i \(0.119682\pi\)
−0.930144 + 0.367194i \(0.880318\pi\)
\(90\) 0 0
\(91\) 6.00000 + 6.92820i 0.628971 + 0.726273i
\(92\) 0 0
\(93\) 16.0000i 1.65912i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −13.8564 −1.40690 −0.703452 0.710742i \(-0.748359\pi\)
−0.703452 + 0.710742i \(0.748359\pi\)
\(98\) 0 0
\(99\) 3.46410i 0.348155i
\(100\) 0 0
\(101\) 10.3923i 1.03407i 0.855963 + 0.517036i \(0.172965\pi\)
−0.855963 + 0.517036i \(0.827035\pi\)
\(102\) 0 0
\(103\) 4.00000i 0.394132i 0.980390 + 0.197066i \(0.0631413\pi\)
−0.980390 + 0.197066i \(0.936859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.3923 −1.00466 −0.502331 0.864675i \(-0.667524\pi\)
−0.502331 + 0.864675i \(0.667524\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 4.00000 0.379663
\(112\) 0 0
\(113\) 18.0000i 1.69330i 0.532152 + 0.846649i \(0.321383\pi\)
−0.532152 + 0.846649i \(0.678617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −3.46410 −0.320256
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 13.8564 1.24939
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 10.3923 0.922168 0.461084 0.887357i \(-0.347461\pi\)
0.461084 + 0.887357i \(0.347461\pi\)
\(128\) 0 0
\(129\) 20.7846i 1.82998i
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 3.46410 + 4.00000i 0.300376 + 0.346844i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000i 0.512615i −0.966595 0.256307i \(-0.917494\pi\)
0.966595 0.256307i \(-0.0825059\pi\)
\(138\) 0 0
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 12.0000i 1.00349i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −13.8564 2.00000i −1.14286 0.164957i
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 3.46410i 0.281905i 0.990016 + 0.140952i \(0.0450164\pi\)
−0.990016 + 0.140952i \(0.954984\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 10.3923 0.829396 0.414698 0.909959i \(-0.363887\pi\)
0.414698 + 0.909959i \(0.363887\pi\)
\(158\) 0 0
\(159\) 12.0000 0.951662
\(160\) 0 0
\(161\) 6.00000 + 6.92820i 0.472866 + 0.546019i
\(162\) 0 0
\(163\) −17.3205 −1.35665 −0.678323 0.734763i \(-0.737293\pi\)
−0.678323 + 0.734763i \(0.737293\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.0000i 0.928588i 0.885681 + 0.464294i \(0.153692\pi\)
−0.885681 + 0.464294i \(0.846308\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) −2.00000 −0.152944
\(172\) 0 0
\(173\) 3.46410 0.263371 0.131685 0.991292i \(-0.457961\pi\)
0.131685 + 0.991292i \(0.457961\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 12.0000i 0.901975i
\(178\) 0 0
\(179\) 10.3923i 0.776757i −0.921500 0.388379i \(-0.873035\pi\)
0.921500 0.388379i \(-0.126965\pi\)
\(180\) 0 0
\(181\) 17.3205i 1.28742i −0.765268 0.643712i \(-0.777394\pi\)
0.765268 0.643712i \(-0.222606\pi\)
\(182\) 0 0
\(183\) −6.92820 −0.512148
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −8.00000 + 6.92820i −0.581914 + 0.503953i
\(190\) 0 0
\(191\) 24.2487i 1.75458i 0.479965 + 0.877288i \(0.340649\pi\)
−0.479965 + 0.877288i \(0.659351\pi\)
\(192\) 0 0
\(193\) 2.00000i 0.143963i 0.997406 + 0.0719816i \(0.0229323\pi\)
−0.997406 + 0.0719816i \(0.977068\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0000i 1.28245i −0.767354 0.641223i \(-0.778427\pi\)
0.767354 0.641223i \(-0.221573\pi\)
\(198\) 0 0
\(199\) 20.0000 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(200\) 0 0
\(201\) 6.92820i 0.488678i
\(202\) 0 0
\(203\) −10.3923 12.0000i −0.729397 0.842235i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −3.46410 −0.240772
\(208\) 0 0
\(209\) 6.92820i 0.479234i
\(210\) 0 0
\(211\) 3.46410i 0.238479i −0.992866 0.119239i \(-0.961954\pi\)
0.992866 0.119239i \(-0.0380456\pi\)
\(212\) 0 0
\(213\) 6.92820 0.474713
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 13.8564 + 16.0000i 0.940634 + 1.08615i
\(218\) 0 0
\(219\) 13.8564i 0.936329i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 16.0000i 1.07144i −0.844396 0.535720i \(-0.820040\pi\)
0.844396 0.535720i \(-0.179960\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.00000i 0.398234i 0.979976 + 0.199117i \(0.0638074\pi\)
−0.979976 + 0.199117i \(0.936193\pi\)
\(228\) 0 0
\(229\) 10.3923i 0.686743i −0.939200 0.343371i \(-0.888431\pi\)
0.939200 0.343371i \(-0.111569\pi\)
\(230\) 0 0
\(231\) 12.0000 + 13.8564i 0.789542 + 0.911685i
\(232\) 0 0
\(233\) 6.00000i 0.393073i 0.980497 + 0.196537i \(0.0629694\pi\)
−0.980497 + 0.196537i \(0.937031\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −6.92820 −0.450035
\(238\) 0 0
\(239\) 10.3923i 0.672222i 0.941822 + 0.336111i \(0.109112\pi\)
−0.941822 + 0.336111i \(0.890888\pi\)
\(240\) 0 0
\(241\) 27.7128i 1.78514i 0.450910 + 0.892570i \(0.351100\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) 10.0000i 0.641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.92820 0.440831
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) −30.0000 −1.89358 −0.946792 0.321847i \(-0.895696\pi\)
−0.946792 + 0.321847i \(0.895696\pi\)
\(252\) 0 0
\(253\) 12.0000i 0.754434i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −27.7128 −1.72868 −0.864339 0.502910i \(-0.832263\pi\)
−0.864339 + 0.502910i \(0.832263\pi\)
\(258\) 0 0
\(259\) 4.00000 3.46410i 0.248548 0.215249i
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) 24.2487 1.49524 0.747620 0.664127i \(-0.231197\pi\)
0.747620 + 0.664127i \(0.231197\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −13.8564 −0.847998
\(268\) 0 0
\(269\) 3.46410i 0.211210i −0.994408 0.105605i \(-0.966322\pi\)
0.994408 0.105605i \(-0.0336779\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) −13.8564 + 12.0000i −0.838628 + 0.726273i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.00000i 0.120168i −0.998193 0.0600842i \(-0.980863\pi\)
0.998193 0.0600842i \(-0.0191369\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 14.0000i 0.832214i 0.909316 + 0.416107i \(0.136606\pi\)
−0.909316 + 0.416107i \(0.863394\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 13.8564 12.0000i 0.817918 0.708338i
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 27.7128i 1.62455i
\(292\) 0 0
\(293\) 10.3923 0.607125 0.303562 0.952812i \(-0.401824\pi\)
0.303562 + 0.952812i \(0.401824\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 13.8564 0.804030
\(298\) 0 0
\(299\) 12.0000 0.693978
\(300\) 0 0
\(301\) 18.0000 + 20.7846i 1.03750 + 1.19800i
\(302\) 0 0
\(303\) −20.7846 −1.19404
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 22.0000i 1.25561i 0.778372 + 0.627803i \(0.216046\pi\)
−0.778372 + 0.627803i \(0.783954\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) 6.92820 0.391605 0.195803 0.980643i \(-0.437269\pi\)
0.195803 + 0.980643i \(0.437269\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.00000i 0.336994i 0.985702 + 0.168497i \(0.0538913\pi\)
−0.985702 + 0.168497i \(0.946109\pi\)
\(318\) 0 0
\(319\) 20.7846i 1.16371i
\(320\) 0 0
\(321\) 20.7846i 1.16008i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 28.0000i 1.54840i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 3.46410i 0.190404i −0.995458 0.0952021i \(-0.969650\pi\)
0.995458 0.0952021i \(-0.0303497\pi\)
\(332\) 0 0
\(333\) 2.00000i 0.109599i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 14.0000i 0.762629i 0.924445 + 0.381314i \(0.124528\pi\)
−0.924445 + 0.381314i \(0.875472\pi\)
\(338\) 0 0
\(339\) −36.0000 −1.95525
\(340\) 0 0
\(341\) 27.7128i 1.50073i
\(342\) 0 0
\(343\) −15.5885 + 10.0000i −0.841698 + 0.539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.3205 0.929814 0.464907 0.885360i \(-0.346088\pi\)
0.464907 + 0.885360i \(0.346088\pi\)
\(348\) 0 0
\(349\) 3.46410i 0.185429i −0.995693 0.0927146i \(-0.970446\pi\)
0.995693 0.0927146i \(-0.0295544\pi\)
\(350\) 0 0
\(351\) 13.8564i 0.739600i
\(352\) 0 0
\(353\) −27.7128 −1.47500 −0.737502 0.675345i \(-0.763995\pi\)
−0.737502 + 0.675345i \(0.763995\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 31.1769i 1.64545i −0.568436 0.822727i \(-0.692451\pi\)
0.568436 0.822727i \(-0.307549\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 2.00000i 0.104973i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 8.00000i 0.417597i −0.977959 0.208798i \(-0.933045\pi\)
0.977959 0.208798i \(-0.0669552\pi\)
\(368\) 0 0
\(369\) 6.92820i 0.360668i
\(370\) 0 0
\(371\) 12.0000 10.3923i 0.623009 0.539542i
\(372\) 0 0
\(373\) 14.0000i 0.724893i −0.932005 0.362446i \(-0.881942\pi\)
0.932005 0.362446i \(-0.118058\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −20.7846 −1.07046
\(378\) 0 0
\(379\) 24.2487i 1.24557i −0.782392 0.622786i \(-0.786001\pi\)
0.782392 0.622786i \(-0.213999\pi\)
\(380\) 0 0
\(381\) 20.7846i 1.06483i
\(382\) 0 0
\(383\) 24.0000i 1.22634i 0.789950 + 0.613171i \(0.210106\pi\)
−0.789950 + 0.613171i \(0.789894\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −10.3923 −0.528271
\(388\) 0 0
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 36.0000i 1.81596i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 10.3923 0.521575 0.260787 0.965396i \(-0.416018\pi\)
0.260787 + 0.965396i \(0.416018\pi\)
\(398\) 0 0
\(399\) −8.00000 + 6.92820i −0.400501 + 0.346844i
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) 27.7128 1.38047
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6.92820 −0.343418
\(408\) 0 0
\(409\) 6.92820i 0.342578i −0.985221 0.171289i \(-0.945207\pi\)
0.985221 0.171289i \(-0.0547931\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 0 0
\(413\) 10.3923 + 12.0000i 0.511372 + 0.590481i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 4.00000i 0.195881i
\(418\) 0 0
\(419\) −30.0000 −1.46560 −0.732798 0.680446i \(-0.761786\pi\)
−0.732798 + 0.680446i \(0.761786\pi\)
\(420\) 0 0
\(421\) −26.0000 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −6.92820 + 6.00000i −0.335279 + 0.290360i
\(428\) 0 0
\(429\) 24.0000 1.15873
\(430\) 0 0
\(431\) 38.1051i 1.83546i −0.397206 0.917729i \(-0.630020\pi\)
0.397206 0.917729i \(-0.369980\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.92820 0.331421
\(438\) 0 0
\(439\) −28.0000 −1.33637 −0.668184 0.743996i \(-0.732928\pi\)
−0.668184 + 0.743996i \(0.732928\pi\)
\(440\) 0 0
\(441\) 1.00000 6.92820i 0.0476190 0.329914i
\(442\) 0 0
\(443\) −3.46410 −0.164584 −0.0822922 0.996608i \(-0.526224\pi\)
−0.0822922 + 0.996608i \(0.526224\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 12.0000i 0.567581i
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) 0 0
\(453\) −6.92820 −0.325515
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 34.0000i 1.59045i −0.606313 0.795226i \(-0.707352\pi\)
0.606313 0.795226i \(-0.292648\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 38.1051i 1.77473i −0.461065 0.887366i \(-0.652533\pi\)
0.461065 0.887366i \(-0.347467\pi\)
\(462\) 0 0
\(463\) 24.2487 1.12693 0.563467 0.826139i \(-0.309467\pi\)
0.563467 + 0.826139i \(0.309467\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 30.0000i 1.38823i 0.719862 + 0.694117i \(0.244205\pi\)
−0.719862 + 0.694117i \(0.755795\pi\)
\(468\) 0 0
\(469\) 6.00000 + 6.92820i 0.277054 + 0.319915i
\(470\) 0 0
\(471\) 20.7846i 0.957704i
\(472\) 0 0
\(473\) 36.0000i 1.65528i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000i 0.274721i
\(478\) 0 0
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) 6.92820i 0.315899i
\(482\) 0 0
\(483\) −13.8564 + 12.0000i −0.630488 + 0.546019i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 24.2487 1.09881 0.549407 0.835555i \(-0.314854\pi\)
0.549407 + 0.835555i \(0.314854\pi\)
\(488\) 0 0
\(489\) 34.6410i 1.56652i
\(490\) 0 0
\(491\) 17.3205i 0.781664i −0.920462 0.390832i \(-0.872187\pi\)
0.920462 0.390832i \(-0.127813\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.92820 6.00000i 0.310772 0.269137i
\(498\) 0 0
\(499\) 10.3923i 0.465223i −0.972570 0.232612i \(-0.925273\pi\)
0.972570 0.232612i \(-0.0747271\pi\)
\(500\) 0 0
\(501\) −24.0000 −1.07224
\(502\) 0 0
\(503\) 36.0000i 1.60516i 0.596544 + 0.802580i \(0.296540\pi\)
−0.596544 + 0.802580i \(0.703460\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2.00000i 0.0888231i
\(508\) 0 0
\(509\) 31.1769i 1.38189i −0.722906 0.690946i \(-0.757194\pi\)
0.722906 0.690946i \(-0.242806\pi\)
\(510\) 0 0
\(511\) 12.0000 + 13.8564i 0.530849 + 0.612971i
\(512\) 0 0
\(513\) 8.00000i 0.353209i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 6.92820i 0.304114i
\(520\) 0 0
\(521\) 34.6410i 1.51765i −0.651294 0.758825i \(-0.725774\pi\)
0.651294 0.758825i \(-0.274226\pi\)
\(522\) 0 0
\(523\) 2.00000i 0.0874539i −0.999044 0.0437269i \(-0.986077\pi\)
0.999044 0.0437269i \(-0.0139232\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −11.0000 −0.478261
\(530\) 0 0
\(531\) −6.00000 −0.260378
\(532\) 0 0
\(533\) 24.0000i 1.03956i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 20.7846 0.896922
\(538\) 0 0
\(539\) 24.0000 + 3.46410i 1.03375 + 0.149209i
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 0 0
\(543\) 34.6410 1.48659
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 17.3205 0.740571 0.370286 0.928918i \(-0.379260\pi\)
0.370286 + 0.928918i \(0.379260\pi\)
\(548\) 0 0
\(549\) 3.46410i 0.147844i
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) 0 0
\(553\) −6.92820 + 6.00000i −0.294617 + 0.255146i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.0000i 0.762684i −0.924434 0.381342i \(-0.875462\pi\)
0.924434 0.381342i \(-0.124538\pi\)
\(558\) 0 0
\(559\) 36.0000 1.52264
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 18.0000i 0.758610i 0.925272 + 0.379305i \(0.123837\pi\)
−0.925272 + 0.379305i \(0.876163\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −19.0526 22.0000i −0.800132 0.923913i
\(568\) 0 0
\(569\) 18.0000 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(570\) 0 0
\(571\) 45.0333i 1.88459i −0.334790 0.942293i \(-0.608665\pi\)
0.334790 0.942293i \(-0.391335\pi\)
\(572\) 0 0
\(573\) −48.4974 −2.02601
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 27.7128 1.15370 0.576850 0.816850i \(-0.304282\pi\)
0.576850 + 0.816850i \(0.304282\pi\)
\(578\) 0 0
\(579\) −4.00000 −0.166234
\(580\) 0 0
\(581\) 12.0000 10.3923i 0.497844 0.431145i
\(582\) 0 0
\(583\) −20.7846 −0.860811
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.0000i 0.742940i 0.928445 + 0.371470i \(0.121146\pi\)
−0.928445 + 0.371470i \(0.878854\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) 36.0000 1.48084
\(592\) 0 0
\(593\) −13.8564 −0.569014 −0.284507 0.958674i \(-0.591830\pi\)
−0.284507 + 0.958674i \(0.591830\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 40.0000i 1.63709i
\(598\) 0 0
\(599\) 24.2487i 0.990775i −0.868672 0.495388i \(-0.835026\pi\)
0.868672 0.495388i \(-0.164974\pi\)
\(600\) 0 0
\(601\) 20.7846i 0.847822i 0.905704 + 0.423911i \(0.139343\pi\)
−0.905704 + 0.423911i \(0.860657\pi\)
\(602\) 0 0
\(603\) −3.46410 −0.141069
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 16.0000i 0.649420i 0.945814 + 0.324710i \(0.105267\pi\)
−0.945814 + 0.324710i \(0.894733\pi\)
\(608\) 0 0
\(609\) 24.0000 20.7846i 0.972529 0.842235i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 38.0000i 1.53481i −0.641165 0.767403i \(-0.721549\pi\)
0.641165 0.767403i \(-0.278451\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18.0000i 0.724653i −0.932051 0.362326i \(-0.881983\pi\)
0.932051 0.362326i \(-0.118017\pi\)
\(618\) 0 0
\(619\) −26.0000 −1.04503 −0.522514 0.852631i \(-0.675006\pi\)
−0.522514 + 0.852631i \(0.675006\pi\)
\(620\) 0 0
\(621\) 13.8564i 0.556038i
\(622\) 0 0
\(623\) −13.8564 + 12.0000i −0.555145 + 0.480770i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 13.8564 0.553372
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 3.46410i 0.137904i −0.997620 0.0689519i \(-0.978035\pi\)
0.997620 0.0689519i \(-0.0219655\pi\)
\(632\) 0 0
\(633\) 6.92820 0.275371
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −3.46410 + 24.0000i −0.137253 + 0.950915i
\(638\) 0 0
\(639\) 3.46410i 0.137038i
\(640\) 0 0
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) 26.0000i 1.02534i 0.858586 + 0.512670i \(0.171344\pi\)
−0.858586 + 0.512670i \(0.828656\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000i 0.471769i 0.971781 + 0.235884i \(0.0757987\pi\)
−0.971781 + 0.235884i \(0.924201\pi\)
\(648\) 0 0
\(649\) 20.7846i 0.815867i
\(650\) 0 0
\(651\) −32.0000 + 27.7128i −1.25418 + 1.08615i
\(652\) 0 0
\(653\) 18.0000i 0.704394i 0.935926 + 0.352197i \(0.114565\pi\)
−0.935926 + 0.352197i \(0.885435\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −6.92820 −0.270295
\(658\) 0 0
\(659\) 3.46410i 0.134942i 0.997721 + 0.0674711i \(0.0214931\pi\)
−0.997721 + 0.0674711i \(0.978507\pi\)
\(660\) 0 0
\(661\) 3.46410i 0.134738i −0.997728 0.0673690i \(-0.978540\pi\)
0.997728 0.0673690i \(-0.0214605\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −20.7846 −0.804783
\(668\) 0 0
\(669\) 32.0000 1.23719
\(670\) 0 0
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) 14.0000i 0.539660i 0.962908 + 0.269830i \(0.0869676\pi\)
−0.962908 + 0.269830i \(0.913032\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.46410 0.133136 0.0665681 0.997782i \(-0.478795\pi\)
0.0665681 + 0.997782i \(0.478795\pi\)
\(678\) 0 0
\(679\) −24.0000 27.7128i −0.921035 1.06352i
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) 38.1051 1.45805 0.729026 0.684486i \(-0.239973\pi\)
0.729026 + 0.684486i \(0.239973\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 20.7846 0.792982
\(688\) 0 0
\(689\) 20.7846i 0.791831i
\(690\) 0 0
\(691\) −10.0000 −0.380418 −0.190209 0.981744i \(-0.560917\pi\)
−0.190209 + 0.981744i \(0.560917\pi\)
\(692\) 0 0
\(693\) −6.92820 + 6.00000i −0.263181 + 0.227921i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −12.0000 −0.453882
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 0 0
\(703\) 4.00000i 0.150863i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −20.7846 + 18.0000i −0.781686 + 0.676960i
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) 3.46410i 0.129914i
\(712\) 0 0
\(713\) 27.7128 1.03785
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −20.7846 −0.776215
\(718\) 0 0
\(719\) −48.0000 −1.79010 −0.895049 0.445968i \(-0.852860\pi\)
−0.895049 + 0.445968i \(0.852860\pi\)
\(720\) 0 0
\(721\) −8.00000 + 6.92820i −0.297936 + 0.258020i
\(722\) 0 0
\(723\) −55.4256 −2.06130
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 28.0000i 1.03846i −0.854634 0.519231i \(-0.826218\pi\)
0.854634 0.519231i \(-0.173782\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −51.9615 −1.91924 −0.959621 0.281295i \(-0.909236\pi\)
−0.959621 + 0.281295i \(0.909236\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.0000i 0.442026i
\(738\) 0 0
\(739\) 10.3923i 0.382287i −0.981562 0.191144i \(-0.938780\pi\)
0.981562 0.191144i \(-0.0612196\pi\)
\(740\) 0 0
\(741\) 13.8564i 0.509028i
\(742\) 0 0
\(743\) −24.2487 −0.889599 −0.444799 0.895630i \(-0.646725\pi\)
−0.444799 + 0.895630i \(0.646725\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6.00000i 0.219529i
\(748\) 0 0
\(749\) −18.0000 20.7846i −0.657706 0.759453i
\(750\) 0 0
\(751\) 45.0333i 1.64329i 0.570000 + 0.821645i \(0.306943\pi\)
−0.570000 + 0.821645i \(0.693057\pi\)
\(752\) 0 0
\(753\) 60.0000i 2.18652i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 10.0000i 0.363456i −0.983349 0.181728i \(-0.941831\pi\)
0.983349 0.181728i \(-0.0581691\pi\)
\(758\) 0 0
\(759\) 24.0000 0.871145
\(760\) 0 0
\(761\) 20.7846i 0.753442i −0.926327 0.376721i \(-0.877052\pi\)
0.926327 0.376721i \(-0.122948\pi\)
\(762\) 0 0
\(763\) −24.2487 28.0000i −0.877862 1.01367i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 20.7846 0.750489
\(768\) 0 0
\(769\) 13.8564i 0.499675i −0.968288 0.249837i \(-0.919623\pi\)
0.968288 0.249837i \(-0.0803772\pi\)
\(770\) 0 0
\(771\) 55.4256i 1.99611i
\(772\) 0 0
\(773\) −3.46410 −0.124595 −0.0622975 0.998058i \(-0.519843\pi\)
−0.0622975 + 0.998058i \(0.519843\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 6.92820 + 8.00000i 0.248548 + 0.286998i
\(778\) 0 0
\(779\) 13.8564i 0.496457i
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) 24.0000i 0.857690i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 34.0000i 1.21197i −0.795476 0.605985i \(-0.792779\pi\)
0.795476 0.605985i \(-0.207221\pi\)
\(788\) 0 0
\(789\) 48.4974i 1.72655i
\(790\) 0 0
\(791\) −36.0000 + 31.1769i −1.28001 + 1.10852i
\(792\) 0 0
\(793\) 12.0000i 0.426132i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −17.3205 −0.613524 −0.306762 0.951786i \(-0.599246\pi\)
−0.306762 + 0.951786i \(0.599246\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 6.92820i 0.244796i
\(802\) 0 0
\(803\) 24.0000i 0.846942i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 6.92820 0.243884
\(808\) 0 0
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) −22.0000 −0.772524 −0.386262 0.922389i \(-0.626234\pi\)
−0.386262 + 0.922389i \(0.626234\pi\)
\(812\) 0 0
\(813\) 16.0000i 0.561144i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 20.7846 0.727161
\(818\) 0 0
\(819\) −6.00000 6.92820i −0.209657 0.242091i
\(820\) 0 0
\(821\) 30.0000 1.04701 0.523504 0.852023i \(-0.324625\pi\)
0.523504 + 0.852023i \(0.324625\pi\)
\(822\) 0 0
\(823\) −3.46410 −0.120751 −0.0603755 0.998176i \(-0.519230\pi\)
−0.0603755 + 0.998176i \(0.519230\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24.2487 −0.843210 −0.421605 0.906780i \(-0.638533\pi\)
−0.421605 + 0.906780i \(0.638533\pi\)
\(828\) 0 0
\(829\) 3.46410i 0.120313i −0.998189 0.0601566i \(-0.980840\pi\)
0.998189 0.0601566i \(-0.0191600\pi\)
\(830\) 0 0
\(831\) 4.00000 0.138758
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 32.0000i 1.10608i
\(838\) 0 0
\(839\) −12.0000 −0.414286 −0.207143 0.978311i \(-0.566417\pi\)
−0.207143 + 0.978311i \(0.566417\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 12.0000i 0.413302i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −1.73205 2.00000i −0.0595140 0.0687208i
\(848\) 0 0
\(849\) −28.0000 −0.960958
\(850\) 0 0
\(851\) 6.92820i 0.237496i
\(852\) 0 0
\(853\) −3.46410 −0.118609 −0.0593043 0.998240i \(-0.518888\pi\)
−0.0593043 + 0.998240i \(0.518888\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −34.6410 −1.18331 −0.591657 0.806190i \(-0.701526\pi\)
−0.591657 + 0.806190i \(0.701526\pi\)
\(858\) 0 0
\(859\) 14.0000 0.477674 0.238837 0.971060i \(-0.423234\pi\)
0.238837 + 0.971060i \(0.423234\pi\)
\(860\) 0 0
\(861\) 24.0000 + 27.7128i 0.817918 + 0.944450i
\(862\) 0 0
\(863\) −31.1769 −1.06127 −0.530637 0.847599i \(-0.678047\pi\)
−0.530637 + 0.847599i \(0.678047\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 34.0000i 1.15470i
\(868\) 0 0
\(869\) 12.0000 0.407072
\(870\) 0 0
\(871\) 12.0000 0.406604
\(872\) 0 0
\(873\) 13.8564 0.468968
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 38.0000i 1.28317i 0.767052 + 0.641584i \(0.221723\pi\)
−0.767052 + 0.641584i \(0.778277\pi\)
\(878\) 0 0
\(879\) 20.7846i 0.701047i
\(880\) 0 0
\(881\) 13.8564i 0.466834i 0.972377 + 0.233417i \(0.0749907\pi\)
−0.972377 + 0.233417i \(0.925009\pi\)
\(882\) 0 0
\(883\) −3.46410 −0.116576 −0.0582882 0.998300i \(-0.518564\pi\)
−0.0582882 + 0.998300i \(0.518564\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.0000i 0.402921i −0.979497 0.201460i \(-0.935431\pi\)
0.979497 0.201460i \(-0.0645687\pi\)
\(888\) 0 0
\(889\) 18.0000 + 20.7846i 0.603701 + 0.697093i
\(890\) 0 0
\(891\) 38.1051i 1.27657i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 24.0000i 0.801337i
\(898\) 0 0
\(899\) −48.0000 −1.60089
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −41.5692 + 36.0000i −1.38334 + 1.19800i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −24.2487 −0.805165 −0.402583 0.915384i \(-0.631887\pi\)
−0.402583 + 0.915384i \(0.631887\pi\)
\(908\) 0 0
\(909\) 10.3923i 0.344691i
\(910\) 0 0
\(911\) 10.3923i 0.344312i −0.985070 0.172156i \(-0.944927\pi\)
0.985070 0.172156i \(-0.0550734\pi\)
\(912\) 0 0
\(913\) −20.7846 −0.687870
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −31.1769 36.0000i −1.02955 1.18882i
\(918\) 0 0
\(919\) 31.1769i 1.02843i 0.857661 + 0.514216i \(0.171917\pi\)
−0.857661 + 0.514216i \(0.828083\pi\)
\(920\) 0 0
\(921\) −44.0000 −1.44985
\(922\) 0 0
\(923\) 12.0000i 0.394985i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 4.00000i 0.131377i
\(928\) 0 0
\(929\) 41.5692i 1.36384i −0.731426 0.681921i \(-0.761145\pi\)
0.731426 0.681921i \(-0.238855\pi\)
\(930\) 0 0
\(931\) −2.00000 + 13.8564i −0.0655474 + 0.454125i
\(932\) 0 0
\(933\) 24.0000i 0.785725i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 48.4974 1.58434 0.792171 0.610299i \(-0.208951\pi\)
0.792171 + 0.610299i \(0.208951\pi\)
\(938\) 0 0
\(939\) 13.8564i 0.452187i
\(940\) 0 0
\(941\) 24.2487i 0.790485i −0.918577 0.395243i \(-0.870660\pi\)
0.918577 0.395243i \(-0.129340\pi\)
\(942\) 0 0
\(943\) 24.0000i 0.781548i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −24.2487 −0.787977 −0.393989 0.919115i \(-0.628905\pi\)
−0.393989 + 0.919115i \(0.628905\pi\)
\(948\) 0 0
\(949\) 24.0000 0.779073
\(950\) 0 0
\(951\) −12.0000 −0.389127
\(952\) 0 0
\(953\) 6.00000i 0.194359i 0.995267 + 0.0971795i \(0.0309821\pi\)
−0.995267 + 0.0971795i \(0.969018\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −41.5692 −1.34374
\(958\) 0 0
\(959\) 12.0000 10.3923i 0.387500 0.335585i
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 10.3923 0.334887
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 24.2487 0.779786 0.389893 0.920860i \(-0.372512\pi\)
0.389893 + 0.920860i \(0.372512\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 18.0000 0.577647 0.288824 0.957382i \(-0.406736\pi\)
0.288824 + 0.957382i \(0.406736\pi\)
\(972\) 0 0
\(973\) −3.46410 4.00000i −0.111054 0.128234i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 30.0000i 0.959785i −0.877327 0.479893i \(-0.840676\pi\)
0.877327 0.479893i \(-0.159324\pi\)
\(978\) 0 0
\(979\) 24.0000 0.767043
\(980\) 0 0
\(981\) 14.0000 0.446986
\(982\) 0 0
\(983\) 36.0000i 1.14822i −0.818778 0.574111i \(-0.805348\pi\)
0.818778 0.574111i \(-0.194652\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 36.0000 1.14473
\(990\) 0 0
\(991\) 3.46410i 0.110041i −0.998485 0.0550204i \(-0.982478\pi\)
0.998485 0.0550204i \(-0.0175224\pi\)
\(992\) 0 0
\(993\) 6.92820 0.219860
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −51.9615 −1.64564 −0.822819 0.568304i \(-0.807600\pi\)
−0.822819 + 0.568304i \(0.807600\pi\)
\(998\) 0 0
\(999\) 8.00000 0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2800.2.e.c.2799.4 4
4.3 odd 2 2800.2.e.b.2799.1 4
5.2 odd 4 2800.2.k.e.2351.2 2
5.3 odd 4 112.2.f.a.111.1 2
5.4 even 2 inner 2800.2.e.c.2799.1 4
7.6 odd 2 2800.2.e.b.2799.2 4
15.8 even 4 1008.2.b.g.559.2 2
20.3 even 4 112.2.f.b.111.1 yes 2
20.7 even 4 2800.2.k.b.2351.1 2
20.19 odd 2 2800.2.e.b.2799.4 4
28.27 even 2 inner 2800.2.e.c.2799.3 4
35.3 even 12 784.2.p.a.607.1 2
35.13 even 4 112.2.f.b.111.2 yes 2
35.18 odd 12 784.2.p.f.607.1 2
35.23 odd 12 784.2.p.e.31.1 2
35.27 even 4 2800.2.k.b.2351.2 2
35.33 even 12 784.2.p.b.31.1 2
35.34 odd 2 2800.2.e.b.2799.3 4
40.3 even 4 448.2.f.a.447.2 2
40.13 odd 4 448.2.f.c.447.2 2
60.23 odd 4 1008.2.b.b.559.2 2
80.3 even 4 1792.2.e.c.895.3 4
80.13 odd 4 1792.2.e.a.895.1 4
80.43 even 4 1792.2.e.c.895.2 4
80.53 odd 4 1792.2.e.a.895.4 4
105.83 odd 4 1008.2.b.b.559.1 2
120.53 even 4 4032.2.b.h.3583.1 2
120.83 odd 4 4032.2.b.b.3583.1 2
140.3 odd 12 784.2.p.e.607.1 2
140.23 even 12 784.2.p.a.31.1 2
140.27 odd 4 2800.2.k.e.2351.1 2
140.83 odd 4 112.2.f.a.111.2 yes 2
140.103 odd 12 784.2.p.f.31.1 2
140.123 even 12 784.2.p.b.607.1 2
140.139 even 2 inner 2800.2.e.c.2799.2 4
280.13 even 4 448.2.f.a.447.1 2
280.83 odd 4 448.2.f.c.447.1 2
420.83 even 4 1008.2.b.g.559.1 2
560.13 even 4 1792.2.e.c.895.4 4
560.83 odd 4 1792.2.e.a.895.2 4
560.293 even 4 1792.2.e.c.895.1 4
560.363 odd 4 1792.2.e.a.895.3 4
840.83 even 4 4032.2.b.h.3583.2 2
840.293 odd 4 4032.2.b.b.3583.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.f.a.111.1 2 5.3 odd 4
112.2.f.a.111.2 yes 2 140.83 odd 4
112.2.f.b.111.1 yes 2 20.3 even 4
112.2.f.b.111.2 yes 2 35.13 even 4
448.2.f.a.447.1 2 280.13 even 4
448.2.f.a.447.2 2 40.3 even 4
448.2.f.c.447.1 2 280.83 odd 4
448.2.f.c.447.2 2 40.13 odd 4
784.2.p.a.31.1 2 140.23 even 12
784.2.p.a.607.1 2 35.3 even 12
784.2.p.b.31.1 2 35.33 even 12
784.2.p.b.607.1 2 140.123 even 12
784.2.p.e.31.1 2 35.23 odd 12
784.2.p.e.607.1 2 140.3 odd 12
784.2.p.f.31.1 2 140.103 odd 12
784.2.p.f.607.1 2 35.18 odd 12
1008.2.b.b.559.1 2 105.83 odd 4
1008.2.b.b.559.2 2 60.23 odd 4
1008.2.b.g.559.1 2 420.83 even 4
1008.2.b.g.559.2 2 15.8 even 4
1792.2.e.a.895.1 4 80.13 odd 4
1792.2.e.a.895.2 4 560.83 odd 4
1792.2.e.a.895.3 4 560.363 odd 4
1792.2.e.a.895.4 4 80.53 odd 4
1792.2.e.c.895.1 4 560.293 even 4
1792.2.e.c.895.2 4 80.43 even 4
1792.2.e.c.895.3 4 80.3 even 4
1792.2.e.c.895.4 4 560.13 even 4
2800.2.e.b.2799.1 4 4.3 odd 2
2800.2.e.b.2799.2 4 7.6 odd 2
2800.2.e.b.2799.3 4 35.34 odd 2
2800.2.e.b.2799.4 4 20.19 odd 2
2800.2.e.c.2799.1 4 5.4 even 2 inner
2800.2.e.c.2799.2 4 140.139 even 2 inner
2800.2.e.c.2799.3 4 28.27 even 2 inner
2800.2.e.c.2799.4 4 1.1 even 1 trivial
2800.2.k.b.2351.1 2 20.7 even 4
2800.2.k.b.2351.2 2 35.27 even 4
2800.2.k.e.2351.1 2 140.27 odd 4
2800.2.k.e.2351.2 2 5.2 odd 4
4032.2.b.b.3583.1 2 120.83 odd 4
4032.2.b.b.3583.2 2 840.293 odd 4
4032.2.b.h.3583.1 2 120.53 even 4
4032.2.b.h.3583.2 2 840.83 even 4