Properties

Label 2800.2.a.i.1.1
Level $2800$
Weight $2$
Character 2800.1
Self dual yes
Analytic conductor $22.358$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2800.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(22.3581125660\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2800.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.00000 q^{7} -2.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} -1.00000 q^{7} -2.00000 q^{9} +5.00000 q^{11} -1.00000 q^{13} -3.00000 q^{17} +6.00000 q^{19} +1.00000 q^{21} -6.00000 q^{23} +5.00000 q^{27} -9.00000 q^{29} -5.00000 q^{33} -6.00000 q^{37} +1.00000 q^{39} +8.00000 q^{41} +6.00000 q^{43} +3.00000 q^{47} +1.00000 q^{49} +3.00000 q^{51} +12.0000 q^{53} -6.00000 q^{57} -8.00000 q^{59} -4.00000 q^{61} +2.00000 q^{63} -4.00000 q^{67} +6.00000 q^{69} -8.00000 q^{71} -10.0000 q^{73} -5.00000 q^{77} +3.00000 q^{79} +1.00000 q^{81} -12.0000 q^{83} +9.00000 q^{87} -16.0000 q^{89} +1.00000 q^{91} -7.00000 q^{97} -10.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) −9.00000 −1.67126 −0.835629 0.549294i \(-0.814897\pi\)
−0.835629 + 0.549294i \(0.814897\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) −5.00000 −0.870388
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) 8.00000 1.24939 0.624695 0.780869i \(-0.285223\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) 0 0
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.00000 0.437595 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 3.00000 0.420084
\(52\) 0 0
\(53\) 12.0000 1.64833 0.824163 0.566352i \(-0.191646\pi\)
0.824163 + 0.566352i \(0.191646\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −6.00000 −0.794719
\(58\) 0 0
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) −4.00000 −0.512148 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(62\) 0 0
\(63\) 2.00000 0.251976
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.00000 −0.569803
\(78\) 0 0
\(79\) 3.00000 0.337526 0.168763 0.985657i \(-0.446023\pi\)
0.168763 + 0.985657i \(0.446023\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 9.00000 0.964901
\(88\) 0 0
\(89\) −16.0000 −1.69600 −0.847998 0.529999i \(-0.822192\pi\)
−0.847998 + 0.529999i \(0.822192\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −7.00000 −0.710742 −0.355371 0.934725i \(-0.615646\pi\)
−0.355371 + 0.934725i \(0.615646\pi\)
\(98\) 0 0
\(99\) −10.0000 −1.00504
\(100\) 0 0
\(101\) −14.0000 −1.39305 −0.696526 0.717532i \(-0.745272\pi\)
−0.696526 + 0.717532i \(0.745272\pi\)
\(102\) 0 0
\(103\) −9.00000 −0.886796 −0.443398 0.896325i \(-0.646227\pi\)
−0.443398 + 0.896325i \(0.646227\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.00000 0.193347 0.0966736 0.995316i \(-0.469180\pi\)
0.0966736 + 0.995316i \(0.469180\pi\)
\(108\) 0 0
\(109\) −11.0000 −1.05361 −0.526804 0.849987i \(-0.676610\pi\)
−0.526804 + 0.849987i \(0.676610\pi\)
\(110\) 0 0
\(111\) 6.00000 0.569495
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) 3.00000 0.275010
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 0 0
\(123\) −8.00000 −0.721336
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) −6.00000 −0.528271
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 0 0
\(133\) −6.00000 −0.520266
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 16.0000 1.36697 0.683486 0.729964i \(-0.260463\pi\)
0.683486 + 0.729964i \(0.260463\pi\)
\(138\) 0 0
\(139\) −18.0000 −1.52674 −0.763370 0.645961i \(-0.776457\pi\)
−0.763370 + 0.645961i \(0.776457\pi\)
\(140\) 0 0
\(141\) −3.00000 −0.252646
\(142\) 0 0
\(143\) −5.00000 −0.418121
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1.00000 −0.0824786
\(148\) 0 0
\(149\) −14.0000 −1.14692 −0.573462 0.819232i \(-0.694400\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(150\) 0 0
\(151\) 19.0000 1.54620 0.773099 0.634285i \(-0.218706\pi\)
0.773099 + 0.634285i \(0.218706\pi\)
\(152\) 0 0
\(153\) 6.00000 0.485071
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 0 0
\(159\) −12.0000 −0.951662
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) 6.00000 0.469956 0.234978 0.972001i \(-0.424498\pi\)
0.234978 + 0.972001i \(0.424498\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −9.00000 −0.696441 −0.348220 0.937413i \(-0.613214\pi\)
−0.348220 + 0.937413i \(0.613214\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) −12.0000 −0.917663
\(172\) 0 0
\(173\) −19.0000 −1.44454 −0.722272 0.691609i \(-0.756902\pi\)
−0.722272 + 0.691609i \(0.756902\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 8.00000 0.601317
\(178\) 0 0
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) −20.0000 −1.48659 −0.743294 0.668965i \(-0.766738\pi\)
−0.743294 + 0.668965i \(0.766738\pi\)
\(182\) 0 0
\(183\) 4.00000 0.295689
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −15.0000 −1.09691
\(188\) 0 0
\(189\) −5.00000 −0.363696
\(190\) 0 0
\(191\) −11.0000 −0.795932 −0.397966 0.917400i \(-0.630284\pi\)
−0.397966 + 0.917400i \(0.630284\pi\)
\(192\) 0 0
\(193\) −8.00000 −0.575853 −0.287926 0.957653i \(-0.592966\pi\)
−0.287926 + 0.957653i \(0.592966\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 0 0
\(203\) 9.00000 0.631676
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 12.0000 0.834058
\(208\) 0 0
\(209\) 30.0000 2.07514
\(210\) 0 0
\(211\) −13.0000 −0.894957 −0.447478 0.894295i \(-0.647678\pi\)
−0.447478 + 0.894295i \(0.647678\pi\)
\(212\) 0 0
\(213\) 8.00000 0.548151
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 10.0000 0.675737
\(220\) 0 0
\(221\) 3.00000 0.201802
\(222\) 0 0
\(223\) −25.0000 −1.67412 −0.837062 0.547108i \(-0.815729\pi\)
−0.837062 + 0.547108i \(0.815729\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.0000 −0.862840 −0.431420 0.902151i \(-0.641987\pi\)
−0.431420 + 0.902151i \(0.641987\pi\)
\(228\) 0 0
\(229\) 16.0000 1.05731 0.528655 0.848837i \(-0.322697\pi\)
0.528655 + 0.848837i \(0.322697\pi\)
\(230\) 0 0
\(231\) 5.00000 0.328976
\(232\) 0 0
\(233\) −8.00000 −0.524097 −0.262049 0.965055i \(-0.584398\pi\)
−0.262049 + 0.965055i \(0.584398\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −3.00000 −0.194871
\(238\) 0 0
\(239\) 7.00000 0.452792 0.226396 0.974035i \(-0.427306\pi\)
0.226396 + 0.974035i \(0.427306\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6.00000 −0.381771
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) −14.0000 −0.883672 −0.441836 0.897096i \(-0.645673\pi\)
−0.441836 + 0.897096i \(0.645673\pi\)
\(252\) 0 0
\(253\) −30.0000 −1.88608
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 0 0
\(259\) 6.00000 0.372822
\(260\) 0 0
\(261\) 18.0000 1.11417
\(262\) 0 0
\(263\) 18.0000 1.10993 0.554964 0.831875i \(-0.312732\pi\)
0.554964 + 0.831875i \(0.312732\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 16.0000 0.979184
\(268\) 0 0
\(269\) 10.0000 0.609711 0.304855 0.952399i \(-0.401392\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(270\) 0 0
\(271\) −4.00000 −0.242983 −0.121491 0.992592i \(-0.538768\pi\)
−0.121491 + 0.992592i \(0.538768\pi\)
\(272\) 0 0
\(273\) −1.00000 −0.0605228
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −14.0000 −0.841178 −0.420589 0.907251i \(-0.638177\pi\)
−0.420589 + 0.907251i \(0.638177\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −13.0000 −0.775515 −0.387757 0.921761i \(-0.626750\pi\)
−0.387757 + 0.921761i \(0.626750\pi\)
\(282\) 0 0
\(283\) 29.0000 1.72387 0.861936 0.507018i \(-0.169252\pi\)
0.861936 + 0.507018i \(0.169252\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.00000 −0.472225
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 7.00000 0.410347
\(292\) 0 0
\(293\) 1.00000 0.0584206 0.0292103 0.999573i \(-0.490701\pi\)
0.0292103 + 0.999573i \(0.490701\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 25.0000 1.45065
\(298\) 0 0
\(299\) 6.00000 0.346989
\(300\) 0 0
\(301\) −6.00000 −0.345834
\(302\) 0 0
\(303\) 14.0000 0.804279
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −27.0000 −1.54097 −0.770486 0.637457i \(-0.779986\pi\)
−0.770486 + 0.637457i \(0.779986\pi\)
\(308\) 0 0
\(309\) 9.00000 0.511992
\(310\) 0 0
\(311\) 14.0000 0.793867 0.396934 0.917847i \(-0.370074\pi\)
0.396934 + 0.917847i \(0.370074\pi\)
\(312\) 0 0
\(313\) −29.0000 −1.63918 −0.819588 0.572953i \(-0.805798\pi\)
−0.819588 + 0.572953i \(0.805798\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −30.0000 −1.68497 −0.842484 0.538721i \(-0.818908\pi\)
−0.842484 + 0.538721i \(0.818908\pi\)
\(318\) 0 0
\(319\) −45.0000 −2.51952
\(320\) 0 0
\(321\) −2.00000 −0.111629
\(322\) 0 0
\(323\) −18.0000 −1.00155
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 11.0000 0.608301
\(328\) 0 0
\(329\) −3.00000 −0.165395
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) 12.0000 0.657596
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 26.0000 1.41631 0.708155 0.706057i \(-0.249528\pi\)
0.708155 + 0.706057i \(0.249528\pi\)
\(338\) 0 0
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.0000 −0.536828 −0.268414 0.963304i \(-0.586500\pi\)
−0.268414 + 0.963304i \(0.586500\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) −5.00000 −0.266880
\(352\) 0 0
\(353\) 33.0000 1.75641 0.878206 0.478282i \(-0.158740\pi\)
0.878206 + 0.478282i \(0.158740\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −3.00000 −0.158777
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) −14.0000 −0.734809
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −29.0000 −1.51379 −0.756894 0.653538i \(-0.773284\pi\)
−0.756894 + 0.653538i \(0.773284\pi\)
\(368\) 0 0
\(369\) −16.0000 −0.832927
\(370\) 0 0
\(371\) −12.0000 −0.623009
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9.00000 0.463524
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 0 0
\(383\) 12.0000 0.613171 0.306586 0.951843i \(-0.400813\pi\)
0.306586 + 0.951843i \(0.400813\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −12.0000 −0.609994
\(388\) 0 0
\(389\) 25.0000 1.26755 0.633775 0.773517i \(-0.281504\pi\)
0.633775 + 0.773517i \(0.281504\pi\)
\(390\) 0 0
\(391\) 18.0000 0.910299
\(392\) 0 0
\(393\) −6.00000 −0.302660
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 29.0000 1.45547 0.727734 0.685859i \(-0.240573\pi\)
0.727734 + 0.685859i \(0.240573\pi\)
\(398\) 0 0
\(399\) 6.00000 0.300376
\(400\) 0 0
\(401\) 9.00000 0.449439 0.224719 0.974424i \(-0.427853\pi\)
0.224719 + 0.974424i \(0.427853\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −30.0000 −1.48704
\(408\) 0 0
\(409\) 14.0000 0.692255 0.346128 0.938187i \(-0.387496\pi\)
0.346128 + 0.938187i \(0.387496\pi\)
\(410\) 0 0
\(411\) −16.0000 −0.789222
\(412\) 0 0
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 18.0000 0.881464
\(418\) 0 0
\(419\) −36.0000 −1.75872 −0.879358 0.476162i \(-0.842028\pi\)
−0.879358 + 0.476162i \(0.842028\pi\)
\(420\) 0 0
\(421\) −19.0000 −0.926003 −0.463002 0.886357i \(-0.653228\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 0 0
\(423\) −6.00000 −0.291730
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 4.00000 0.193574
\(428\) 0 0
\(429\) 5.00000 0.241402
\(430\) 0 0
\(431\) −23.0000 −1.10787 −0.553936 0.832560i \(-0.686875\pi\)
−0.553936 + 0.832560i \(0.686875\pi\)
\(432\) 0 0
\(433\) 30.0000 1.44171 0.720854 0.693087i \(-0.243750\pi\)
0.720854 + 0.693087i \(0.243750\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −36.0000 −1.72211
\(438\) 0 0
\(439\) 34.0000 1.62273 0.811366 0.584539i \(-0.198725\pi\)
0.811366 + 0.584539i \(0.198725\pi\)
\(440\) 0 0
\(441\) −2.00000 −0.0952381
\(442\) 0 0
\(443\) 30.0000 1.42534 0.712672 0.701498i \(-0.247485\pi\)
0.712672 + 0.701498i \(0.247485\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 14.0000 0.662177
\(448\) 0 0
\(449\) −33.0000 −1.55737 −0.778683 0.627417i \(-0.784112\pi\)
−0.778683 + 0.627417i \(0.784112\pi\)
\(450\) 0 0
\(451\) 40.0000 1.88353
\(452\) 0 0
\(453\) −19.0000 −0.892698
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 28.0000 1.30978 0.654892 0.755722i \(-0.272714\pi\)
0.654892 + 0.755722i \(0.272714\pi\)
\(458\) 0 0
\(459\) −15.0000 −0.700140
\(460\) 0 0
\(461\) −24.0000 −1.11779 −0.558896 0.829238i \(-0.688775\pi\)
−0.558896 + 0.829238i \(0.688775\pi\)
\(462\) 0 0
\(463\) 20.0000 0.929479 0.464739 0.885448i \(-0.346148\pi\)
0.464739 + 0.885448i \(0.346148\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 33.0000 1.52706 0.763529 0.645774i \(-0.223465\pi\)
0.763529 + 0.645774i \(0.223465\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) −2.00000 −0.0921551
\(472\) 0 0
\(473\) 30.0000 1.37940
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −24.0000 −1.09888
\(478\) 0 0
\(479\) 6.00000 0.274147 0.137073 0.990561i \(-0.456230\pi\)
0.137073 + 0.990561i \(0.456230\pi\)
\(480\) 0 0
\(481\) 6.00000 0.273576
\(482\) 0 0
\(483\) −6.00000 −0.273009
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 26.0000 1.17817 0.589086 0.808070i \(-0.299488\pi\)
0.589086 + 0.808070i \(0.299488\pi\)
\(488\) 0 0
\(489\) −6.00000 −0.271329
\(490\) 0 0
\(491\) −33.0000 −1.48927 −0.744635 0.667472i \(-0.767376\pi\)
−0.744635 + 0.667472i \(0.767376\pi\)
\(492\) 0 0
\(493\) 27.0000 1.21602
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.00000 0.358849
\(498\) 0 0
\(499\) 25.0000 1.11915 0.559577 0.828778i \(-0.310964\pi\)
0.559577 + 0.828778i \(0.310964\pi\)
\(500\) 0 0
\(501\) 9.00000 0.402090
\(502\) 0 0
\(503\) −31.0000 −1.38222 −0.691111 0.722749i \(-0.742878\pi\)
−0.691111 + 0.722749i \(0.742878\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 12.0000 0.532939
\(508\) 0 0
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) 10.0000 0.442374
\(512\) 0 0
\(513\) 30.0000 1.32453
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 15.0000 0.659699
\(518\) 0 0
\(519\) 19.0000 0.834007
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) 4.00000 0.174908 0.0874539 0.996169i \(-0.472127\pi\)
0.0874539 + 0.996169i \(0.472127\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 16.0000 0.694341
\(532\) 0 0
\(533\) −8.00000 −0.346518
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 4.00000 0.172613
\(538\) 0 0
\(539\) 5.00000 0.215365
\(540\) 0 0
\(541\) −9.00000 −0.386940 −0.193470 0.981106i \(-0.561974\pi\)
−0.193470 + 0.981106i \(0.561974\pi\)
\(542\) 0 0
\(543\) 20.0000 0.858282
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 20.0000 0.855138 0.427569 0.903983i \(-0.359370\pi\)
0.427569 + 0.903983i \(0.359370\pi\)
\(548\) 0 0
\(549\) 8.00000 0.341432
\(550\) 0 0
\(551\) −54.0000 −2.30048
\(552\) 0 0
\(553\) −3.00000 −0.127573
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −24.0000 −1.01691 −0.508456 0.861088i \(-0.669784\pi\)
−0.508456 + 0.861088i \(0.669784\pi\)
\(558\) 0 0
\(559\) −6.00000 −0.253773
\(560\) 0 0
\(561\) 15.0000 0.633300
\(562\) 0 0
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) 34.0000 1.42535 0.712677 0.701492i \(-0.247483\pi\)
0.712677 + 0.701492i \(0.247483\pi\)
\(570\) 0 0
\(571\) 36.0000 1.50655 0.753277 0.657704i \(-0.228472\pi\)
0.753277 + 0.657704i \(0.228472\pi\)
\(572\) 0 0
\(573\) 11.0000 0.459532
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −17.0000 −0.707719 −0.353860 0.935299i \(-0.615131\pi\)
−0.353860 + 0.935299i \(0.615131\pi\)
\(578\) 0 0
\(579\) 8.00000 0.332469
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) 60.0000 2.48495
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.00000 0.330195 0.165098 0.986277i \(-0.447206\pi\)
0.165098 + 0.986277i \(0.447206\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −12.0000 −0.493614
\(592\) 0 0
\(593\) 7.00000 0.287456 0.143728 0.989617i \(-0.454091\pi\)
0.143728 + 0.989617i \(0.454091\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 33.0000 1.34834 0.674172 0.738575i \(-0.264501\pi\)
0.674172 + 0.738575i \(0.264501\pi\)
\(600\) 0 0
\(601\) −34.0000 −1.38689 −0.693444 0.720510i \(-0.743908\pi\)
−0.693444 + 0.720510i \(0.743908\pi\)
\(602\) 0 0
\(603\) 8.00000 0.325785
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 17.0000 0.690009 0.345004 0.938601i \(-0.387877\pi\)
0.345004 + 0.938601i \(0.387877\pi\)
\(608\) 0 0
\(609\) −9.00000 −0.364698
\(610\) 0 0
\(611\) −3.00000 −0.121367
\(612\) 0 0
\(613\) 22.0000 0.888572 0.444286 0.895885i \(-0.353457\pi\)
0.444286 + 0.895885i \(0.353457\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10.0000 −0.402585 −0.201292 0.979531i \(-0.564514\pi\)
−0.201292 + 0.979531i \(0.564514\pi\)
\(618\) 0 0
\(619\) −2.00000 −0.0803868 −0.0401934 0.999192i \(-0.512797\pi\)
−0.0401934 + 0.999192i \(0.512797\pi\)
\(620\) 0 0
\(621\) −30.0000 −1.20386
\(622\) 0 0
\(623\) 16.0000 0.641026
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −30.0000 −1.19808
\(628\) 0 0
\(629\) 18.0000 0.717707
\(630\) 0 0
\(631\) 9.00000 0.358284 0.179142 0.983823i \(-0.442668\pi\)
0.179142 + 0.983823i \(0.442668\pi\)
\(632\) 0 0
\(633\) 13.0000 0.516704
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 0 0
\(639\) 16.0000 0.632950
\(640\) 0 0
\(641\) 34.0000 1.34292 0.671460 0.741041i \(-0.265668\pi\)
0.671460 + 0.741041i \(0.265668\pi\)
\(642\) 0 0
\(643\) 47.0000 1.85350 0.926750 0.375680i \(-0.122591\pi\)
0.926750 + 0.375680i \(0.122591\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −40.0000 −1.57014
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −30.0000 −1.17399 −0.586995 0.809590i \(-0.699689\pi\)
−0.586995 + 0.809590i \(0.699689\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 20.0000 0.780274
\(658\) 0 0
\(659\) 25.0000 0.973862 0.486931 0.873441i \(-0.338116\pi\)
0.486931 + 0.873441i \(0.338116\pi\)
\(660\) 0 0
\(661\) 8.00000 0.311164 0.155582 0.987823i \(-0.450275\pi\)
0.155582 + 0.987823i \(0.450275\pi\)
\(662\) 0 0
\(663\) −3.00000 −0.116510
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 54.0000 2.09089
\(668\) 0 0
\(669\) 25.0000 0.966556
\(670\) 0 0
\(671\) −20.0000 −0.772091
\(672\) 0 0
\(673\) −32.0000 −1.23351 −0.616755 0.787155i \(-0.711553\pi\)
−0.616755 + 0.787155i \(0.711553\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −33.0000 −1.26829 −0.634147 0.773213i \(-0.718648\pi\)
−0.634147 + 0.773213i \(0.718648\pi\)
\(678\) 0 0
\(679\) 7.00000 0.268635
\(680\) 0 0
\(681\) 13.0000 0.498161
\(682\) 0 0
\(683\) −20.0000 −0.765279 −0.382639 0.923898i \(-0.624985\pi\)
−0.382639 + 0.923898i \(0.624985\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −16.0000 −0.610438
\(688\) 0 0
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) −20.0000 −0.760836 −0.380418 0.924815i \(-0.624220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(692\) 0 0
\(693\) 10.0000 0.379869
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −24.0000 −0.909065
\(698\) 0 0
\(699\) 8.00000 0.302588
\(700\) 0 0
\(701\) −21.0000 −0.793159 −0.396580 0.918000i \(-0.629803\pi\)
−0.396580 + 0.918000i \(0.629803\pi\)
\(702\) 0 0
\(703\) −36.0000 −1.35777
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 14.0000 0.526524
\(708\) 0 0
\(709\) −41.0000 −1.53979 −0.769894 0.638172i \(-0.779691\pi\)
−0.769894 + 0.638172i \(0.779691\pi\)
\(710\) 0 0
\(711\) −6.00000 −0.225018
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −7.00000 −0.261420
\(718\) 0 0
\(719\) −50.0000 −1.86469 −0.932343 0.361576i \(-0.882239\pi\)
−0.932343 + 0.361576i \(0.882239\pi\)
\(720\) 0 0
\(721\) 9.00000 0.335178
\(722\) 0 0
\(723\) −18.0000 −0.669427
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −16.0000 −0.593407 −0.296704 0.954970i \(-0.595887\pi\)
−0.296704 + 0.954970i \(0.595887\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −18.0000 −0.665754
\(732\) 0 0
\(733\) −5.00000 −0.184679 −0.0923396 0.995728i \(-0.529435\pi\)
−0.0923396 + 0.995728i \(0.529435\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −20.0000 −0.736709
\(738\) 0 0
\(739\) 37.0000 1.36107 0.680534 0.732717i \(-0.261748\pi\)
0.680534 + 0.732717i \(0.261748\pi\)
\(740\) 0 0
\(741\) 6.00000 0.220416
\(742\) 0 0
\(743\) −36.0000 −1.32071 −0.660356 0.750953i \(-0.729595\pi\)
−0.660356 + 0.750953i \(0.729595\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 24.0000 0.878114
\(748\) 0 0
\(749\) −2.00000 −0.0730784
\(750\) 0 0
\(751\) 35.0000 1.27717 0.638584 0.769552i \(-0.279520\pi\)
0.638584 + 0.769552i \(0.279520\pi\)
\(752\) 0 0
\(753\) 14.0000 0.510188
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −8.00000 −0.290765 −0.145382 0.989376i \(-0.546441\pi\)
−0.145382 + 0.989376i \(0.546441\pi\)
\(758\) 0 0
\(759\) 30.0000 1.08893
\(760\) 0 0
\(761\) −46.0000 −1.66750 −0.833749 0.552143i \(-0.813810\pi\)
−0.833749 + 0.552143i \(0.813810\pi\)
\(762\) 0 0
\(763\) 11.0000 0.398227
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.00000 0.288863
\(768\) 0 0
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) 0 0
\(773\) −1.00000 −0.0359675 −0.0179838 0.999838i \(-0.505725\pi\)
−0.0179838 + 0.999838i \(0.505725\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −6.00000 −0.215249
\(778\) 0 0
\(779\) 48.0000 1.71978
\(780\) 0 0
\(781\) −40.0000 −1.43131
\(782\) 0 0
\(783\) −45.0000 −1.60817
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 11.0000 0.392108 0.196054 0.980593i \(-0.437187\pi\)
0.196054 + 0.980593i \(0.437187\pi\)
\(788\) 0 0
\(789\) −18.0000 −0.640817
\(790\) 0 0
\(791\) −6.00000 −0.213335
\(792\) 0 0
\(793\) 4.00000 0.142044
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −35.0000 −1.23976 −0.619882 0.784695i \(-0.712819\pi\)
−0.619882 + 0.784695i \(0.712819\pi\)
\(798\) 0 0
\(799\) −9.00000 −0.318397
\(800\) 0 0
\(801\) 32.0000 1.13066
\(802\) 0 0
\(803\) −50.0000 −1.76446
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −10.0000 −0.352017
\(808\) 0 0
\(809\) −23.0000 −0.808637 −0.404318 0.914618i \(-0.632491\pi\)
−0.404318 + 0.914618i \(0.632491\pi\)
\(810\) 0 0
\(811\) −38.0000 −1.33436 −0.667180 0.744896i \(-0.732499\pi\)
−0.667180 + 0.744896i \(0.732499\pi\)
\(812\) 0 0
\(813\) 4.00000 0.140286
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 36.0000 1.25948
\(818\) 0 0
\(819\) −2.00000 −0.0698857
\(820\) 0 0
\(821\) −7.00000 −0.244302 −0.122151 0.992512i \(-0.538979\pi\)
−0.122151 + 0.992512i \(0.538979\pi\)
\(822\) 0 0
\(823\) 32.0000 1.11545 0.557725 0.830026i \(-0.311674\pi\)
0.557725 + 0.830026i \(0.311674\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.00000 0.0695468 0.0347734 0.999395i \(-0.488929\pi\)
0.0347734 + 0.999395i \(0.488929\pi\)
\(828\) 0 0
\(829\) 16.0000 0.555703 0.277851 0.960624i \(-0.410378\pi\)
0.277851 + 0.960624i \(0.410378\pi\)
\(830\) 0 0
\(831\) 14.0000 0.485655
\(832\) 0 0
\(833\) −3.00000 −0.103944
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 26.0000 0.897620 0.448810 0.893627i \(-0.351848\pi\)
0.448810 + 0.893627i \(0.351848\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 0 0
\(843\) 13.0000 0.447744
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −14.0000 −0.481046
\(848\) 0 0
\(849\) −29.0000 −0.995277
\(850\) 0 0
\(851\) 36.0000 1.23406
\(852\) 0 0
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.0000 0.478231 0.239115 0.970991i \(-0.423143\pi\)
0.239115 + 0.970991i \(0.423143\pi\)
\(858\) 0 0
\(859\) 28.0000 0.955348 0.477674 0.878537i \(-0.341480\pi\)
0.477674 + 0.878537i \(0.341480\pi\)
\(860\) 0 0
\(861\) 8.00000 0.272639
\(862\) 0 0
\(863\) 20.0000 0.680808 0.340404 0.940279i \(-0.389436\pi\)
0.340404 + 0.940279i \(0.389436\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 8.00000 0.271694
\(868\) 0 0
\(869\) 15.0000 0.508840
\(870\) 0 0
\(871\) 4.00000 0.135535
\(872\) 0 0
\(873\) 14.0000 0.473828
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 10.0000 0.337676 0.168838 0.985644i \(-0.445999\pi\)
0.168838 + 0.985644i \(0.445999\pi\)
\(878\) 0 0
\(879\) −1.00000 −0.0337292
\(880\) 0 0
\(881\) −16.0000 −0.539054 −0.269527 0.962993i \(-0.586867\pi\)
−0.269527 + 0.962993i \(0.586867\pi\)
\(882\) 0 0
\(883\) −16.0000 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −8.00000 −0.268614 −0.134307 0.990940i \(-0.542881\pi\)
−0.134307 + 0.990940i \(0.542881\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) 5.00000 0.167506
\(892\) 0 0
\(893\) 18.0000 0.602347
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −6.00000 −0.200334
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −36.0000 −1.19933
\(902\) 0 0
\(903\) 6.00000 0.199667
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −30.0000 −0.996134 −0.498067 0.867139i \(-0.665957\pi\)
−0.498067 + 0.867139i \(0.665957\pi\)
\(908\) 0 0
\(909\) 28.0000 0.928701
\(910\) 0 0
\(911\) 40.0000 1.32526 0.662630 0.748947i \(-0.269440\pi\)
0.662630 + 0.748947i \(0.269440\pi\)
\(912\) 0 0
\(913\) −60.0000 −1.98571
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −6.00000 −0.198137
\(918\) 0 0
\(919\) −25.0000 −0.824674 −0.412337 0.911031i \(-0.635287\pi\)
−0.412337 + 0.911031i \(0.635287\pi\)
\(920\) 0 0
\(921\) 27.0000 0.889680
\(922\) 0 0
\(923\) 8.00000 0.263323
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 18.0000 0.591198
\(928\) 0 0
\(929\) 36.0000 1.18112 0.590561 0.806993i \(-0.298907\pi\)
0.590561 + 0.806993i \(0.298907\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) 0 0
\(933\) −14.0000 −0.458339
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −7.00000 −0.228680 −0.114340 0.993442i \(-0.536475\pi\)
−0.114340 + 0.993442i \(0.536475\pi\)
\(938\) 0 0
\(939\) 29.0000 0.946379
\(940\) 0 0
\(941\) 4.00000 0.130396 0.0651981 0.997872i \(-0.479232\pi\)
0.0651981 + 0.997872i \(0.479232\pi\)
\(942\) 0 0
\(943\) −48.0000 −1.56310
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −52.0000 −1.68977 −0.844886 0.534946i \(-0.820332\pi\)
−0.844886 + 0.534946i \(0.820332\pi\)
\(948\) 0 0
\(949\) 10.0000 0.324614
\(950\) 0 0
\(951\) 30.0000 0.972817
\(952\) 0 0
\(953\) −20.0000 −0.647864 −0.323932 0.946080i \(-0.605005\pi\)
−0.323932 + 0.946080i \(0.605005\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 45.0000 1.45464
\(958\) 0 0
\(959\) −16.0000 −0.516667
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) −4.00000 −0.128898
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 22.0000 0.707472 0.353736 0.935345i \(-0.384911\pi\)
0.353736 + 0.935345i \(0.384911\pi\)
\(968\) 0 0
\(969\) 18.0000 0.578243
\(970\) 0 0
\(971\) −28.0000 −0.898563 −0.449281 0.893390i \(-0.648320\pi\)
−0.449281 + 0.893390i \(0.648320\pi\)
\(972\) 0 0
\(973\) 18.0000 0.577054
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) 0 0
\(979\) −80.0000 −2.55681
\(980\) 0 0
\(981\) 22.0000 0.702406
\(982\) 0 0
\(983\) 9.00000 0.287055 0.143528 0.989646i \(-0.454155\pi\)
0.143528 + 0.989646i \(0.454155\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 3.00000 0.0954911
\(988\) 0 0
\(989\) −36.0000 −1.14473
\(990\) 0 0
\(991\) 16.0000 0.508257 0.254128 0.967170i \(-0.418211\pi\)
0.254128 + 0.967170i \(0.418211\pi\)
\(992\) 0 0
\(993\) −20.0000 −0.634681
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.00000 0.0316703 0.0158352 0.999875i \(-0.494959\pi\)
0.0158352 + 0.999875i \(0.494959\pi\)
\(998\) 0 0
\(999\) −30.0000 −0.949158
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2800.2.a.i.1.1 1
4.3 odd 2 1400.2.a.k.1.1 1
5.2 odd 4 2800.2.g.m.449.2 2
5.3 odd 4 2800.2.g.m.449.1 2
5.4 even 2 560.2.a.e.1.1 1
15.14 odd 2 5040.2.a.be.1.1 1
20.3 even 4 1400.2.g.e.449.2 2
20.7 even 4 1400.2.g.e.449.1 2
20.19 odd 2 280.2.a.b.1.1 1
28.27 even 2 9800.2.a.n.1.1 1
35.34 odd 2 3920.2.a.r.1.1 1
40.19 odd 2 2240.2.a.v.1.1 1
40.29 even 2 2240.2.a.j.1.1 1
60.59 even 2 2520.2.a.p.1.1 1
140.19 even 6 1960.2.q.e.361.1 2
140.39 odd 6 1960.2.q.m.961.1 2
140.59 even 6 1960.2.q.e.961.1 2
140.79 odd 6 1960.2.q.m.361.1 2
140.139 even 2 1960.2.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.a.b.1.1 1 20.19 odd 2
560.2.a.e.1.1 1 5.4 even 2
1400.2.a.k.1.1 1 4.3 odd 2
1400.2.g.e.449.1 2 20.7 even 4
1400.2.g.e.449.2 2 20.3 even 4
1960.2.a.k.1.1 1 140.139 even 2
1960.2.q.e.361.1 2 140.19 even 6
1960.2.q.e.961.1 2 140.59 even 6
1960.2.q.m.361.1 2 140.79 odd 6
1960.2.q.m.961.1 2 140.39 odd 6
2240.2.a.j.1.1 1 40.29 even 2
2240.2.a.v.1.1 1 40.19 odd 2
2520.2.a.p.1.1 1 60.59 even 2
2800.2.a.i.1.1 1 1.1 even 1 trivial
2800.2.g.m.449.1 2 5.3 odd 4
2800.2.g.m.449.2 2 5.2 odd 4
3920.2.a.r.1.1 1 35.34 odd 2
5040.2.a.be.1.1 1 15.14 odd 2
9800.2.a.n.1.1 1 28.27 even 2