# Properties

 Label 2800.2.a.bg Level $2800$ Weight $2$ Character orbit 2800.a Self dual yes Analytic conductor $22.358$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2800,2,Mod(1,2800)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2800, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2800.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2800 = 2^{4} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2800.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$22.3581125660$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 350) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + 3 q^{3} + q^{7} + 6 q^{9}+O(q^{10})$$ q + 3 * q^3 + q^7 + 6 * q^9 $$q + 3 q^{3} + q^{7} + 6 q^{9} + 5 q^{11} - 6 q^{13} - q^{17} + 3 q^{19} + 3 q^{21} + 9 q^{27} - 6 q^{29} + 4 q^{31} + 15 q^{33} + 8 q^{37} - 18 q^{39} + 11 q^{41} + 8 q^{43} - 2 q^{47} + q^{49} - 3 q^{51} + 4 q^{53} + 9 q^{57} - 4 q^{59} - 2 q^{61} + 6 q^{63} - 9 q^{67} + 10 q^{71} - 7 q^{73} + 5 q^{77} + 2 q^{79} + 9 q^{81} - 11 q^{83} - 18 q^{87} - 11 q^{89} - 6 q^{91} + 12 q^{93} - 10 q^{97} + 30 q^{99}+O(q^{100})$$ q + 3 * q^3 + q^7 + 6 * q^9 + 5 * q^11 - 6 * q^13 - q^17 + 3 * q^19 + 3 * q^21 + 9 * q^27 - 6 * q^29 + 4 * q^31 + 15 * q^33 + 8 * q^37 - 18 * q^39 + 11 * q^41 + 8 * q^43 - 2 * q^47 + q^49 - 3 * q^51 + 4 * q^53 + 9 * q^57 - 4 * q^59 - 2 * q^61 + 6 * q^63 - 9 * q^67 + 10 * q^71 - 7 * q^73 + 5 * q^77 + 2 * q^79 + 9 * q^81 - 11 * q^83 - 18 * q^87 - 11 * q^89 - 6 * q^91 + 12 * q^93 - 10 * q^97 + 30 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 3.00000 0 0 0 1.00000 0 6.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$-1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2800.2.a.bg 1
4.b odd 2 1 350.2.a.d yes 1
5.b even 2 1 2800.2.a.b 1
5.c odd 4 2 2800.2.g.a 2
12.b even 2 1 3150.2.a.j 1
20.d odd 2 1 350.2.a.c 1
20.e even 4 2 350.2.c.a 2
28.d even 2 1 2450.2.a.bg 1
60.h even 2 1 3150.2.a.bq 1
60.l odd 4 2 3150.2.g.v 2
140.c even 2 1 2450.2.a.a 1
140.j odd 4 2 2450.2.c.r 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
350.2.a.c 1 20.d odd 2 1
350.2.a.d yes 1 4.b odd 2 1
350.2.c.a 2 20.e even 4 2
2450.2.a.a 1 140.c even 2 1
2450.2.a.bg 1 28.d even 2 1
2450.2.c.r 2 140.j odd 4 2
2800.2.a.b 1 5.b even 2 1
2800.2.a.bg 1 1.a even 1 1 trivial
2800.2.g.a 2 5.c odd 4 2
3150.2.a.j 1 12.b even 2 1
3150.2.a.bq 1 60.h even 2 1
3150.2.g.v 2 60.l odd 4 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2800))$$:

 $$T_{3} - 3$$ T3 - 3 $$T_{11} - 5$$ T11 - 5 $$T_{13} + 6$$ T13 + 6

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T - 3$$
$5$ $$T$$
$7$ $$T - 1$$
$11$ $$T - 5$$
$13$ $$T + 6$$
$17$ $$T + 1$$
$19$ $$T - 3$$
$23$ $$T$$
$29$ $$T + 6$$
$31$ $$T - 4$$
$37$ $$T - 8$$
$41$ $$T - 11$$
$43$ $$T - 8$$
$47$ $$T + 2$$
$53$ $$T - 4$$
$59$ $$T + 4$$
$61$ $$T + 2$$
$67$ $$T + 9$$
$71$ $$T - 10$$
$73$ $$T + 7$$
$79$ $$T - 2$$
$83$ $$T + 11$$
$89$ $$T + 11$$
$97$ $$T + 10$$