Properties

Label 2800.2.a.be
Level $2800$
Weight $2$
Character orbit 2800.a
Self dual yes
Analytic conductor $22.358$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2800.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(22.3581125660\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 3q^{3} - q^{7} + 6q^{9} + O(q^{10}) \) \( q + 3q^{3} - q^{7} + 6q^{9} + 5q^{11} + 3q^{13} + q^{17} - 6q^{19} - 3q^{21} + 6q^{23} + 9q^{27} - 9q^{29} + 4q^{31} + 15q^{33} - 2q^{37} + 9q^{39} - 4q^{41} + 10q^{43} - q^{47} + q^{49} + 3q^{51} - 4q^{53} - 18q^{57} + 8q^{59} - 8q^{61} - 6q^{63} + 12q^{67} + 18q^{69} - 8q^{71} - 2q^{73} - 5q^{77} - 13q^{79} + 9q^{81} - 4q^{83} - 27q^{87} + 4q^{89} - 3q^{91} + 12q^{93} + 13q^{97} + 30q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 0 0 −1.00000 0 6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2800.2.a.be 1
4.b odd 2 1 700.2.a.b 1
5.b even 2 1 560.2.a.a 1
5.c odd 4 2 2800.2.g.c 2
12.b even 2 1 6300.2.a.bf 1
15.d odd 2 1 5040.2.a.bd 1
20.d odd 2 1 140.2.a.b 1
20.e even 4 2 700.2.e.a 2
28.d even 2 1 4900.2.a.u 1
35.c odd 2 1 3920.2.a.bl 1
40.e odd 2 1 2240.2.a.c 1
40.f even 2 1 2240.2.a.bb 1
60.h even 2 1 1260.2.a.h 1
60.l odd 4 2 6300.2.k.p 2
140.c even 2 1 980.2.a.b 1
140.j odd 4 2 4900.2.e.a 2
140.p odd 6 2 980.2.i.b 2
140.s even 6 2 980.2.i.j 2
420.o odd 2 1 8820.2.a.n 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.a.b 1 20.d odd 2 1
560.2.a.a 1 5.b even 2 1
700.2.a.b 1 4.b odd 2 1
700.2.e.a 2 20.e even 4 2
980.2.a.b 1 140.c even 2 1
980.2.i.b 2 140.p odd 6 2
980.2.i.j 2 140.s even 6 2
1260.2.a.h 1 60.h even 2 1
2240.2.a.c 1 40.e odd 2 1
2240.2.a.bb 1 40.f even 2 1
2800.2.a.be 1 1.a even 1 1 trivial
2800.2.g.c 2 5.c odd 4 2
3920.2.a.bl 1 35.c odd 2 1
4900.2.a.u 1 28.d even 2 1
4900.2.e.a 2 140.j odd 4 2
5040.2.a.bd 1 15.d odd 2 1
6300.2.a.bf 1 12.b even 2 1
6300.2.k.p 2 60.l odd 4 2
8820.2.a.n 1 420.o odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2800))\):

\( T_{3} - 3 \)
\( T_{11} - 5 \)
\( T_{13} - 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( -3 + T \)
$5$ \( T \)
$7$ \( 1 + T \)
$11$ \( -5 + T \)
$13$ \( -3 + T \)
$17$ \( -1 + T \)
$19$ \( 6 + T \)
$23$ \( -6 + T \)
$29$ \( 9 + T \)
$31$ \( -4 + T \)
$37$ \( 2 + T \)
$41$ \( 4 + T \)
$43$ \( -10 + T \)
$47$ \( 1 + T \)
$53$ \( 4 + T \)
$59$ \( -8 + T \)
$61$ \( 8 + T \)
$67$ \( -12 + T \)
$71$ \( 8 + T \)
$73$ \( 2 + T \)
$79$ \( 13 + T \)
$83$ \( 4 + T \)
$89$ \( -4 + T \)
$97$ \( -13 + T \)
show more
show less