Properties

Label 2800.1.bf
Level $2800$
Weight $1$
Character orbit 2800.bf
Rep. character $\chi_{2800}(349,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $12$
Newform subspaces $4$
Sturm bound $480$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2800.bf (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 560 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 4 \)
Sturm bound: \(480\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2800, [\chi])\).

Total New Old
Modular forms 36 20 16
Cusp forms 12 12 0
Eisenstein series 24 8 16

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 12 0 0 0

Trace form

\( 12 q + 12 q^{49} + 12 q^{56} + 12 q^{64} - 12 q^{74} - 12 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(2800, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2800.1.bf.a 2800.bf 560.af $2$ $1.397$ \(\Q(\sqrt{-1}) \) $D_{4}$ \(\Q(\sqrt{-7}) \) None 112.1.l.a \(-2\) \(0\) \(0\) \(-2\) \(q-q^{2}+q^{4}-q^{7}-q^{8}+i q^{9}+(-i-1)q^{11}+\cdots\)
2800.1.bf.b 2800.bf 560.af $2$ $1.397$ \(\Q(\sqrt{-1}) \) $D_{4}$ \(\Q(\sqrt{-7}) \) None 112.1.l.a \(2\) \(0\) \(0\) \(2\) \(q+q^{2}+q^{4}+q^{7}+q^{8}+i q^{9}+(-i-1)q^{11}+\cdots\)
2800.1.bf.c 2800.bf 560.af $4$ $1.397$ \(\Q(\zeta_{12})\) $D_{12}$ \(\Q(\sqrt{-7}) \) None 2800.1.z.b \(-2\) \(0\) \(0\) \(4\) \(q-\zeta_{12}^{2}q^{2}+\zeta_{12}^{4}q^{4}+q^{7}+q^{8}+\cdots\)
2800.1.bf.d 2800.bf 560.af $4$ $1.397$ \(\Q(\zeta_{12})\) $D_{12}$ \(\Q(\sqrt{-7}) \) None 2800.1.z.b \(2\) \(0\) \(0\) \(-4\) \(q+\zeta_{12}^{2}q^{2}+\zeta_{12}^{4}q^{4}-q^{7}-q^{8}+\cdots\)