Defining parameters
| Level: | \( N \) | \(=\) | \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2800.bf (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 560 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(480\) | ||
| Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2800, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 36 | 20 | 16 |
| Cusp forms | 12 | 12 | 0 |
| Eisenstein series | 24 | 8 | 16 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 12 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(2800, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 2800.1.bf.a | $2$ | $1.397$ | \(\Q(\sqrt{-1}) \) | $D_{4}$ | \(\Q(\sqrt{-7}) \) | None | \(-2\) | \(0\) | \(0\) | \(-2\) | \(q-q^{2}+q^{4}-q^{7}-q^{8}+i q^{9}+(-i-1)q^{11}+\cdots\) |
| 2800.1.bf.b | $2$ | $1.397$ | \(\Q(\sqrt{-1}) \) | $D_{4}$ | \(\Q(\sqrt{-7}) \) | None | \(2\) | \(0\) | \(0\) | \(2\) | \(q+q^{2}+q^{4}+q^{7}+q^{8}+i q^{9}+(-i-1)q^{11}+\cdots\) |
| 2800.1.bf.c | $4$ | $1.397$ | \(\Q(\zeta_{12})\) | $D_{12}$ | \(\Q(\sqrt{-7}) \) | None | \(-2\) | \(0\) | \(0\) | \(4\) | \(q-\zeta_{12}^{2}q^{2}+\zeta_{12}^{4}q^{4}+q^{7}+q^{8}+\cdots\) |
| 2800.1.bf.d | $4$ | $1.397$ | \(\Q(\zeta_{12})\) | $D_{12}$ | \(\Q(\sqrt{-7}) \) | None | \(2\) | \(0\) | \(0\) | \(-4\) | \(q+\zeta_{12}^{2}q^{2}+\zeta_{12}^{4}q^{4}-q^{7}-q^{8}+\cdots\) |