Properties

Label 280.3.c.g.69.7
Level $280$
Weight $3$
Character 280.69
Analytic conductor $7.629$
Analytic rank $0$
Dimension $80$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 280.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.62944740209\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 69.7
Character \(\chi\) \(=\) 280.69
Dual form 280.3.c.g.69.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.94895 + 0.448973i) q^{2} -3.68915i q^{3} +(3.59685 - 1.75006i) q^{4} +(0.693644 + 4.95165i) q^{5} +(1.65633 + 7.18999i) q^{6} +(-4.51720 + 5.34742i) q^{7} +(-6.22436 + 5.02567i) q^{8} -4.60986 q^{9} +O(q^{10})\) \(q+(-1.94895 + 0.448973i) q^{2} -3.68915i q^{3} +(3.59685 - 1.75006i) q^{4} +(0.693644 + 4.95165i) q^{5} +(1.65633 + 7.18999i) q^{6} +(-4.51720 + 5.34742i) q^{7} +(-6.22436 + 5.02567i) q^{8} -4.60986 q^{9} +(-3.57504 - 9.33912i) q^{10} -10.2130i q^{11} +(-6.45623 - 13.2693i) q^{12} -14.4358i q^{13} +(6.40297 - 12.4500i) q^{14} +(18.2674 - 2.55896i) q^{15} +(9.87460 - 12.5894i) q^{16} -16.4391 q^{17} +(8.98441 - 2.06970i) q^{18} -31.0538 q^{19} +(11.1606 + 16.5964i) q^{20} +(19.7275 + 16.6647i) q^{21} +(4.58538 + 19.9048i) q^{22} -20.2273i q^{23} +(18.5405 + 22.9626i) q^{24} +(-24.0377 + 6.86937i) q^{25} +(6.48130 + 28.1348i) q^{26} -16.1959i q^{27} +(-6.88939 + 27.1392i) q^{28} +56.8127i q^{29} +(-34.4534 + 13.1889i) q^{30} -25.7499i q^{31} +(-13.5929 + 28.9695i) q^{32} -37.6775 q^{33} +(32.0391 - 7.38073i) q^{34} +(-29.6119 - 18.6584i) q^{35} +(-16.5810 + 8.06752i) q^{36} -66.0553 q^{37} +(60.5225 - 13.9423i) q^{38} -53.2560 q^{39} +(-29.2029 - 27.3348i) q^{40} +0.504264i q^{41} +(-45.9299 - 23.6216i) q^{42} +26.2293 q^{43} +(-17.8734 - 36.7347i) q^{44} +(-3.19760 - 22.8264i) q^{45} +(9.08150 + 39.4220i) q^{46} +20.2286 q^{47} +(-46.4441 - 36.4289i) q^{48} +(-8.18977 - 48.3107i) q^{49} +(43.7642 - 24.1804i) q^{50} +60.6465i q^{51} +(-25.2635 - 51.9234i) q^{52} +53.0620 q^{53} +(7.27153 + 31.5651i) q^{54} +(50.5714 - 7.08422i) q^{55} +(1.24234 - 55.9862i) q^{56} +114.562i q^{57} +(-25.5074 - 110.725i) q^{58} -59.3867 q^{59} +(61.2267 - 41.1732i) q^{60} -69.5062 q^{61} +(11.5610 + 50.1853i) q^{62} +(20.8237 - 24.6509i) q^{63} +(13.4853 - 62.5631i) q^{64} +(71.4812 - 10.0133i) q^{65} +(73.4317 - 16.9162i) q^{66} -61.9289 q^{67} +(-59.1291 + 28.7694i) q^{68} -74.6215 q^{69} +(66.0893 + 23.0694i) q^{70} -25.5504 q^{71} +(28.6934 - 23.1676i) q^{72} +34.7213 q^{73} +(128.739 - 29.6571i) q^{74} +(25.3422 + 88.6788i) q^{75} +(-111.696 + 54.3460i) q^{76} +(54.6134 + 46.1344i) q^{77} +(103.793 - 23.9105i) q^{78} +64.4865 q^{79} +(69.1876 + 40.1631i) q^{80} -101.238 q^{81} +(-0.226401 - 0.982788i) q^{82} +9.27026i q^{83} +(100.121 + 25.4160i) q^{84} +(-11.4029 - 81.4009i) q^{85} +(-51.1197 + 11.7762i) q^{86} +209.591 q^{87} +(51.3274 + 63.5697i) q^{88} +22.0650i q^{89} +(16.4804 + 43.0520i) q^{90} +(77.1944 + 65.2095i) q^{91} +(-35.3989 - 72.7544i) q^{92} -94.9952 q^{93} +(-39.4245 + 9.08208i) q^{94} +(-21.5403 - 153.768i) q^{95} +(106.873 + 50.1462i) q^{96} -74.3644 q^{97} +(37.6517 + 90.4784i) q^{98} +47.0807i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80q + 12q^{4} - 224q^{9} + O(q^{10}) \) \( 80q + 12q^{4} - 224q^{9} + 92q^{14} - 72q^{15} - 172q^{16} - 104q^{25} - 68q^{30} - 564q^{36} - 112q^{39} - 40q^{44} - 224q^{46} + 192q^{49} + 332q^{50} - 356q^{56} + 124q^{60} + 396q^{64} + 472q^{65} + 352q^{70} + 800q^{71} + 672q^{74} + 480q^{79} - 896q^{81} + 408q^{84} + 528q^{86} + 1176q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/280\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(141\) \(241\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.94895 + 0.448973i −0.974477 + 0.224487i
\(3\) 3.68915i 1.22972i −0.788637 0.614859i \(-0.789213\pi\)
0.788637 0.614859i \(-0.210787\pi\)
\(4\) 3.59685 1.75006i 0.899212 0.437514i
\(5\) 0.693644 + 4.95165i 0.138729 + 0.990330i
\(6\) 1.65633 + 7.18999i 0.276055 + 1.19833i
\(7\) −4.51720 + 5.34742i −0.645315 + 0.763917i
\(8\) −6.22436 + 5.02567i −0.778045 + 0.628209i
\(9\) −4.60986 −0.512207
\(10\) −3.57504 9.33912i −0.357504 0.933912i
\(11\) 10.2130i 0.928458i −0.885715 0.464229i \(-0.846331\pi\)
0.885715 0.464229i \(-0.153669\pi\)
\(12\) −6.45623 13.2693i −0.538019 1.10578i
\(13\) 14.4358i 1.11045i −0.831701 0.555224i \(-0.812633\pi\)
0.831701 0.555224i \(-0.187367\pi\)
\(14\) 6.40297 12.4500i 0.457355 0.889284i
\(15\) 18.2674 2.55896i 1.21783 0.170597i
\(16\) 9.87460 12.5894i 0.617163 0.786836i
\(17\) −16.4391 −0.967008 −0.483504 0.875342i \(-0.660636\pi\)
−0.483504 + 0.875342i \(0.660636\pi\)
\(18\) 8.98441 2.06970i 0.499134 0.114984i
\(19\) −31.0538 −1.63441 −0.817206 0.576346i \(-0.804478\pi\)
−0.817206 + 0.576346i \(0.804478\pi\)
\(20\) 11.1606 + 16.5964i 0.558030 + 0.829821i
\(21\) 19.7275 + 16.6647i 0.939403 + 0.793555i
\(22\) 4.58538 + 19.9048i 0.208427 + 0.904762i
\(23\) 20.2273i 0.879446i −0.898133 0.439723i \(-0.855077\pi\)
0.898133 0.439723i \(-0.144923\pi\)
\(24\) 18.5405 + 22.9626i 0.772519 + 0.956776i
\(25\) −24.0377 + 6.86937i −0.961509 + 0.274775i
\(26\) 6.48130 + 28.1348i 0.249281 + 1.08211i
\(27\) 16.1959i 0.599848i
\(28\) −6.88939 + 27.1392i −0.246050 + 0.969257i
\(29\) 56.8127i 1.95906i 0.201302 + 0.979529i \(0.435483\pi\)
−0.201302 + 0.979529i \(0.564517\pi\)
\(30\) −34.4534 + 13.1889i −1.14845 + 0.439629i
\(31\) 25.7499i 0.830641i −0.909675 0.415320i \(-0.863669\pi\)
0.909675 0.415320i \(-0.136331\pi\)
\(32\) −13.5929 + 28.9695i −0.424777 + 0.905298i
\(33\) −37.6775 −1.14174
\(34\) 32.0391 7.38073i 0.942327 0.217080i
\(35\) −29.6119 18.6584i −0.846054 0.533097i
\(36\) −16.5810 + 8.06752i −0.460582 + 0.224098i
\(37\) −66.0553 −1.78528 −0.892640 0.450771i \(-0.851149\pi\)
−0.892640 + 0.450771i \(0.851149\pi\)
\(38\) 60.5225 13.9423i 1.59270 0.366904i
\(39\) −53.2560 −1.36554
\(40\) −29.2029 27.3348i −0.730071 0.683371i
\(41\) 0.504264i 0.0122991i 0.999981 + 0.00614956i \(0.00195748\pi\)
−0.999981 + 0.00614956i \(0.998043\pi\)
\(42\) −45.9299 23.6216i −1.09357 0.562418i
\(43\) 26.2293 0.609983 0.304992 0.952355i \(-0.401346\pi\)
0.304992 + 0.952355i \(0.401346\pi\)
\(44\) −17.8734 36.7347i −0.406214 0.834881i
\(45\) −3.19760 22.8264i −0.0710578 0.507254i
\(46\) 9.08150 + 39.4220i 0.197424 + 0.857000i
\(47\) 20.2286 0.430395 0.215197 0.976571i \(-0.430961\pi\)
0.215197 + 0.976571i \(0.430961\pi\)
\(48\) −46.4441 36.4289i −0.967586 0.758936i
\(49\) −8.18977 48.3107i −0.167138 0.985933i
\(50\) 43.7642 24.1804i 0.875285 0.483608i
\(51\) 60.6465i 1.18915i
\(52\) −25.2635 51.9234i −0.485837 0.998528i
\(53\) 53.0620 1.00117 0.500585 0.865687i \(-0.333118\pi\)
0.500585 + 0.865687i \(0.333118\pi\)
\(54\) 7.27153 + 31.5651i 0.134658 + 0.584538i
\(55\) 50.5714 7.08422i 0.919481 0.128804i
\(56\) 1.24234 55.9862i 0.0221846 0.999754i
\(57\) 114.562i 2.00987i
\(58\) −25.5074 110.725i −0.439782 1.90906i
\(59\) −59.3867 −1.00655 −0.503277 0.864125i \(-0.667873\pi\)
−0.503277 + 0.864125i \(0.667873\pi\)
\(60\) 61.2267 41.1732i 1.02045 0.686220i
\(61\) −69.5062 −1.13945 −0.569723 0.821837i \(-0.692950\pi\)
−0.569723 + 0.821837i \(0.692950\pi\)
\(62\) 11.5610 + 50.1853i 0.186468 + 0.809440i
\(63\) 20.8237 24.6509i 0.330535 0.391283i
\(64\) 13.4853 62.5631i 0.210708 0.977549i
\(65\) 71.4812 10.0133i 1.09971 0.154051i
\(66\) 73.4317 16.9162i 1.11260 0.256306i
\(67\) −61.9289 −0.924312 −0.462156 0.886799i \(-0.652924\pi\)
−0.462156 + 0.886799i \(0.652924\pi\)
\(68\) −59.1291 + 28.7694i −0.869545 + 0.423080i
\(69\) −74.6215 −1.08147
\(70\) 66.0893 + 23.0694i 0.944133 + 0.329563i
\(71\) −25.5504 −0.359864 −0.179932 0.983679i \(-0.557588\pi\)
−0.179932 + 0.983679i \(0.557588\pi\)
\(72\) 28.6934 23.1676i 0.398520 0.321773i
\(73\) 34.7213 0.475634 0.237817 0.971310i \(-0.423568\pi\)
0.237817 + 0.971310i \(0.423568\pi\)
\(74\) 128.739 29.6571i 1.73971 0.400771i
\(75\) 25.3422 + 88.6788i 0.337895 + 1.18238i
\(76\) −111.696 + 54.3460i −1.46968 + 0.715078i
\(77\) 54.6134 + 46.1344i 0.709265 + 0.599148i
\(78\) 103.793 23.9105i 1.33069 0.306545i
\(79\) 64.4865 0.816284 0.408142 0.912918i \(-0.366177\pi\)
0.408142 + 0.912918i \(0.366177\pi\)
\(80\) 69.1876 + 40.1631i 0.864845 + 0.502038i
\(81\) −101.238 −1.24985
\(82\) −0.226401 0.982788i −0.00276099 0.0119852i
\(83\) 9.27026i 0.111690i 0.998439 + 0.0558449i \(0.0177852\pi\)
−0.998439 + 0.0558449i \(0.982215\pi\)
\(84\) 100.121 + 25.4160i 1.19191 + 0.302572i
\(85\) −11.4029 81.4009i −0.134152 0.957658i
\(86\) −51.1197 + 11.7762i −0.594415 + 0.136933i
\(87\) 209.591 2.40909
\(88\) 51.3274 + 63.5697i 0.583266 + 0.722382i
\(89\) 22.0650i 0.247921i 0.992287 + 0.123961i \(0.0395597\pi\)
−0.992287 + 0.123961i \(0.960440\pi\)
\(90\) 16.4804 + 43.0520i 0.183116 + 0.478356i
\(91\) 77.1944 + 65.2095i 0.848290 + 0.716588i
\(92\) −35.3989 72.7544i −0.384770 0.790808i
\(93\) −94.9952 −1.02145
\(94\) −39.4245 + 9.08208i −0.419410 + 0.0966179i
\(95\) −21.5403 153.768i −0.226740 1.61861i
\(96\) 106.873 + 50.1462i 1.11326 + 0.522356i
\(97\) −74.3644 −0.766643 −0.383321 0.923615i \(-0.625220\pi\)
−0.383321 + 0.923615i \(0.625220\pi\)
\(98\) 37.6517 + 90.4784i 0.384201 + 0.923249i
\(99\) 47.0807i 0.475563i
\(100\) −74.4382 + 66.7754i −0.744382 + 0.667754i
\(101\) 104.960 1.03920 0.519602 0.854408i \(-0.326080\pi\)
0.519602 + 0.854408i \(0.326080\pi\)
\(102\) −27.2287 118.197i −0.266948 1.15880i
\(103\) −59.3436 −0.576151 −0.288076 0.957608i \(-0.593015\pi\)
−0.288076 + 0.957608i \(0.593015\pi\)
\(104\) 72.5497 + 89.8538i 0.697593 + 0.863979i
\(105\) −68.8337 + 109.243i −0.655560 + 1.04041i
\(106\) −103.415 + 23.8234i −0.975617 + 0.224749i
\(107\) 168.968 1.57914 0.789571 0.613660i \(-0.210303\pi\)
0.789571 + 0.613660i \(0.210303\pi\)
\(108\) −28.3437 58.2542i −0.262442 0.539390i
\(109\) 40.5581i 0.372092i −0.982541 0.186046i \(-0.940433\pi\)
0.982541 0.186046i \(-0.0595674\pi\)
\(110\) −95.3808 + 36.5120i −0.867098 + 0.331928i
\(111\) 243.688i 2.19539i
\(112\) 22.7150 + 109.672i 0.202813 + 0.979217i
\(113\) 145.160i 1.28460i −0.766453 0.642300i \(-0.777980\pi\)
0.766453 0.642300i \(-0.222020\pi\)
\(114\) −51.4354 223.277i −0.451188 1.95857i
\(115\) 100.158 14.0305i 0.870942 0.122005i
\(116\) 99.4254 + 204.347i 0.857116 + 1.76161i
\(117\) 66.5472i 0.568779i
\(118\) 115.742 26.6631i 0.980865 0.225958i
\(119\) 74.2589 87.9070i 0.624024 0.738714i
\(120\) −100.842 + 107.734i −0.840354 + 0.897782i
\(121\) 16.6937 0.137965
\(122\) 135.464 31.2064i 1.11036 0.255790i
\(123\) 1.86031 0.0151245
\(124\) −45.0637 92.6183i −0.363417 0.746922i
\(125\) −50.6883 114.262i −0.405507 0.914092i
\(126\) −29.5168 + 57.3927i −0.234260 + 0.455497i
\(127\) 131.272i 1.03364i −0.856094 0.516819i \(-0.827116\pi\)
0.856094 0.516819i \(-0.172884\pi\)
\(128\) 1.80691 + 127.987i 0.0141164 + 0.999900i
\(129\) 96.7639i 0.750108i
\(130\) −134.818 + 51.6087i −1.03706 + 0.396990i
\(131\) 47.1382 0.359834 0.179917 0.983682i \(-0.442417\pi\)
0.179917 + 0.983682i \(0.442417\pi\)
\(132\) −135.520 + 65.9378i −1.02667 + 0.499528i
\(133\) 140.276 166.058i 1.05471 1.24856i
\(134\) 120.697 27.8044i 0.900721 0.207496i
\(135\) 80.1965 11.2342i 0.594048 0.0832162i
\(136\) 102.323 82.6177i 0.752376 0.607483i
\(137\) 48.2151i 0.351935i 0.984396 + 0.175967i \(0.0563053\pi\)
−0.984396 + 0.175967i \(0.943695\pi\)
\(138\) 145.434 33.5031i 1.05387 0.242776i
\(139\) −89.2672 −0.642210 −0.321105 0.947044i \(-0.604054\pi\)
−0.321105 + 0.947044i \(0.604054\pi\)
\(140\) −139.163 15.2889i −0.994019 0.109207i
\(141\) 74.6263i 0.529264i
\(142\) 49.7965 11.4714i 0.350680 0.0807847i
\(143\) −147.434 −1.03100
\(144\) −45.5206 + 58.0352i −0.316115 + 0.403023i
\(145\) −281.317 + 39.4078i −1.94012 + 0.271778i
\(146\) −67.6702 + 15.5889i −0.463495 + 0.106774i
\(147\) −178.226 + 30.2133i −1.21242 + 0.205533i
\(148\) −237.591 + 115.601i −1.60534 + 0.781085i
\(149\) 49.6284i 0.333077i 0.986035 + 0.166538i \(0.0532589\pi\)
−0.986035 + 0.166538i \(0.946741\pi\)
\(150\) −89.2051 161.453i −0.594701 1.07635i
\(151\) −65.9244 −0.436585 −0.218293 0.975883i \(-0.570049\pi\)
−0.218293 + 0.975883i \(0.570049\pi\)
\(152\) 193.290 156.066i 1.27165 1.02675i
\(153\) 75.7822 0.495308
\(154\) −127.152 65.3938i −0.825663 0.424635i
\(155\) 127.504 17.8612i 0.822609 0.115234i
\(156\) −191.554 + 93.2010i −1.22791 + 0.597442i
\(157\) 3.29611i 0.0209944i −0.999945 0.0104972i \(-0.996659\pi\)
0.999945 0.0104972i \(-0.00334142\pi\)
\(158\) −125.681 + 28.9527i −0.795450 + 0.183245i
\(159\) 195.754i 1.23116i
\(160\) −152.876 47.2126i −0.955473 0.295079i
\(161\) 108.164 + 91.3706i 0.671824 + 0.567520i
\(162\) 197.308 45.4531i 1.21795 0.280575i
\(163\) 80.8482 0.496001 0.248001 0.968760i \(-0.420226\pi\)
0.248001 + 0.968760i \(0.420226\pi\)
\(164\) 0.882491 + 1.81376i 0.00538104 + 0.0110595i
\(165\) −26.1348 186.566i −0.158393 1.13070i
\(166\) −4.16210 18.0673i −0.0250729 0.108839i
\(167\) 185.849 1.11287 0.556434 0.830892i \(-0.312169\pi\)
0.556434 + 0.830892i \(0.312169\pi\)
\(168\) −206.542 4.58318i −1.22942 0.0272809i
\(169\) −39.3931 −0.233095
\(170\) 58.7706 + 153.527i 0.345709 + 0.903100i
\(171\) 143.154 0.837157
\(172\) 94.3427 45.9027i 0.548504 0.266876i
\(173\) 203.853i 1.17834i 0.808009 + 0.589170i \(0.200545\pi\)
−0.808009 + 0.589170i \(0.799455\pi\)
\(174\) −408.483 + 94.1007i −2.34760 + 0.540808i
\(175\) 71.8498 159.570i 0.410570 0.911829i
\(176\) −128.576 100.850i −0.730544 0.573010i
\(177\) 219.087i 1.23778i
\(178\) −9.90660 43.0037i −0.0556551 0.241594i
\(179\) 252.488i 1.41055i −0.708934 0.705275i \(-0.750824\pi\)
0.708934 0.705275i \(-0.249176\pi\)
\(180\) −51.4488 76.5072i −0.285827 0.425040i
\(181\) 105.014 0.580186 0.290093 0.956998i \(-0.406314\pi\)
0.290093 + 0.956998i \(0.406314\pi\)
\(182\) −179.726 92.4322i −0.987504 0.507869i
\(183\) 256.419i 1.40120i
\(184\) 101.656 + 125.902i 0.552476 + 0.684249i
\(185\) −45.8189 327.083i −0.247670 1.76802i
\(186\) 185.141 42.6503i 0.995384 0.229303i
\(187\) 167.894i 0.897827i
\(188\) 72.7590 35.4011i 0.387016 0.188304i
\(189\) 86.6063 + 73.1602i 0.458234 + 0.387091i
\(190\) 111.019 + 290.015i 0.584309 + 1.52640i
\(191\) −91.0901 −0.476912 −0.238456 0.971153i \(-0.576641\pi\)
−0.238456 + 0.971153i \(0.576641\pi\)
\(192\) −230.805 49.7494i −1.20211 0.259112i
\(193\) 126.767i 0.656822i 0.944535 + 0.328411i \(0.106513\pi\)
−0.944535 + 0.328411i \(0.893487\pi\)
\(194\) 144.933 33.3876i 0.747076 0.172101i
\(195\) −36.9407 263.705i −0.189439 1.35233i
\(196\) −114.004 159.434i −0.581652 0.813437i
\(197\) −315.300 −1.60051 −0.800253 0.599663i \(-0.795301\pi\)
−0.800253 + 0.599663i \(0.795301\pi\)
\(198\) −21.1380 91.7582i −0.106757 0.463425i
\(199\) 304.652i 1.53091i 0.643488 + 0.765456i \(0.277487\pi\)
−0.643488 + 0.765456i \(0.722513\pi\)
\(200\) 115.096 163.563i 0.575481 0.817815i
\(201\) 228.465i 1.13664i
\(202\) −204.562 + 47.1241i −1.01268 + 0.233288i
\(203\) −303.801 256.634i −1.49656 1.26421i
\(204\) 106.135 + 218.136i 0.520269 + 1.06930i
\(205\) −2.49694 + 0.349780i −0.0121802 + 0.00170624i
\(206\) 115.658 26.6437i 0.561446 0.129338i
\(207\) 93.2449i 0.450458i
\(208\) −181.738 142.548i −0.873740 0.685327i
\(209\) 317.154i 1.51748i
\(210\) 85.1067 243.814i 0.405270 1.16102i
\(211\) 119.367i 0.565722i −0.959161 0.282861i \(-0.908716\pi\)
0.959161 0.282861i \(-0.0912836\pi\)
\(212\) 190.856 92.8615i 0.900264 0.438026i
\(213\) 94.2593i 0.442532i
\(214\) −329.311 + 75.8622i −1.53884 + 0.354496i
\(215\) 18.1938 + 129.878i 0.0846223 + 0.604085i
\(216\) 81.3952 + 100.809i 0.376830 + 0.466709i
\(217\) 137.695 + 116.317i 0.634541 + 0.536025i
\(218\) 18.2095 + 79.0458i 0.0835298 + 0.362596i
\(219\) 128.092i 0.584896i
\(220\) 169.500 113.984i 0.770454 0.518108i
\(221\) 237.313i 1.07381i
\(222\) −109.410 474.937i −0.492836 2.13936i
\(223\) −225.950 −1.01323 −0.506615 0.862172i \(-0.669104\pi\)
−0.506615 + 0.862172i \(0.669104\pi\)
\(224\) −93.5105 203.548i −0.417458 0.908696i
\(225\) 110.811 31.6668i 0.492491 0.140741i
\(226\) 65.1729 + 282.910i 0.288376 + 1.25181i
\(227\) 233.683i 1.02944i 0.857358 + 0.514721i \(0.172104\pi\)
−0.857358 + 0.514721i \(0.827896\pi\)
\(228\) 200.491 + 412.063i 0.879345 + 1.80729i
\(229\) 410.025 1.79050 0.895251 0.445562i \(-0.146996\pi\)
0.895251 + 0.445562i \(0.146996\pi\)
\(230\) −188.905 + 72.3133i −0.821325 + 0.314406i
\(231\) 170.197 201.477i 0.736783 0.872196i
\(232\) −285.522 353.623i −1.23070 1.52424i
\(233\) 195.365i 0.838476i −0.907876 0.419238i \(-0.862297\pi\)
0.907876 0.419238i \(-0.137703\pi\)
\(234\) −29.8779 129.697i −0.127683 0.554262i
\(235\) 14.0314 + 100.165i 0.0597081 + 0.426233i
\(236\) −213.605 + 103.930i −0.905106 + 0.440382i
\(237\) 237.901i 1.00380i
\(238\) −105.259 + 204.667i −0.442266 + 0.859945i
\(239\) −1.13036 −0.00472952 −0.00236476 0.999997i \(-0.500753\pi\)
−0.00236476 + 0.999997i \(0.500753\pi\)
\(240\) 148.168 255.244i 0.617366 1.06352i
\(241\) 184.725i 0.766495i −0.923646 0.383247i \(-0.874806\pi\)
0.923646 0.383247i \(-0.125194\pi\)
\(242\) −32.5354 + 7.49505i −0.134444 + 0.0309713i
\(243\) 227.719i 0.937116i
\(244\) −250.003 + 121.640i −1.02460 + 0.498524i
\(245\) 233.537 74.0634i 0.953213 0.302299i
\(246\) −3.62566 + 0.835229i −0.0147384 + 0.00339524i
\(247\) 448.288i 1.81493i
\(248\) 129.410 + 160.276i 0.521816 + 0.646276i
\(249\) 34.1994 0.137347
\(250\) 150.090 + 199.933i 0.600358 + 0.799731i
\(251\) −161.026 −0.641537 −0.320769 0.947158i \(-0.603941\pi\)
−0.320769 + 0.947158i \(0.603941\pi\)
\(252\) 31.7592 125.108i 0.126028 0.496460i
\(253\) −206.582 −0.816529
\(254\) 58.9377 + 255.843i 0.232038 + 1.00726i
\(255\) −300.300 + 42.0671i −1.17765 + 0.164969i
\(256\) −60.9844 248.630i −0.238220 0.971211i
\(257\) 280.740 1.09237 0.546186 0.837664i \(-0.316079\pi\)
0.546186 + 0.837664i \(0.316079\pi\)
\(258\) 43.4444 + 188.588i 0.168389 + 0.730963i
\(259\) 298.385 353.225i 1.15207 1.36380i
\(260\) 239.583 161.113i 0.921473 0.619663i
\(261\) 261.899i 1.00344i
\(262\) −91.8703 + 21.1638i −0.350650 + 0.0807779i
\(263\) 114.489i 0.435318i 0.976025 + 0.217659i \(0.0698421\pi\)
−0.976025 + 0.217659i \(0.930158\pi\)
\(264\) 234.518 189.355i 0.888327 0.717252i
\(265\) 36.8061 + 262.745i 0.138891 + 0.991489i
\(266\) −198.837 + 386.619i −0.747507 + 1.45346i
\(267\) 81.4012 0.304874
\(268\) −222.749 + 108.379i −0.831152 + 0.404399i
\(269\) 199.064 0.740014 0.370007 0.929029i \(-0.379355\pi\)
0.370007 + 0.929029i \(0.379355\pi\)
\(270\) −151.255 + 57.9010i −0.560205 + 0.214448i
\(271\) 138.300i 0.510333i −0.966897 0.255167i \(-0.917870\pi\)
0.966897 0.255167i \(-0.0821303\pi\)
\(272\) −162.330 + 206.958i −0.596801 + 0.760876i
\(273\) 240.568 284.782i 0.881202 1.04316i
\(274\) −21.6473 93.9689i −0.0790046 0.342952i
\(275\) 70.1572 + 245.498i 0.255117 + 0.892721i
\(276\) −268.402 + 130.592i −0.972471 + 0.473159i
\(277\) 347.378 1.25407 0.627035 0.778991i \(-0.284268\pi\)
0.627035 + 0.778991i \(0.284268\pi\)
\(278\) 173.978 40.0786i 0.625819 0.144167i
\(279\) 118.703i 0.425460i
\(280\) 278.086 32.6829i 0.993164 0.116725i
\(281\) −261.441 −0.930396 −0.465198 0.885207i \(-0.654017\pi\)
−0.465198 + 0.885207i \(0.654017\pi\)
\(282\) 33.5052 + 145.443i 0.118813 + 0.515756i
\(283\) 88.8373i 0.313913i −0.987606 0.156956i \(-0.949832\pi\)
0.987606 0.156956i \(-0.0501682\pi\)
\(284\) −91.9008 + 44.7146i −0.323594 + 0.157446i
\(285\) −567.273 + 79.4655i −1.99043 + 0.278826i
\(286\) 287.342 66.1938i 1.00469 0.231447i
\(287\) −2.69651 2.27786i −0.00939551 0.00793681i
\(288\) 62.6612 133.546i 0.217574 0.463700i
\(289\) −18.7547 −0.0648952
\(290\) 530.580 203.108i 1.82959 0.700371i
\(291\) 274.342i 0.942755i
\(292\) 124.887 60.7643i 0.427696 0.208097i
\(293\) 159.380i 0.543960i 0.962303 + 0.271980i \(0.0876784\pi\)
−0.962303 + 0.271980i \(0.912322\pi\)
\(294\) 333.789 138.903i 1.13534 0.472459i
\(295\) −41.1932 294.062i −0.139638 0.996822i
\(296\) 411.152 331.972i 1.38903 1.12153i
\(297\) −165.409 −0.556934
\(298\) −22.2818 96.7235i −0.0747713 0.324576i
\(299\) −291.997 −0.976579
\(300\) 246.345 + 274.614i 0.821150 + 0.915380i
\(301\) −118.483 + 140.259i −0.393631 + 0.465977i
\(302\) 128.484 29.5983i 0.425443 0.0980076i
\(303\) 387.212i 1.27793i
\(304\) −306.644 + 390.948i −1.00870 + 1.28601i
\(305\) −48.2126 344.171i −0.158074 1.12843i
\(306\) −147.696 + 34.0242i −0.482667 + 0.111190i
\(307\) 190.921i 0.621892i −0.950428 0.310946i \(-0.899354\pi\)
0.950428 0.310946i \(-0.100646\pi\)
\(308\) 277.174 + 70.3617i 0.899915 + 0.228447i
\(309\) 218.928i 0.708503i
\(310\) −240.481 + 92.0568i −0.775745 + 0.296957i
\(311\) 97.1437i 0.312359i −0.987729 0.156180i \(-0.950082\pi\)
0.987729 0.156180i \(-0.0499179\pi\)
\(312\) 331.484 267.647i 1.06245 0.857843i
\(313\) −131.747 −0.420917 −0.210459 0.977603i \(-0.567496\pi\)
−0.210459 + 0.977603i \(0.567496\pi\)
\(314\) 1.47987 + 6.42398i 0.00471295 + 0.0204585i
\(315\) 136.507 + 86.0127i 0.433355 + 0.273056i
\(316\) 231.948 112.855i 0.734012 0.357136i
\(317\) 64.5641 0.203672 0.101836 0.994801i \(-0.467528\pi\)
0.101836 + 0.994801i \(0.467528\pi\)
\(318\) 87.8883 + 381.516i 0.276378 + 1.19973i
\(319\) 580.230 1.81890
\(320\) 319.145 + 23.3781i 0.997328 + 0.0730564i
\(321\) 623.349i 1.94190i
\(322\) −251.829 129.515i −0.782078 0.402219i
\(323\) 510.498 1.58049
\(324\) −364.137 + 177.172i −1.12388 + 0.546828i
\(325\) 99.1650 + 347.004i 0.305123 + 1.06771i
\(326\) −157.570 + 36.2987i −0.483342 + 0.111346i
\(327\) −149.625 −0.457569
\(328\) −2.53426 3.13872i −0.00772642 0.00956927i
\(329\) −91.3765 + 108.171i −0.277740 + 0.328786i
\(330\) 134.699 + 351.874i 0.408177 + 1.06629i
\(331\) 52.7603i 0.159397i −0.996819 0.0796983i \(-0.974604\pi\)
0.996819 0.0796983i \(-0.0253957\pi\)
\(332\) 16.2235 + 33.3437i 0.0488659 + 0.100433i
\(333\) 304.506 0.914432
\(334\) −362.211 + 83.4411i −1.08446 + 0.249824i
\(335\) −42.9566 306.650i −0.128229 0.915374i
\(336\) 404.598 83.7993i 1.20416 0.249403i
\(337\) 251.074i 0.745026i −0.928027 0.372513i \(-0.878496\pi\)
0.928027 0.372513i \(-0.121504\pi\)
\(338\) 76.7753 17.6864i 0.227146 0.0523267i
\(339\) −535.517 −1.57970
\(340\) −183.471 272.831i −0.539620 0.802443i
\(341\) −262.984 −0.771215
\(342\) −279.000 + 64.2722i −0.815790 + 0.187931i
\(343\) 295.333 + 174.435i 0.861028 + 0.508558i
\(344\) −163.261 + 131.820i −0.474595 + 0.383197i
\(345\) −51.7608 369.500i −0.150031 1.07101i
\(346\) −91.5244 397.300i −0.264522 1.14827i
\(347\) −555.781 −1.60167 −0.800837 0.598882i \(-0.795612\pi\)
−0.800837 + 0.598882i \(0.795612\pi\)
\(348\) 753.866 366.796i 2.16628 1.05401i
\(349\) 202.673 0.580726 0.290363 0.956917i \(-0.406224\pi\)
0.290363 + 0.956917i \(0.406224\pi\)
\(350\) −68.3894 + 343.253i −0.195398 + 0.980724i
\(351\) −233.801 −0.666100
\(352\) 295.867 + 138.824i 0.840532 + 0.394388i
\(353\) 332.885 0.943018 0.471509 0.881861i \(-0.343710\pi\)
0.471509 + 0.881861i \(0.343710\pi\)
\(354\) −98.3641 426.990i −0.277865 1.20619i
\(355\) −17.7229 126.517i −0.0499236 0.356385i
\(356\) 38.6150 + 79.3644i 0.108469 + 0.222934i
\(357\) −324.302 273.953i −0.908410 0.767374i
\(358\) 113.361 + 492.088i 0.316650 + 1.37455i
\(359\) −333.845 −0.929931 −0.464965 0.885329i \(-0.653933\pi\)
−0.464965 + 0.885329i \(0.653933\pi\)
\(360\) 134.621 + 126.010i 0.373947 + 0.350027i
\(361\) 603.340 1.67130
\(362\) −204.667 + 47.1483i −0.565378 + 0.130244i
\(363\) 61.5858i 0.169658i
\(364\) 391.777 + 99.4541i 1.07631 + 0.273226i
\(365\) 24.0842 + 171.928i 0.0659842 + 0.471035i
\(366\) −115.125 499.749i −0.314550 1.36544i
\(367\) −330.735 −0.901184 −0.450592 0.892730i \(-0.648787\pi\)
−0.450592 + 0.892730i \(0.648787\pi\)
\(368\) −254.648 199.736i −0.691980 0.542761i
\(369\) 2.32459i 0.00629970i
\(370\) 236.150 + 616.898i 0.638244 + 1.66729i
\(371\) −239.692 + 283.745i −0.646070 + 0.764811i
\(372\) −341.683 + 166.247i −0.918503 + 0.446901i
\(373\) −114.255 −0.306315 −0.153157 0.988202i \(-0.548944\pi\)
−0.153157 + 0.988202i \(0.548944\pi\)
\(374\) −75.3797 327.217i −0.201550 0.874912i
\(375\) −421.528 + 186.997i −1.12408 + 0.498659i
\(376\) −125.910 + 101.662i −0.334866 + 0.270378i
\(377\) 820.138 2.17543
\(378\) −201.639 103.702i −0.533435 0.274344i
\(379\) 355.076i 0.936877i −0.883496 0.468439i \(-0.844817\pi\)
0.883496 0.468439i \(-0.155183\pi\)
\(380\) −346.579 515.382i −0.912051 1.35627i
\(381\) −484.283 −1.27108
\(382\) 177.531 40.8970i 0.464740 0.107060i
\(383\) −436.582 −1.13990 −0.569951 0.821679i \(-0.693038\pi\)
−0.569951 + 0.821679i \(0.693038\pi\)
\(384\) 472.165 6.66595i 1.22960 0.0173593i
\(385\) −190.559 + 302.427i −0.494959 + 0.785526i
\(386\) −56.9148 247.062i −0.147448 0.640058i
\(387\) −120.913 −0.312438
\(388\) −267.477 + 130.142i −0.689374 + 0.335417i
\(389\) 639.735i 1.64456i 0.569080 + 0.822282i \(0.307299\pi\)
−0.569080 + 0.822282i \(0.692701\pi\)
\(390\) 190.392 + 497.364i 0.488185 + 1.27529i
\(391\) 332.519i 0.850432i
\(392\) 293.770 + 259.544i 0.749413 + 0.662103i
\(393\) 173.900i 0.442494i
\(394\) 614.505 141.561i 1.55966 0.359292i
\(395\) 44.7307 + 319.315i 0.113242 + 0.808391i
\(396\) 82.3939 + 169.342i 0.208065 + 0.427632i
\(397\) 516.755i 1.30165i 0.759228 + 0.650825i \(0.225577\pi\)
−0.759228 + 0.650825i \(0.774423\pi\)
\(398\) −136.780 593.752i −0.343669 1.49184i
\(399\) −612.613 517.501i −1.53537 1.29700i
\(400\) −150.882 + 370.452i −0.377205 + 0.926130i
\(401\) −261.169 −0.651295 −0.325647 0.945491i \(-0.605582\pi\)
−0.325647 + 0.945491i \(0.605582\pi\)
\(402\) −102.575 445.268i −0.255161 1.10763i
\(403\) −371.721 −0.922383
\(404\) 377.524 183.685i 0.934465 0.454667i
\(405\) −70.2231 501.295i −0.173390 1.23777i
\(406\) 707.317 + 363.770i 1.74216 + 0.895985i
\(407\) 674.626i 1.65756i
\(408\) −304.789 377.486i −0.747033 0.925210i
\(409\) 94.8415i 0.231886i −0.993256 0.115943i \(-0.963011\pi\)
0.993256 0.115943i \(-0.0369890\pi\)
\(410\) 4.70938 1.80276i 0.0114863 0.00439699i
\(411\) 177.873 0.432781
\(412\) −213.450 + 103.855i −0.518082 + 0.252074i
\(413\) 268.262 317.566i 0.649544 0.768924i
\(414\) −41.8645 181.730i −0.101122 0.438961i
\(415\) −45.9031 + 6.43026i −0.110610 + 0.0154946i
\(416\) 418.199 + 196.224i 1.00529 + 0.471693i
\(417\) 329.320i 0.789737i
\(418\) −142.394 618.119i −0.340655 1.47875i
\(419\) −46.0965 −0.110016 −0.0550078 0.998486i \(-0.517518\pi\)
−0.0550078 + 0.998486i \(0.517518\pi\)
\(420\) −56.4033 + 513.393i −0.134293 + 1.22236i
\(421\) 710.750i 1.68824i −0.536153 0.844121i \(-0.680123\pi\)
0.536153 0.844121i \(-0.319877\pi\)
\(422\) 53.5928 + 232.642i 0.126997 + 0.551283i
\(423\) −93.2508 −0.220451
\(424\) −330.277 + 266.672i −0.778955 + 0.628944i
\(425\) 395.159 112.926i 0.929787 0.265709i
\(426\) −42.3199 183.707i −0.0993425 0.431237i
\(427\) 313.974 371.679i 0.735301 0.870442i
\(428\) 607.752 295.704i 1.41998 0.690897i
\(429\) 543.906i 1.26785i
\(430\) −93.7707 244.958i −0.218071 0.569671i
\(431\) 411.504 0.954766 0.477383 0.878695i \(-0.341585\pi\)
0.477383 + 0.878695i \(0.341585\pi\)
\(432\) −203.896 159.928i −0.471982 0.370204i
\(433\) −329.582 −0.761159 −0.380580 0.924748i \(-0.624275\pi\)
−0.380580 + 0.924748i \(0.624275\pi\)
\(434\) −320.585 164.876i −0.738676 0.379898i
\(435\) 145.381 + 1037.82i 0.334210 + 2.38579i
\(436\) −70.9789 145.881i −0.162796 0.334590i
\(437\) 628.134i 1.43738i
\(438\) 57.5100 + 249.646i 0.131301 + 0.569968i
\(439\) 370.448i 0.843844i −0.906632 0.421922i \(-0.861356\pi\)
0.906632 0.421922i \(-0.138644\pi\)
\(440\) −279.172 + 298.250i −0.634482 + 0.677841i
\(441\) 37.7537 + 222.706i 0.0856093 + 0.505002i
\(442\) −106.547 462.511i −0.241057 1.04641i
\(443\) −203.437 −0.459226 −0.229613 0.973282i \(-0.573746\pi\)
−0.229613 + 0.973282i \(0.573746\pi\)
\(444\) 426.468 + 876.509i 0.960514 + 1.97412i
\(445\) −109.258 + 15.3053i −0.245524 + 0.0343938i
\(446\) 440.367 101.446i 0.987370 0.227457i
\(447\) 183.087 0.409590
\(448\) 273.635 + 354.722i 0.610793 + 0.791790i
\(449\) 274.557 0.611485 0.305742 0.952114i \(-0.401095\pi\)
0.305742 + 0.952114i \(0.401095\pi\)
\(450\) −201.747 + 111.468i −0.448327 + 0.247707i
\(451\) 5.15007 0.0114192
\(452\) −254.038 522.118i −0.562031 1.15513i
\(453\) 243.205i 0.536877i
\(454\) −104.918 455.438i −0.231096 1.00317i
\(455\) −269.350 + 427.472i −0.591977 + 0.939499i
\(456\) −575.752 713.077i −1.26262 1.56377i
\(457\) 186.534i 0.408170i −0.978953 0.204085i \(-0.934578\pi\)
0.978953 0.204085i \(-0.0654219\pi\)
\(458\) −799.120 + 184.090i −1.74480 + 0.401944i
\(459\) 266.247i 0.580058i
\(460\) 335.700 225.748i 0.729783 0.490758i
\(461\) −501.181 −1.08716 −0.543580 0.839357i \(-0.682932\pi\)
−0.543580 + 0.839357i \(0.682932\pi\)
\(462\) −241.248 + 469.084i −0.522182 + 1.01533i
\(463\) 160.592i 0.346850i 0.984847 + 0.173425i \(0.0554835\pi\)
−0.984847 + 0.173425i \(0.944517\pi\)
\(464\) 715.236 + 561.003i 1.54146 + 1.20906i
\(465\) −65.8929 470.383i −0.141705 1.01158i
\(466\) 87.7136 + 380.757i 0.188227 + 0.817076i
\(467\) 340.763i 0.729686i 0.931069 + 0.364843i \(0.118877\pi\)
−0.931069 + 0.364843i \(0.881123\pi\)
\(468\) 116.461 + 239.360i 0.248849 + 0.511453i
\(469\) 279.745 331.160i 0.596472 0.706097i
\(470\) −72.3179 188.917i −0.153868 0.401951i
\(471\) −12.1599 −0.0258171
\(472\) 369.644 298.458i 0.783145 0.632326i
\(473\) 267.881i 0.566344i
\(474\) 106.811 + 463.657i 0.225340 + 0.978180i
\(475\) 746.463 213.320i 1.57150 0.449095i
\(476\) 113.256 446.145i 0.237932 0.937280i
\(477\) −244.609 −0.512806
\(478\) 2.20301 0.507499i 0.00460881 0.00106171i
\(479\) 784.653i 1.63811i 0.573717 + 0.819053i \(0.305501\pi\)
−0.573717 + 0.819053i \(0.694499\pi\)
\(480\) −174.174 + 563.982i −0.362863 + 1.17496i
\(481\) 953.563i 1.98246i
\(482\) 82.9367 + 360.021i 0.172068 + 0.746931i
\(483\) 337.080 399.032i 0.697889 0.826154i
\(484\) 60.0448 29.2150i 0.124060 0.0603616i
\(485\) −51.5824 368.226i −0.106355 0.759230i
\(486\) −102.240 443.814i −0.210370 0.913198i
\(487\) 195.648i 0.401741i −0.979618 0.200871i \(-0.935623\pi\)
0.979618 0.200871i \(-0.0643771\pi\)
\(488\) 432.632 349.315i 0.886541 0.715810i
\(489\) 298.262i 0.609942i
\(490\) −421.901 + 249.198i −0.861022 + 0.508567i
\(491\) 153.533i 0.312694i 0.987702 + 0.156347i \(0.0499718\pi\)
−0.987702 + 0.156347i \(0.950028\pi\)
\(492\) 6.69124 3.25565i 0.0136001 0.00661717i
\(493\) 933.952i 1.89443i
\(494\) −201.269 873.692i −0.407427 1.76861i
\(495\) −233.127 + 32.6573i −0.470964 + 0.0659743i
\(496\) −324.175 254.270i −0.653578 0.512640i
\(497\) 115.416 136.629i 0.232226 0.274907i
\(498\) −66.6531 + 15.3546i −0.133842 + 0.0308326i
\(499\) 636.233i 1.27502i −0.770443 0.637509i \(-0.779965\pi\)
0.770443 0.637509i \(-0.220035\pi\)
\(500\) −382.282 322.274i −0.764565 0.644547i
\(501\) 685.625i 1.36851i
\(502\) 313.832 72.2963i 0.625164 0.144017i
\(503\) −48.3325 −0.0960885 −0.0480442 0.998845i \(-0.515299\pi\)
−0.0480442 + 0.998845i \(0.515299\pi\)
\(504\) −5.72701 + 258.089i −0.0113631 + 0.512081i
\(505\) 72.8046 + 519.724i 0.144168 + 1.02916i
\(506\) 402.619 92.7498i 0.795689 0.183300i
\(507\) 145.327i 0.286641i
\(508\) −229.734 472.166i −0.452232 0.929460i
\(509\) −243.531 −0.478449 −0.239225 0.970964i \(-0.576893\pi\)
−0.239225 + 0.970964i \(0.576893\pi\)
\(510\) 566.385 216.814i 1.11056 0.425125i
\(511\) −156.843 + 185.669i −0.306934 + 0.363345i
\(512\) 230.484 + 457.188i 0.450164 + 0.892946i
\(513\) 502.945i 0.980399i
\(514\) −547.149 + 126.045i −1.06449 + 0.245223i
\(515\) −41.1633 293.849i −0.0799287 0.570580i
\(516\) −169.342 348.045i −0.328183 0.674505i
\(517\) 206.595i 0.399604i
\(518\) −422.950 + 822.387i −0.816507 + 1.58762i
\(519\) 752.044 1.44903
\(520\) −394.601 + 421.567i −0.758848 + 0.810706i
\(521\) 630.569i 1.21030i −0.796110 0.605152i \(-0.793112\pi\)
0.796110 0.605152i \(-0.206888\pi\)
\(522\) 117.585 + 510.428i 0.225260 + 0.977832i
\(523\) 829.843i 1.58670i 0.608767 + 0.793349i \(0.291664\pi\)
−0.608767 + 0.793349i \(0.708336\pi\)
\(524\) 169.549 82.4946i 0.323567 0.157432i
\(525\) −588.679 265.065i −1.12129 0.504886i
\(526\) −51.4024 223.133i −0.0977231 0.424208i
\(527\) 423.306i 0.803236i
\(528\) −372.050 + 474.336i −0.704641 + 0.898363i
\(529\) 119.858 0.226574
\(530\) −189.699 495.552i −0.357922 0.935004i
\(531\) 273.765 0.515564
\(532\) 213.942 842.776i 0.402147 1.58417i
\(533\) 7.27947 0.0136575
\(534\) −158.647 + 36.5470i −0.297092 + 0.0684400i
\(535\) 117.204 + 836.671i 0.219072 + 1.56387i
\(536\) 385.468 311.234i 0.719156 0.580660i
\(537\) −931.469 −1.73458
\(538\) −387.966 + 89.3743i −0.721126 + 0.166123i
\(539\) −493.400 + 83.6425i −0.915398 + 0.155181i
\(540\) 268.794 180.756i 0.497766 0.334733i
\(541\) 120.015i 0.221840i 0.993829 + 0.110920i \(0.0353797\pi\)
−0.993829 + 0.110920i \(0.964620\pi\)
\(542\) 62.0931 + 269.541i 0.114563 + 0.497308i
\(543\) 387.412i 0.713465i
\(544\) 223.455 476.234i 0.410763 0.875431i
\(545\) 200.829 28.1329i 0.368494 0.0516199i
\(546\) −340.997 + 663.036i −0.624536 + 1.21435i
\(547\) −634.970 −1.16082 −0.580411 0.814324i \(-0.697108\pi\)
−0.580411 + 0.814324i \(0.697108\pi\)
\(548\) 84.3791 + 173.422i 0.153976 + 0.316464i
\(549\) 320.414 0.583632
\(550\) −246.955 446.966i −0.449009 0.812666i
\(551\) 1764.25i 3.20191i
\(552\) 464.471 375.023i 0.841433 0.679389i
\(553\) −291.298 + 344.836i −0.526760 + 0.623573i
\(554\) −677.023 + 155.963i −1.22206 + 0.281522i
\(555\) −1206.66 + 169.033i −2.17416 + 0.304564i
\(556\) −321.080 + 156.223i −0.577482 + 0.280976i
\(557\) −113.560 −0.203877 −0.101939 0.994791i \(-0.532505\pi\)
−0.101939 + 0.994791i \(0.532505\pi\)
\(558\) −53.2946 231.347i −0.0955100 0.414601i
\(559\) 378.641i 0.677355i
\(560\) −527.303 + 188.551i −0.941613 + 0.336698i
\(561\) 619.386 1.10407
\(562\) 509.537 117.380i 0.906650 0.208861i
\(563\) 964.206i 1.71262i −0.516461 0.856311i \(-0.672751\pi\)
0.516461 0.856311i \(-0.327249\pi\)
\(564\) −130.600 268.419i −0.231561 0.475920i
\(565\) 718.781 100.689i 1.27218 0.178211i
\(566\) 39.8856 + 173.140i 0.0704692 + 0.305901i
\(567\) 457.312 541.362i 0.806547 0.954782i
\(568\) 159.035 128.408i 0.279991 0.226070i
\(569\) −761.751 −1.33875 −0.669377 0.742923i \(-0.733439\pi\)
−0.669377 + 0.742923i \(0.733439\pi\)
\(570\) 1069.91 409.565i 1.87704 0.718535i
\(571\) 35.8939i 0.0628614i −0.999506 0.0314307i \(-0.989994\pi\)
0.999506 0.0314307i \(-0.0100064\pi\)
\(572\) −530.296 + 258.017i −0.927092 + 0.451079i
\(573\) 336.046i 0.586467i
\(574\) 6.27808 + 3.22879i 0.0109374 + 0.00562507i
\(575\) 138.949 + 486.217i 0.241650 + 0.845595i
\(576\) −62.1654 + 288.407i −0.107926 + 0.500707i
\(577\) 714.079 1.23757 0.618786 0.785559i \(-0.287625\pi\)
0.618786 + 0.785559i \(0.287625\pi\)
\(578\) 36.5521 8.42036i 0.0632389 0.0145681i
\(579\) 467.661 0.807705
\(580\) −942.887 + 634.064i −1.62567 + 1.09321i
\(581\) −49.5720 41.8756i −0.0853218 0.0720751i
\(582\) −123.172 534.679i −0.211636 0.918693i
\(583\) 541.925i 0.929545i
\(584\) −216.118 + 174.498i −0.370065 + 0.298798i
\(585\) −329.518 + 46.1600i −0.563279 + 0.0789060i
\(586\) −71.5574 310.625i −0.122112 0.530076i
\(587\) 785.786i 1.33865i −0.742971 0.669323i \(-0.766584\pi\)
0.742971 0.669323i \(-0.233416\pi\)
\(588\) −588.176 + 420.578i −1.00030 + 0.715269i
\(589\) 799.632i 1.35761i
\(590\) 212.310 + 554.620i 0.359847 + 0.940033i
\(591\) 1163.19i 1.96817i
\(592\) −652.270 + 831.595i −1.10181 + 1.40472i
\(593\) −618.608 −1.04318 −0.521592 0.853195i \(-0.674662\pi\)
−0.521592 + 0.853195i \(0.674662\pi\)
\(594\) 322.375 74.2644i 0.542720 0.125024i
\(595\) 486.794 + 306.728i 0.818141 + 0.515509i
\(596\) 86.8525 + 178.506i 0.145726 + 0.299506i
\(597\) 1123.91 1.88259
\(598\) 569.089 131.099i 0.951654 0.219229i
\(599\) −218.429 −0.364656 −0.182328 0.983238i \(-0.558363\pi\)
−0.182328 + 0.983238i \(0.558363\pi\)
\(600\) −603.409 424.608i −1.00568 0.707680i
\(601\) 810.310i 1.34827i −0.738609 0.674135i \(-0.764517\pi\)
0.738609 0.674135i \(-0.235483\pi\)
\(602\) 167.945 326.554i 0.278979 0.542449i
\(603\) 285.484 0.473439
\(604\) −237.120 + 115.371i −0.392583 + 0.191012i
\(605\) 11.5795 + 82.6616i 0.0191397 + 0.136631i
\(606\) 173.848 + 754.659i 0.286878 + 1.24531i
\(607\) 223.586 0.368346 0.184173 0.982894i \(-0.441039\pi\)
0.184173 + 0.982894i \(0.441039\pi\)
\(608\) 422.110 899.615i 0.694260 1.47963i
\(609\) −946.764 + 1120.77i −1.55462 + 1.84034i
\(610\) 248.488 + 649.127i 0.407357 + 1.06414i
\(611\) 292.016i 0.477931i
\(612\) 272.577 132.623i 0.445387 0.216704i
\(613\) −416.624 −0.679648 −0.339824 0.940489i \(-0.610368\pi\)
−0.339824 + 0.940489i \(0.610368\pi\)
\(614\) 85.7183 + 372.096i 0.139606 + 0.606020i
\(615\) 1.29039 + 9.21160i 0.00209820 + 0.0149782i
\(616\) −571.790 12.6881i −0.928230 0.0205975i
\(617\) 633.821i 1.02726i −0.858011 0.513631i \(-0.828300\pi\)
0.858011 0.513631i \(-0.171700\pi\)
\(618\) −98.2926 426.680i −0.159050 0.690420i
\(619\) −891.451 −1.44015 −0.720073 0.693898i \(-0.755892\pi\)
−0.720073 + 0.693898i \(0.755892\pi\)
\(620\) 427.355 287.384i 0.689283 0.463523i
\(621\) −327.599 −0.527534
\(622\) 43.6149 + 189.329i 0.0701205 + 0.304387i
\(623\) −117.991 99.6721i −0.189391 0.159987i
\(624\) −525.882 + 670.459i −0.842759 + 1.07445i
\(625\) 530.624 330.248i 0.848998 0.528397i
\(626\) 256.769 59.1509i 0.410174 0.0944902i
\(627\) 1170.03 1.86608
\(628\) −5.76839 11.8556i −0.00918533 0.0188784i
\(629\) 1085.89 1.72638
\(630\) −304.663 106.347i −0.483592 0.168805i
\(631\) −139.865 −0.221656 −0.110828 0.993840i \(-0.535350\pi\)
−0.110828 + 0.993840i \(0.535350\pi\)
\(632\) −401.387 + 324.088i −0.635106 + 0.512797i
\(633\) −440.365 −0.695679
\(634\) −125.833 + 28.9876i −0.198474 + 0.0457217i
\(635\) 650.014 91.0561i 1.02364 0.143395i
\(636\) −342.581 704.097i −0.538649 1.10707i
\(637\) −697.405 + 118.226i −1.09483 + 0.185598i
\(638\) −1130.84 + 260.508i −1.77248 + 0.408320i
\(639\) 117.784 0.184325
\(640\) −632.495 + 97.7248i −0.988273 + 0.152695i
\(641\) −500.317 −0.780525 −0.390263 0.920704i \(-0.627616\pi\)
−0.390263 + 0.920704i \(0.627616\pi\)
\(642\) 279.867 + 1214.88i 0.435930 + 1.89234i
\(643\) 1189.12i 1.84933i 0.380788 + 0.924663i \(0.375653\pi\)
−0.380788 + 0.924663i \(0.624347\pi\)
\(644\) 548.952 + 139.354i 0.852410 + 0.216388i
\(645\) 479.141 67.1197i 0.742854 0.104062i
\(646\) −994.938 + 229.200i −1.54015 + 0.354799i
\(647\) −1020.39 −1.57711 −0.788555 0.614964i \(-0.789171\pi\)
−0.788555 + 0.614964i \(0.789171\pi\)
\(648\) 630.141 508.788i 0.972440 0.785167i
\(649\) 606.519i 0.934544i
\(650\) −349.064 631.773i −0.537021 0.971959i
\(651\) 429.113 507.979i 0.659159 0.780306i
\(652\) 290.799 141.489i 0.446010 0.217008i
\(653\) 155.938 0.238802 0.119401 0.992846i \(-0.461903\pi\)
0.119401 + 0.992846i \(0.461903\pi\)
\(654\) 291.612 67.1776i 0.445890 0.102718i
\(655\) 32.6972 + 233.412i 0.0499193 + 0.356354i
\(656\) 6.34837 + 4.97941i 0.00967739 + 0.00759056i
\(657\) −160.060 −0.243623
\(658\) 129.523 251.845i 0.196843 0.382743i
\(659\) 220.018i 0.333866i −0.985968 0.166933i \(-0.946614\pi\)
0.985968 0.166933i \(-0.0533864\pi\)
\(660\) −420.504 625.311i −0.637127 0.947441i
\(661\) 948.923 1.43559 0.717794 0.696256i \(-0.245152\pi\)
0.717794 + 0.696256i \(0.245152\pi\)
\(662\) 23.6880 + 102.827i 0.0357824 + 0.155328i
\(663\) 875.483 1.32049
\(664\) −46.5893 57.7014i −0.0701645 0.0868998i
\(665\) 919.562 + 579.415i 1.38280 + 0.871301i
\(666\) −593.468 + 136.715i −0.891093 + 0.205278i
\(667\) 1149.17 1.72289
\(668\) 668.470 325.246i 1.00070 0.486895i
\(669\) 833.566i 1.24599i
\(670\) 221.398 + 578.361i 0.330445 + 0.863225i
\(671\) 709.870i 1.05793i
\(672\) −750.920 + 344.975i −1.11744 + 0.513355i
\(673\) 745.489i 1.10771i 0.832613 + 0.553855i \(0.186844\pi\)
−0.832613 + 0.553855i \(0.813156\pi\)
\(674\) 112.725 + 489.332i 0.167248 + 0.726011i
\(675\) 111.256 + 389.312i 0.164823 + 0.576759i
\(676\) −141.691 + 68.9401i −0.209602 + 0.101982i
\(677\) 8.12211i 0.0119972i −0.999982 0.00599860i \(-0.998091\pi\)
0.999982 0.00599860i \(-0.00190943\pi\)
\(678\) 1043.70 240.433i 1.53938 0.354621i
\(679\) 335.919 397.657i 0.494726 0.585652i
\(680\) 480.070 + 449.361i 0.705985 + 0.660825i
\(681\) 862.094 1.26592
\(682\) 512.545 118.073i 0.751532 0.173128i
\(683\) 476.643 0.697867 0.348934 0.937147i \(-0.386544\pi\)
0.348934 + 0.937147i \(0.386544\pi\)
\(684\) 514.902 250.527i 0.752781 0.366268i
\(685\) −238.744 + 33.4441i −0.348532 + 0.0488235i
\(686\) −653.907 207.370i −0.953217 0.302288i
\(687\) 1512.65i 2.20181i
\(688\) 259.004 330.210i 0.376459 0.479957i
\(689\) 765.994i 1.11175i
\(690\) 266.775 + 696.899i 0.386630 + 1.01000i
\(691\) 85.4900 0.123719 0.0618596 0.998085i \(-0.480297\pi\)
0.0618596 + 0.998085i \(0.480297\pi\)
\(692\) 356.754 + 733.227i 0.515540 + 1.05958i
\(693\) −251.760 212.673i −0.363290 0.306888i
\(694\) 1083.19 249.531i 1.56079 0.359554i
\(695\) −61.9196 442.020i −0.0890930 0.636000i
\(696\) −1304.57 + 1053.33i −1.87438 + 1.51341i
\(697\) 8.28967i 0.0118934i
\(698\) −395.001 + 90.9949i −0.565904 + 0.130365i
\(699\) −720.731 −1.03109
\(700\) −20.8239 699.690i −0.0297484 0.999557i
\(701\) 23.5524i 0.0335982i 0.999859 + 0.0167991i \(0.00534758\pi\)
−0.999859 + 0.0167991i \(0.994652\pi\)
\(702\) 455.668 104.970i 0.649099 0.149531i
\(703\) 2051.27 2.91788
\(704\) −638.960 137.726i −0.907614 0.195634i
\(705\) 369.523 51.7641i 0.524146 0.0734242i
\(706\) −648.778 + 149.457i −0.918949 + 0.211695i
\(707\) −474.124 + 561.263i −0.670614 + 0.793866i
\(708\) 383.414 + 788.022i 0.541546 + 1.11302i
\(709\) 358.652i 0.505856i −0.967485 0.252928i \(-0.918606\pi\)
0.967485 0.252928i \(-0.0813935\pi\)
\(710\) 91.3436 + 238.618i 0.128653 + 0.336082i
\(711\) −297.274 −0.418106
\(712\) −110.891 137.341i −0.155746 0.192894i
\(713\) −520.849 −0.730504
\(714\) 755.048 + 388.318i 1.05749 + 0.543863i
\(715\) −102.267 730.040i −0.143030 1.02104i
\(716\) −441.869 908.162i −0.617136 1.26838i
\(717\) 4.17005i 0.00581598i
\(718\) 650.649 149.888i 0.906196 0.208757i
\(719\) 209.881i 0.291906i −0.989292 0.145953i \(-0.953375\pi\)
0.989292 0.145953i \(-0.0466249\pi\)
\(720\) −318.945 185.146i −0.442980 0.257147i
\(721\) 268.067 317.335i 0.371799 0.440132i
\(722\) −1175.88 + 270.884i −1.62865 + 0.375185i
\(723\) −681.480 −0.942572
\(724\) 377.718 183.780i 0.521710 0.253840i
\(725\) −390.267 1365.65i −0.538300 1.88365i
\(726\) 27.6504 + 120.028i 0.0380859 + 0.165328i
\(727\) 1.50873 0.00207528 0.00103764 0.999999i \(-0.499670\pi\)
0.00103764 + 0.999999i \(0.499670\pi\)
\(728\) −808.207 17.9342i −1.11017 0.0246349i
\(729\) −71.0498 −0.0974620
\(730\) −124.130 324.266i −0.170041 0.444200i
\(731\) −431.187 −0.589859
\(732\) 448.748 + 922.301i 0.613044 + 1.25997i
\(733\) 530.040i 0.723111i 0.932351 + 0.361555i \(0.117754\pi\)
−0.932351 + 0.361555i \(0.882246\pi\)
\(734\) 644.587 148.491i 0.878184 0.202304i
\(735\) −273.231 861.555i −0.371743 1.17218i
\(736\) 585.975 + 274.946i 0.796161 + 0.373568i
\(737\) 632.482i 0.858185i
\(738\) 1.04368 + 4.53052i 0.00141420 + 0.00613891i
\(739\) 890.676i 1.20524i −0.798026 0.602622i \(-0.794123\pi\)
0.798026 0.602622i \(-0.205877\pi\)
\(740\) −737.217 1096.28i −0.996239 1.48146i
\(741\) 1653.80 2.23185
\(742\) 339.755 660.621i 0.457890 0.890325i
\(743\) 912.740i 1.22845i −0.789130 0.614226i \(-0.789468\pi\)
0.789130 0.614226i \(-0.210532\pi\)
\(744\) 591.285 477.414i 0.794737 0.641686i
\(745\) −245.743 + 34.4245i −0.329856 + 0.0462073i
\(746\) 222.679 51.2977i 0.298497 0.0687636i
\(747\) 42.7346i 0.0572083i
\(748\) 293.823 + 603.888i 0.392812 + 0.807336i
\(749\) −763.263 + 903.543i −1.01904 + 1.20633i
\(750\) 737.583 553.704i 0.983444 0.738272i
\(751\) 910.503 1.21239 0.606194 0.795317i \(-0.292696\pi\)
0.606194 + 0.795317i \(0.292696\pi\)
\(752\) 199.749 254.665i 0.265624 0.338650i
\(753\) 594.049i 0.788910i
\(754\) −1598.41 + 368.220i −2.11991 + 0.488356i
\(755\) −45.7281 326.435i −0.0605670 0.432364i
\(756\) 439.544 + 111.580i 0.581407 + 0.147593i
\(757\) 813.010 1.07399 0.536995 0.843585i \(-0.319559\pi\)
0.536995 + 0.843585i \(0.319559\pi\)
\(758\) 159.420 + 692.028i 0.210316 + 0.912965i
\(759\) 762.113i 1.00410i
\(760\) 906.860 + 848.851i 1.19324 + 1.11691i
\(761\) 1222.33i 1.60622i 0.595832 + 0.803109i \(0.296822\pi\)
−0.595832 + 0.803109i \(0.703178\pi\)
\(762\) 943.846 217.430i 1.23864 0.285341i
\(763\) 216.881 + 183.209i 0.284248 + 0.240117i
\(764\) −327.637 + 159.413i −0.428844 + 0.208656i
\(765\) 52.5658 + 375.247i 0.0687135 + 0.490519i
\(766\) 850.879 196.014i 1.11081 0.255893i
\(767\) 857.296i 1.11773i
\(768\) −917.235 + 224.981i −1.19432 + 0.292944i
\(769\) 600.119i 0.780388i −0.920733 0.390194i \(-0.872408\pi\)
0.920733 0.390194i \(-0.127592\pi\)
\(770\) 235.609 674.973i 0.305986 0.876589i
\(771\) 1035.69i 1.34331i
\(772\) 221.849 + 455.960i 0.287369 + 0.590621i
\(773\) 308.438i 0.399015i −0.979896 0.199507i \(-0.936066\pi\)
0.979896 0.199507i \(-0.0639341\pi\)
\(774\) 235.655 54.2869i 0.304463 0.0701381i
\(775\) 176.885 + 618.968i 0.228239 + 0.798668i
\(776\) 462.871 373.731i 0.596483 0.481612i
\(777\) −1303.10 1100.79i −1.67710 1.41672i
\(778\) −287.224 1246.82i