Properties

Label 280.3.c.g.69.2
Level $280$
Weight $3$
Character 280.69
Analytic conductor $7.629$
Analytic rank $0$
Dimension $80$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 280.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.62944740209\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 69.2
Character \(\chi\) \(=\) 280.69
Dual form 280.3.c.g.69.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.99206 - 0.178090i) q^{2} +5.14158i q^{3} +(3.93657 + 0.709530i) q^{4} +(3.67215 + 3.39343i) q^{5} +(0.915664 - 10.2423i) q^{6} +(-3.38765 + 6.12567i) q^{7} +(-7.71550 - 2.11449i) q^{8} -17.4359 q^{9} +O(q^{10})\) \(q+(-1.99206 - 0.178090i) q^{2} +5.14158i q^{3} +(3.93657 + 0.709530i) q^{4} +(3.67215 + 3.39343i) q^{5} +(0.915664 - 10.2423i) q^{6} +(-3.38765 + 6.12567i) q^{7} +(-7.71550 - 2.11449i) q^{8} -17.4359 q^{9} +(-6.71078 - 7.41387i) q^{10} +18.5106i q^{11} +(-3.64811 + 20.2402i) q^{12} -12.0353i q^{13} +(7.83931 - 11.5994i) q^{14} +(-17.4476 + 18.8806i) q^{15} +(14.9931 + 5.58623i) q^{16} +19.5965 q^{17} +(34.7332 + 3.10515i) q^{18} +6.87089 q^{19} +(12.0479 + 15.9640i) q^{20} +(-31.4956 - 17.4179i) q^{21} +(3.29655 - 36.8741i) q^{22} -20.3728i q^{23} +(10.8718 - 39.6699i) q^{24} +(1.96931 + 24.9223i) q^{25} +(-2.14337 + 23.9750i) q^{26} -43.3737i q^{27} +(-17.6821 + 21.7105i) q^{28} +2.31875i q^{29} +(38.1190 - 34.5040i) q^{30} +6.49424i q^{31} +(-28.8723 - 13.7982i) q^{32} -95.1736 q^{33} +(-39.0374 - 3.48995i) q^{34} +(-33.2270 + 10.9986i) q^{35} +(-68.6375 - 12.3713i) q^{36} +30.2885 q^{37} +(-13.6872 - 1.22364i) q^{38} +61.8806 q^{39} +(-21.1571 - 33.9467i) q^{40} -48.2859i q^{41} +(59.6391 + 40.3065i) q^{42} -70.0518 q^{43} +(-13.1338 + 72.8681i) q^{44} +(-64.0270 - 59.1673i) q^{45} +(-3.62819 + 40.5837i) q^{46} +68.9298 q^{47} +(-28.7220 + 77.0884i) q^{48} +(-26.0476 - 41.5033i) q^{49} +(0.515444 - 49.9973i) q^{50} +100.757i q^{51} +(8.53942 - 47.3778i) q^{52} +14.6534 q^{53} +(-7.72442 + 86.4028i) q^{54} +(-62.8143 + 67.9735i) q^{55} +(39.0901 - 40.0995i) q^{56} +35.3272i q^{57} +(0.412947 - 4.61909i) q^{58} +23.3458 q^{59} +(-82.0800 + 61.9453i) q^{60} -65.4599 q^{61} +(1.15656 - 12.9369i) q^{62} +(59.0666 - 106.806i) q^{63} +(55.0579 + 32.6286i) q^{64} +(40.8410 - 44.1954i) q^{65} +(189.591 + 16.9495i) q^{66} -38.4464 q^{67} +(77.1431 + 13.9043i) q^{68} +104.748 q^{69} +(68.1487 - 15.9924i) q^{70} +66.3125 q^{71} +(134.526 + 36.8679i) q^{72} -49.3159 q^{73} +(-60.3364 - 5.39408i) q^{74} +(-128.140 + 10.1254i) q^{75} +(27.0477 + 4.87510i) q^{76} +(-113.390 - 62.7074i) q^{77} +(-123.269 - 11.0203i) q^{78} -44.8588 q^{79} +(36.1005 + 71.3915i) q^{80} +66.0865 q^{81} +(-8.59924 + 96.1882i) q^{82} -30.7499i q^{83} +(-111.626 - 90.9138i) q^{84} +(71.9613 + 66.4994i) q^{85} +(139.547 + 12.4755i) q^{86} -11.9221 q^{87} +(39.1403 - 142.818i) q^{88} +135.358i q^{89} +(117.008 + 129.267i) q^{90} +(73.7244 + 40.7715i) q^{91} +(14.4551 - 80.1988i) q^{92} -33.3907 q^{93} +(-137.312 - 12.2757i) q^{94} +(25.2309 + 23.3158i) q^{95} +(70.9446 - 148.449i) q^{96} +36.8568 q^{97} +(44.4970 + 87.3156i) q^{98} -322.748i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80q + 12q^{4} - 224q^{9} + O(q^{10}) \) \( 80q + 12q^{4} - 224q^{9} + 92q^{14} - 72q^{15} - 172q^{16} - 104q^{25} - 68q^{30} - 564q^{36} - 112q^{39} - 40q^{44} - 224q^{46} + 192q^{49} + 332q^{50} - 356q^{56} + 124q^{60} + 396q^{64} + 472q^{65} + 352q^{70} + 800q^{71} + 672q^{74} + 480q^{79} - 896q^{81} + 408q^{84} + 528q^{86} + 1176q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/280\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(141\) \(241\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.99206 0.178090i −0.996028 0.0890450i
\(3\) 5.14158i 1.71386i 0.515432 + 0.856930i \(0.327631\pi\)
−0.515432 + 0.856930i \(0.672369\pi\)
\(4\) 3.93657 + 0.709530i 0.984142 + 0.177383i
\(5\) 3.67215 + 3.39343i 0.734429 + 0.678685i
\(6\) 0.915664 10.2423i 0.152611 1.70705i
\(7\) −3.38765 + 6.12567i −0.483950 + 0.875096i
\(8\) −7.71550 2.11449i −0.964438 0.264311i
\(9\) −17.4359 −1.93732
\(10\) −6.71078 7.41387i −0.671078 0.741387i
\(11\) 18.5106i 1.68278i 0.540429 + 0.841389i \(0.318262\pi\)
−0.540429 + 0.841389i \(0.681738\pi\)
\(12\) −3.64811 + 20.2402i −0.304009 + 1.68668i
\(13\) 12.0353i 0.925794i −0.886412 0.462897i \(-0.846810\pi\)
0.886412 0.462897i \(-0.153190\pi\)
\(14\) 7.83931 11.5994i 0.559951 0.828526i
\(15\) −17.4476 + 18.8806i −1.16317 + 1.25871i
\(16\) 14.9931 + 5.58623i 0.937071 + 0.349139i
\(17\) 19.5965 1.15274 0.576369 0.817190i \(-0.304469\pi\)
0.576369 + 0.817190i \(0.304469\pi\)
\(18\) 34.7332 + 3.10515i 1.92962 + 0.172508i
\(19\) 6.87089 0.361626 0.180813 0.983518i \(-0.442127\pi\)
0.180813 + 0.983518i \(0.442127\pi\)
\(20\) 12.0479 + 15.9640i 0.602396 + 0.798198i
\(21\) −31.4956 17.4179i −1.49979 0.829423i
\(22\) 3.29655 36.8741i 0.149843 1.67609i
\(23\) 20.3728i 0.885773i −0.896578 0.442886i \(-0.853954\pi\)
0.896578 0.442886i \(-0.146046\pi\)
\(24\) 10.8718 39.6699i 0.452992 1.65291i
\(25\) 1.96931 + 24.9223i 0.0787723 + 0.996893i
\(26\) −2.14337 + 23.9750i −0.0824373 + 0.922116i
\(27\) 43.3737i 1.60643i
\(28\) −17.6821 + 21.7105i −0.631502 + 0.775374i
\(29\) 2.31875i 0.0799570i 0.999201 + 0.0399785i \(0.0127289\pi\)
−0.999201 + 0.0399785i \(0.987271\pi\)
\(30\) 38.1190 34.5040i 1.27063 1.15013i
\(31\) 6.49424i 0.209492i 0.994499 + 0.104746i \(0.0334029\pi\)
−0.994499 + 0.104746i \(0.966597\pi\)
\(32\) −28.8723 13.7982i −0.902259 0.431194i
\(33\) −95.1736 −2.88405
\(34\) −39.0374 3.48995i −1.14816 0.102645i
\(35\) −33.2270 + 10.9986i −0.949342 + 0.314246i
\(36\) −68.6375 12.3713i −1.90660 0.343646i
\(37\) 30.2885 0.818609 0.409305 0.912398i \(-0.365771\pi\)
0.409305 + 0.912398i \(0.365771\pi\)
\(38\) −13.6872 1.22364i −0.360189 0.0322009i
\(39\) 61.8806 1.58668
\(40\) −21.1571 33.9467i −0.528927 0.848667i
\(41\) 48.2859i 1.17771i −0.808240 0.588853i \(-0.799580\pi\)
0.808240 0.588853i \(-0.200420\pi\)
\(42\) 59.6391 + 40.3065i 1.41998 + 0.959677i
\(43\) −70.0518 −1.62911 −0.814556 0.580085i \(-0.803019\pi\)
−0.814556 + 0.580085i \(0.803019\pi\)
\(44\) −13.1338 + 72.8681i −0.298496 + 1.65609i
\(45\) −64.0270 59.1673i −1.42282 1.31483i
\(46\) −3.62819 + 40.5837i −0.0788736 + 0.882254i
\(47\) 68.9298 1.46659 0.733296 0.679909i \(-0.237981\pi\)
0.733296 + 0.679909i \(0.237981\pi\)
\(48\) −28.7220 + 77.0884i −0.598376 + 1.60601i
\(49\) −26.0476 41.5033i −0.531584 0.847005i
\(50\) 0.515444 49.9973i 0.0103089 0.999947i
\(51\) 100.757i 1.97563i
\(52\) 8.53942 47.3778i 0.164220 0.911112i
\(53\) 14.6534 0.276480 0.138240 0.990399i \(-0.455856\pi\)
0.138240 + 0.990399i \(0.455856\pi\)
\(54\) −7.72442 + 86.4028i −0.143045 + 1.60005i
\(55\) −62.8143 + 67.9735i −1.14208 + 1.23588i
\(56\) 39.0901 40.0995i 0.698037 0.716062i
\(57\) 35.3272i 0.619776i
\(58\) 0.412947 4.61909i 0.00711977 0.0796394i
\(59\) 23.3458 0.395691 0.197845 0.980233i \(-0.436606\pi\)
0.197845 + 0.980233i \(0.436606\pi\)
\(60\) −82.0800 + 61.9453i −1.36800 + 1.03242i
\(61\) −65.4599 −1.07311 −0.536557 0.843864i \(-0.680275\pi\)
−0.536557 + 0.843864i \(0.680275\pi\)
\(62\) 1.15656 12.9369i 0.0186542 0.208659i
\(63\) 59.0666 106.806i 0.937566 1.69534i
\(64\) 55.0579 + 32.6286i 0.860280 + 0.509823i
\(65\) 40.8410 44.1954i 0.628323 0.679930i
\(66\) 189.591 + 16.9495i 2.87259 + 0.256810i
\(67\) −38.4464 −0.573826 −0.286913 0.957957i \(-0.592629\pi\)
−0.286913 + 0.957957i \(0.592629\pi\)
\(68\) 77.1431 + 13.9043i 1.13446 + 0.204475i
\(69\) 104.748 1.51809
\(70\) 68.1487 15.9924i 0.973553 0.228463i
\(71\) 66.3125 0.933979 0.466989 0.884263i \(-0.345339\pi\)
0.466989 + 0.884263i \(0.345339\pi\)
\(72\) 134.526 + 36.8679i 1.86842 + 0.512054i
\(73\) −49.3159 −0.675560 −0.337780 0.941225i \(-0.609676\pi\)
−0.337780 + 0.941225i \(0.609676\pi\)
\(74\) −60.3364 5.39408i −0.815357 0.0728930i
\(75\) −128.140 + 10.1254i −1.70853 + 0.135005i
\(76\) 27.0477 + 4.87510i 0.355891 + 0.0641461i
\(77\) −113.390 62.7074i −1.47259 0.814381i
\(78\) −123.269 11.0203i −1.58038 0.141286i
\(79\) −44.8588 −0.567833 −0.283917 0.958849i \(-0.591634\pi\)
−0.283917 + 0.958849i \(0.591634\pi\)
\(80\) 36.1005 + 71.3915i 0.451256 + 0.892394i
\(81\) 66.0865 0.815883
\(82\) −8.59924 + 96.1882i −0.104869 + 1.17303i
\(83\) 30.7499i 0.370480i −0.982693 0.185240i \(-0.940694\pi\)
0.982693 0.185240i \(-0.0593063\pi\)
\(84\) −111.626 90.9138i −1.32888 1.08231i
\(85\) 71.9613 + 66.4994i 0.846604 + 0.782346i
\(86\) 139.547 + 12.4755i 1.62264 + 0.145064i
\(87\) −11.9221 −0.137035
\(88\) 39.1403 142.818i 0.444777 1.62294i
\(89\) 135.358i 1.52088i 0.649408 + 0.760440i \(0.275017\pi\)
−0.649408 + 0.760440i \(0.724983\pi\)
\(90\) 117.008 + 129.267i 1.30009 + 1.43630i
\(91\) 73.7244 + 40.7715i 0.810158 + 0.448038i
\(92\) 14.4551 80.1988i 0.157121 0.871726i
\(93\) −33.3907 −0.359039
\(94\) −137.312 12.2757i −1.46077 0.130593i
\(95\) 25.2309 + 23.3158i 0.265588 + 0.245430i
\(96\) 70.9446 148.449i 0.739006 1.54635i
\(97\) 36.8568 0.379967 0.189983 0.981787i \(-0.439157\pi\)
0.189983 + 0.981787i \(0.439157\pi\)
\(98\) 44.4970 + 87.3156i 0.454051 + 0.890976i
\(99\) 322.748i 3.26008i
\(100\) −9.93082 + 99.5057i −0.0993082 + 0.995057i
\(101\) 117.202 1.16042 0.580208 0.814469i \(-0.302971\pi\)
0.580208 + 0.814469i \(0.302971\pi\)
\(102\) 17.9438 200.714i 0.175920 1.96778i
\(103\) 133.746 1.29850 0.649252 0.760573i \(-0.275082\pi\)
0.649252 + 0.760573i \(0.275082\pi\)
\(104\) −25.4485 + 92.8585i −0.244697 + 0.892870i
\(105\) −56.5502 170.839i −0.538573 1.62704i
\(106\) −29.1904 2.60963i −0.275381 0.0246191i
\(107\) 74.3641 0.694991 0.347496 0.937682i \(-0.387032\pi\)
0.347496 + 0.937682i \(0.387032\pi\)
\(108\) 30.7749 170.743i 0.284953 1.58096i
\(109\) 28.9108i 0.265236i −0.991167 0.132618i \(-0.957662\pi\)
0.991167 0.132618i \(-0.0423384\pi\)
\(110\) 137.235 124.220i 1.24759 1.12928i
\(111\) 155.731i 1.40298i
\(112\) −85.0109 + 72.9188i −0.759026 + 0.651061i
\(113\) 142.601i 1.26195i 0.775801 + 0.630977i \(0.217346\pi\)
−0.775801 + 0.630977i \(0.782654\pi\)
\(114\) 6.29142 70.3738i 0.0551879 0.617314i
\(115\) 69.1335 74.8118i 0.601161 0.650537i
\(116\) −1.64523 + 9.12793i −0.0141830 + 0.0786891i
\(117\) 209.846i 1.79356i
\(118\) −46.5060 4.15765i −0.394119 0.0352343i
\(119\) −66.3862 + 120.042i −0.557867 + 1.00876i
\(120\) 174.540 108.781i 1.45450 0.906507i
\(121\) −221.641 −1.83174
\(122\) 130.400 + 11.6578i 1.06885 + 0.0955554i
\(123\) 248.266 2.01842
\(124\) −4.60786 + 25.5650i −0.0371601 + 0.206169i
\(125\) −77.3405 + 98.2011i −0.618724 + 0.785609i
\(126\) −136.685 + 202.245i −1.08480 + 1.60512i
\(127\) 164.684i 1.29673i 0.761331 + 0.648363i \(0.224546\pi\)
−0.761331 + 0.648363i \(0.775454\pi\)
\(128\) −103.868 74.8033i −0.811465 0.584401i
\(129\) 360.177i 2.79207i
\(130\) −89.2282 + 80.7664i −0.686371 + 0.621280i
\(131\) 0.684303 0.00522369 0.00261184 0.999997i \(-0.499169\pi\)
0.00261184 + 0.999997i \(0.499169\pi\)
\(132\) −374.657 67.5285i −2.83831 0.511580i
\(133\) −23.2762 + 42.0888i −0.175009 + 0.316457i
\(134\) 76.5873 + 6.84691i 0.571547 + 0.0510963i
\(135\) 147.185 159.274i 1.09026 1.17981i
\(136\) −151.197 41.4366i −1.11174 0.304681i
\(137\) 158.086i 1.15392i 0.816774 + 0.576958i \(0.195760\pi\)
−0.816774 + 0.576958i \(0.804240\pi\)
\(138\) −208.664 18.6546i −1.51206 0.135178i
\(139\) −13.1028 −0.0942645 −0.0471322 0.998889i \(-0.515008\pi\)
−0.0471322 + 0.998889i \(0.515008\pi\)
\(140\) −138.604 + 19.7212i −0.990029 + 0.140866i
\(141\) 354.408i 2.51354i
\(142\) −132.098 11.8096i −0.930269 0.0831661i
\(143\) 222.781 1.55791
\(144\) −261.418 97.4007i −1.81540 0.676394i
\(145\) −7.86852 + 8.51480i −0.0542657 + 0.0587228i
\(146\) 98.2400 + 8.78267i 0.672877 + 0.0601553i
\(147\) 213.392 133.926i 1.45165 0.911061i
\(148\) 119.233 + 21.4906i 0.805628 + 0.145207i
\(149\) 16.7007i 0.112086i −0.998428 0.0560428i \(-0.982152\pi\)
0.998428 0.0560428i \(-0.0178483\pi\)
\(150\) 257.065 + 2.65020i 1.71377 + 0.0176680i
\(151\) 108.405 0.717914 0.358957 0.933354i \(-0.383132\pi\)
0.358957 + 0.933354i \(0.383132\pi\)
\(152\) −53.0123 14.5284i −0.348765 0.0955815i
\(153\) −341.682 −2.23322
\(154\) 214.711 + 145.110i 1.39423 + 0.942273i
\(155\) −22.0377 + 23.8478i −0.142179 + 0.153857i
\(156\) 243.597 + 43.9061i 1.56152 + 0.281450i
\(157\) 60.9427i 0.388170i −0.980985 0.194085i \(-0.937826\pi\)
0.980985 0.194085i \(-0.0621738\pi\)
\(158\) 89.3613 + 7.98891i 0.565578 + 0.0505627i
\(159\) 75.3418i 0.473847i
\(160\) −59.2001 148.645i −0.370001 0.929031i
\(161\) 124.797 + 69.0159i 0.775136 + 0.428670i
\(162\) −131.648 11.7694i −0.812642 0.0726503i
\(163\) −237.235 −1.45543 −0.727713 0.685881i \(-0.759417\pi\)
−0.727713 + 0.685881i \(0.759417\pi\)
\(164\) 34.2603 190.081i 0.208904 1.15903i
\(165\) −349.491 322.965i −2.11813 1.95736i
\(166\) −5.47624 + 61.2554i −0.0329894 + 0.369009i
\(167\) −109.805 −0.657518 −0.328759 0.944414i \(-0.606630\pi\)
−0.328759 + 0.944414i \(0.606630\pi\)
\(168\) 206.175 + 200.985i 1.22723 + 1.19634i
\(169\) 24.1512 0.142906
\(170\) −131.508 145.286i −0.773577 0.854624i
\(171\) −119.800 −0.700584
\(172\) −275.764 49.7039i −1.60328 0.288976i
\(173\) 25.0358i 0.144715i −0.997379 0.0723577i \(-0.976948\pi\)
0.997379 0.0723577i \(-0.0230523\pi\)
\(174\) 23.7494 + 2.12320i 0.136491 + 0.0122023i
\(175\) −159.337 72.3648i −0.910498 0.413513i
\(176\) −103.404 + 277.531i −0.587524 + 1.57688i
\(177\) 120.034i 0.678159i
\(178\) 24.1060 269.641i 0.135427 1.51484i
\(179\) 185.824i 1.03812i 0.854737 + 0.519062i \(0.173719\pi\)
−0.854737 + 0.519062i \(0.826281\pi\)
\(180\) −210.066 278.345i −1.16703 1.54636i
\(181\) 112.689 0.622590 0.311295 0.950313i \(-0.399237\pi\)
0.311295 + 0.950313i \(0.399237\pi\)
\(182\) −139.602 94.3486i −0.767044 0.518399i
\(183\) 336.568i 1.83917i
\(184\) −43.0780 + 157.186i −0.234119 + 0.854273i
\(185\) 111.224 + 102.782i 0.601210 + 0.555578i
\(186\) 66.5160 + 5.94654i 0.357613 + 0.0319706i
\(187\) 362.743i 1.93980i
\(188\) 271.347 + 48.9078i 1.44334 + 0.260148i
\(189\) 265.693 + 146.935i 1.40578 + 0.777433i
\(190\) −46.1090 50.9398i −0.242679 0.268104i
\(191\) −293.237 −1.53527 −0.767636 0.640886i \(-0.778567\pi\)
−0.767636 + 0.640886i \(0.778567\pi\)
\(192\) −167.763 + 283.085i −0.873765 + 1.47440i
\(193\) 98.3546i 0.509609i 0.966993 + 0.254805i \(0.0820111\pi\)
−0.966993 + 0.254805i \(0.917989\pi\)
\(194\) −73.4207 6.56382i −0.378457 0.0338341i
\(195\) 227.234 + 209.987i 1.16530 + 1.07686i
\(196\) −73.0905 181.862i −0.372910 0.927867i
\(197\) 286.507 1.45435 0.727175 0.686452i \(-0.240833\pi\)
0.727175 + 0.686452i \(0.240833\pi\)
\(198\) −57.4781 + 642.931i −0.290294 + 3.24713i
\(199\) 102.976i 0.517467i −0.965949 0.258734i \(-0.916695\pi\)
0.965949 0.258734i \(-0.0833052\pi\)
\(200\) 37.5037 196.452i 0.187519 0.982261i
\(201\) 197.675i 0.983458i
\(202\) −233.473 20.8725i −1.15581 0.103329i
\(203\) −14.2039 7.85513i −0.0699700 0.0386952i
\(204\) −71.4902 + 396.637i −0.350442 + 1.94430i
\(205\) 163.855 177.313i 0.799291 0.864941i
\(206\) −266.429 23.8188i −1.29335 0.115625i
\(207\) 355.217i 1.71602i
\(208\) 67.2320 180.447i 0.323231 0.867534i
\(209\) 127.184i 0.608536i
\(210\) 82.2264 + 350.392i 0.391554 + 1.66853i
\(211\) 171.846i 0.814437i −0.913331 0.407218i \(-0.866499\pi\)
0.913331 0.407218i \(-0.133501\pi\)
\(212\) 57.6842 + 10.3970i 0.272095 + 0.0490427i
\(213\) 340.951i 1.60071i
\(214\) −148.137 13.2435i −0.692230 0.0618855i
\(215\) −257.240 237.716i −1.19647 1.10565i
\(216\) −91.7131 + 334.650i −0.424597 + 1.54930i
\(217\) −39.7815 22.0002i −0.183325 0.101383i
\(218\) −5.14872 + 57.5918i −0.0236180 + 0.264183i
\(219\) 253.562i 1.15782i
\(220\) −295.502 + 223.014i −1.34319 + 1.01370i
\(221\) 235.850i 1.06720i
\(222\) 27.7341 310.225i 0.124929 1.39741i
\(223\) 7.43778 0.0333533 0.0166766 0.999861i \(-0.494691\pi\)
0.0166766 + 0.999861i \(0.494691\pi\)
\(224\) 182.332 130.119i 0.813984 0.580887i
\(225\) −34.3366 434.542i −0.152607 1.93130i
\(226\) 25.3958 284.069i 0.112371 1.25694i
\(227\) 75.9403i 0.334539i −0.985911 0.167269i \(-0.946505\pi\)
0.985911 0.167269i \(-0.0534949\pi\)
\(228\) −25.0657 + 139.068i −0.109937 + 0.609947i
\(229\) −219.553 −0.958749 −0.479374 0.877611i \(-0.659136\pi\)
−0.479374 + 0.877611i \(0.659136\pi\)
\(230\) −151.041 + 136.717i −0.656700 + 0.594423i
\(231\) 322.415 583.002i 1.39574 2.52382i
\(232\) 4.90297 17.8903i 0.0211335 0.0771136i
\(233\) 352.875i 1.51448i −0.653134 0.757242i \(-0.726546\pi\)
0.653134 0.757242i \(-0.273454\pi\)
\(234\) 37.3715 418.025i 0.159707 1.78643i
\(235\) 253.120 + 233.908i 1.07711 + 0.995355i
\(236\) 91.9022 + 16.5645i 0.389416 + 0.0701886i
\(237\) 230.645i 0.973187i
\(238\) 153.623 227.307i 0.645476 0.955073i
\(239\) −23.9344 −0.100144 −0.0500721 0.998746i \(-0.515945\pi\)
−0.0500721 + 0.998746i \(0.515945\pi\)
\(240\) −367.065 + 185.614i −1.52944 + 0.773391i
\(241\) 31.4618i 0.130547i −0.997867 0.0652734i \(-0.979208\pi\)
0.997867 0.0652734i \(-0.0207919\pi\)
\(242\) 441.521 + 39.4721i 1.82447 + 0.163108i
\(243\) 50.5737i 0.208122i
\(244\) −257.688 46.4458i −1.05610 0.190352i
\(245\) 45.1876 240.797i 0.184439 0.982844i
\(246\) −494.560 44.2137i −2.01040 0.179730i
\(247\) 82.6933i 0.334791i
\(248\) 13.7320 50.1063i 0.0553709 0.202041i
\(249\) 158.103 0.634952
\(250\) 171.555 181.848i 0.686220 0.727394i
\(251\) 429.837 1.71250 0.856249 0.516564i \(-0.172789\pi\)
0.856249 + 0.516564i \(0.172789\pi\)
\(252\) 308.302 378.541i 1.22342 1.50215i
\(253\) 377.112 1.49056
\(254\) 29.3286 328.060i 0.115467 1.29158i
\(255\) −341.912 + 369.995i −1.34083 + 1.45096i
\(256\) 193.588 + 167.510i 0.756204 + 0.654336i
\(257\) 181.078 0.704586 0.352293 0.935890i \(-0.385402\pi\)
0.352293 + 0.935890i \(0.385402\pi\)
\(258\) −64.1439 + 717.492i −0.248620 + 2.78098i
\(259\) −102.607 + 185.538i −0.396166 + 0.716361i
\(260\) 192.131 145.000i 0.738966 0.557694i
\(261\) 40.4295i 0.154902i
\(262\) −1.36317 0.121867i −0.00520294 0.000465143i
\(263\) 247.354i 0.940508i −0.882531 0.470254i \(-0.844162\pi\)
0.882531 0.470254i \(-0.155838\pi\)
\(264\) 734.312 + 201.243i 2.78148 + 0.762285i
\(265\) 53.8095 + 49.7253i 0.203055 + 0.187643i
\(266\) 53.8630 79.6979i 0.202492 0.299616i
\(267\) −695.956 −2.60658
\(268\) −151.347 27.2788i −0.564726 0.101787i
\(269\) −314.890 −1.17059 −0.585297 0.810819i \(-0.699022\pi\)
−0.585297 + 0.810819i \(0.699022\pi\)
\(270\) −321.567 + 291.071i −1.19099 + 1.07804i
\(271\) 275.203i 1.01551i 0.861502 + 0.507754i \(0.169524\pi\)
−0.861502 + 0.507754i \(0.830476\pi\)
\(272\) 293.813 + 109.471i 1.08020 + 0.402466i
\(273\) −209.630 + 379.060i −0.767875 + 1.38850i
\(274\) 28.1536 314.917i 0.102750 1.14933i
\(275\) −461.326 + 36.4530i −1.67755 + 0.132556i
\(276\) 412.349 + 74.3221i 1.49402 + 0.269283i
\(277\) 393.344 1.42001 0.710006 0.704195i \(-0.248692\pi\)
0.710006 + 0.704195i \(0.248692\pi\)
\(278\) 26.1014 + 2.33347i 0.0938900 + 0.00839378i
\(279\) 113.233i 0.405852i
\(280\) 279.619 14.6017i 0.998639 0.0521491i
\(281\) 165.416 0.588667 0.294334 0.955703i \(-0.404902\pi\)
0.294334 + 0.955703i \(0.404902\pi\)
\(282\) 63.1166 706.001i 0.223818 2.50355i
\(283\) 501.665i 1.77267i 0.463048 + 0.886333i \(0.346756\pi\)
−0.463048 + 0.886333i \(0.653244\pi\)
\(284\) 261.044 + 47.0507i 0.919168 + 0.165672i
\(285\) −119.880 + 129.727i −0.420633 + 0.455181i
\(286\) −443.791 39.6750i −1.55172 0.138724i
\(287\) 295.784 + 163.576i 1.03060 + 0.569951i
\(288\) 503.413 + 240.584i 1.74796 + 0.835359i
\(289\) 95.0241 0.328803
\(290\) 17.1909 15.5606i 0.0592791 0.0536574i
\(291\) 189.502i 0.651210i
\(292\) −194.135 34.9911i −0.664847 0.119833i
\(293\) 551.653i 1.88277i −0.337327 0.941387i \(-0.609523\pi\)
0.337327 0.941387i \(-0.390477\pi\)
\(294\) −448.940 + 228.785i −1.52701 + 0.778180i
\(295\) 85.7290 + 79.2221i 0.290607 + 0.268550i
\(296\) −233.691 64.0447i −0.789497 0.216367i
\(297\) 802.871 2.70327
\(298\) −2.97423 + 33.2688i −0.00998065 + 0.111640i
\(299\) −245.193 −0.820043
\(300\) −511.617 51.0601i −1.70539 0.170200i
\(301\) 237.311 429.114i 0.788409 1.42563i
\(302\) −215.949 19.3059i −0.715062 0.0639267i
\(303\) 602.604i 1.98879i
\(304\) 103.016 + 38.3823i 0.338869 + 0.126258i
\(305\) −240.378 222.134i −0.788126 0.728307i
\(306\) 680.650 + 60.8502i 2.22435 + 0.198857i
\(307\) 143.310i 0.466809i 0.972380 + 0.233405i \(0.0749867\pi\)
−0.972380 + 0.233405i \(0.925013\pi\)
\(308\) −401.873 327.305i −1.30478 1.06268i
\(309\) 687.666i 2.22546i
\(310\) 48.1474 43.5814i 0.155314 0.140585i
\(311\) 204.664i 0.658085i 0.944315 + 0.329043i \(0.106726\pi\)
−0.944315 + 0.329043i \(0.893274\pi\)
\(312\) −477.439 130.846i −1.53025 0.419377i
\(313\) −213.198 −0.681143 −0.340571 0.940219i \(-0.610621\pi\)
−0.340571 + 0.940219i \(0.610621\pi\)
\(314\) −10.8533 + 121.401i −0.0345646 + 0.386628i
\(315\) 579.341 191.770i 1.83918 0.608794i
\(316\) −176.590 31.8287i −0.558829 0.100724i
\(317\) −169.509 −0.534729 −0.267364 0.963595i \(-0.586153\pi\)
−0.267364 + 0.963595i \(0.586153\pi\)
\(318\) 13.4176 150.085i 0.0421937 0.471965i
\(319\) −42.9214 −0.134550
\(320\) 91.4577 + 306.652i 0.285805 + 0.958288i
\(321\) 382.349i 1.19112i
\(322\) −236.311 159.708i −0.733886 0.495989i
\(323\) 134.646 0.416859
\(324\) 260.154 + 46.8904i 0.802945 + 0.144723i
\(325\) 299.948 23.7012i 0.922917 0.0729269i
\(326\) 472.584 + 42.2491i 1.44965 + 0.129598i
\(327\) 148.647 0.454578
\(328\) −102.100 + 372.550i −0.311280 + 1.13582i
\(329\) −233.510 + 422.241i −0.709758 + 1.28341i
\(330\) 638.689 + 705.604i 1.93542 + 2.13819i
\(331\) 52.7511i 0.159369i 0.996820 + 0.0796845i \(0.0253913\pi\)
−0.996820 + 0.0796845i \(0.974609\pi\)
\(332\) 21.8180 121.049i 0.0657167 0.364605i
\(333\) −528.107 −1.58591
\(334\) 218.738 + 19.5552i 0.654906 + 0.0585486i
\(335\) −141.181 130.465i −0.421435 0.389447i
\(336\) −374.918 437.090i −1.11583 1.30086i
\(337\) 103.564i 0.307312i −0.988124 0.153656i \(-0.950895\pi\)
0.988124 0.153656i \(-0.0491048\pi\)
\(338\) −48.1105 4.30108i −0.142339 0.0127251i
\(339\) −733.194 −2.16281
\(340\) 236.097 + 312.838i 0.694404 + 0.920112i
\(341\) −120.212 −0.352528
\(342\) 238.648 + 21.3351i 0.697801 + 0.0623835i
\(343\) 342.476 18.9605i 0.998471 0.0552786i
\(344\) 540.485 + 148.124i 1.57118 + 0.430592i
\(345\) 384.651 + 355.456i 1.11493 + 1.03031i
\(346\) −4.45862 + 49.8726i −0.0128862 + 0.144141i
\(347\) −336.770 −0.970518 −0.485259 0.874370i \(-0.661275\pi\)
−0.485259 + 0.874370i \(0.661275\pi\)
\(348\) −46.9320 8.45906i −0.134862 0.0243076i
\(349\) 294.617 0.844175 0.422088 0.906555i \(-0.361297\pi\)
0.422088 + 0.906555i \(0.361297\pi\)
\(350\) 304.521 + 172.531i 0.870060 + 0.492946i
\(351\) −522.016 −1.48722
\(352\) 255.413 534.443i 0.725604 1.51830i
\(353\) 524.774 1.48661 0.743307 0.668951i \(-0.233256\pi\)
0.743307 + 0.668951i \(0.233256\pi\)
\(354\) 21.3769 239.115i 0.0603867 0.675465i
\(355\) 243.509 + 225.027i 0.685941 + 0.633878i
\(356\) −96.0408 + 532.847i −0.269778 + 1.49676i
\(357\) −617.205 341.330i −1.72887 0.956107i
\(358\) 33.0934 370.172i 0.0924397 1.03400i
\(359\) 267.798 0.745954 0.372977 0.927840i \(-0.378337\pi\)
0.372977 + 0.927840i \(0.378337\pi\)
\(360\) 368.892 + 591.890i 1.02470 + 1.64414i
\(361\) −313.791 −0.869227
\(362\) −224.482 20.0688i −0.620117 0.0554385i
\(363\) 1139.59i 3.13936i
\(364\) 261.292 + 212.809i 0.717836 + 0.584641i
\(365\) −181.095 167.350i −0.496151 0.458493i
\(366\) −59.9393 + 670.461i −0.163769 + 1.83186i
\(367\) −358.839 −0.977763 −0.488882 0.872350i \(-0.662595\pi\)
−0.488882 + 0.872350i \(0.662595\pi\)
\(368\) 113.807 305.452i 0.309258 0.830032i
\(369\) 841.907i 2.28159i
\(370\) −203.260 224.555i −0.549351 0.606906i
\(371\) −49.6407 + 89.7620i −0.133802 + 0.241946i
\(372\) −131.445 23.6917i −0.353346 0.0636873i
\(373\) 76.3933 0.204808 0.102404 0.994743i \(-0.467347\pi\)
0.102404 + 0.994743i \(0.467347\pi\)
\(374\) 64.6009 722.604i 0.172730 1.93210i
\(375\) −504.909 397.652i −1.34642 1.06041i
\(376\) −531.828 145.751i −1.41444 0.387636i
\(377\) 27.9069 0.0740237
\(378\) −503.107 340.020i −1.33097 0.899523i
\(379\) 435.652i 1.14948i −0.818337 0.574739i \(-0.805104\pi\)
0.818337 0.574739i \(-0.194896\pi\)
\(380\) 82.7798 + 109.687i 0.217842 + 0.288649i
\(381\) −846.738 −2.22241
\(382\) 584.144 + 52.2226i 1.52917 + 0.136708i
\(383\) −196.615 −0.513356 −0.256678 0.966497i \(-0.582628\pi\)
−0.256678 + 0.966497i \(0.582628\pi\)
\(384\) 384.607 534.043i 1.00158 1.39074i
\(385\) −203.590 615.050i −0.528806 1.59753i
\(386\) 17.5160 195.928i 0.0453781 0.507585i
\(387\) 1221.41 3.15611
\(388\) 145.089 + 26.1510i 0.373941 + 0.0673994i
\(389\) 473.370i 1.21689i 0.793596 + 0.608445i \(0.208206\pi\)
−0.793596 + 0.608445i \(0.791794\pi\)
\(390\) −415.267 458.774i −1.06479 1.17634i
\(391\) 399.236i 1.02106i
\(392\) 113.212 + 375.296i 0.288807 + 0.957387i
\(393\) 3.51840i 0.00895267i
\(394\) −570.737 51.0240i −1.44857 0.129503i
\(395\) −164.728 152.225i −0.417033 0.385380i
\(396\) 228.999 1270.52i 0.578281 3.20838i
\(397\) 102.950i 0.259320i −0.991559 0.129660i \(-0.958611\pi\)
0.991559 0.129660i \(-0.0413886\pi\)
\(398\) −18.3390 + 205.134i −0.0460779 + 0.515412i
\(399\) −216.403 119.676i −0.542363 0.299941i
\(400\) −109.696 + 384.665i −0.274239 + 0.961662i
\(401\) 274.940 0.685636 0.342818 0.939402i \(-0.388619\pi\)
0.342818 + 0.939402i \(0.388619\pi\)
\(402\) −35.2039 + 393.780i −0.0875720 + 0.979551i
\(403\) 78.1602 0.193946
\(404\) 461.374 + 83.1583i 1.14201 + 0.205837i
\(405\) 242.679 + 224.260i 0.599208 + 0.553728i
\(406\) 26.8961 + 18.1774i 0.0662465 + 0.0447720i
\(407\) 560.658i 1.37754i
\(408\) 213.050 777.392i 0.522181 1.90537i
\(409\) 319.228i 0.780508i −0.920707 0.390254i \(-0.872387\pi\)
0.920707 0.390254i \(-0.127613\pi\)
\(410\) −357.985 + 324.036i −0.873135 + 0.790332i
\(411\) −812.814 −1.97765
\(412\) 526.500 + 94.8968i 1.27791 + 0.230332i
\(413\) −79.0873 + 143.008i −0.191495 + 0.346267i
\(414\) 63.2606 707.612i 0.152803 1.70921i
\(415\) 104.347 112.918i 0.251440 0.272092i
\(416\) −166.066 + 347.487i −0.399196 + 0.835306i
\(417\) 67.3689i 0.161556i
\(418\) 22.6502 253.358i 0.0541871 0.606119i
\(419\) −509.481 −1.21594 −0.607972 0.793958i \(-0.708017\pi\)
−0.607972 + 0.793958i \(0.708017\pi\)
\(420\) −101.398 712.644i −0.241424 1.69677i
\(421\) 635.328i 1.50909i −0.656247 0.754546i \(-0.727857\pi\)
0.656247 0.754546i \(-0.272143\pi\)
\(422\) −30.6041 + 342.327i −0.0725215 + 0.811201i
\(423\) −1201.85 −2.84126
\(424\) −113.058 30.9845i −0.266647 0.0730765i
\(425\) 38.5916 + 488.391i 0.0908038 + 1.14916i
\(426\) 60.7200 679.194i 0.142535 1.59435i
\(427\) 221.756 400.986i 0.519334 0.939077i
\(428\) 292.739 + 52.7635i 0.683970 + 0.123279i
\(429\) 1145.44i 2.67003i
\(430\) 470.102 + 519.355i 1.09326 + 1.20780i
\(431\) −271.590 −0.630138 −0.315069 0.949069i \(-0.602028\pi\)
−0.315069 + 0.949069i \(0.602028\pi\)
\(432\) 242.295 650.307i 0.560869 1.50534i
\(433\) 679.871 1.57014 0.785071 0.619406i \(-0.212627\pi\)
0.785071 + 0.619406i \(0.212627\pi\)
\(434\) 75.3290 + 50.9103i 0.173569 + 0.117305i
\(435\) −43.7795 40.4566i −0.100643 0.0930038i
\(436\) 20.5131 113.809i 0.0470483 0.261030i
\(437\) 139.979i 0.320318i
\(438\) −45.1568 + 505.109i −0.103098 + 1.15322i
\(439\) 258.502i 0.588843i −0.955676 0.294421i \(-0.904873\pi\)
0.955676 0.294421i \(-0.0951269\pi\)
\(440\) 628.372 391.630i 1.42812 0.890067i
\(441\) 454.163 + 723.645i 1.02985 + 1.64092i
\(442\) −42.0026 + 469.827i −0.0950285 + 1.06296i
\(443\) −139.976 −0.315974 −0.157987 0.987441i \(-0.550500\pi\)
−0.157987 + 0.987441i \(0.550500\pi\)
\(444\) −110.496 + 613.046i −0.248864 + 1.38073i
\(445\) −459.329 + 497.056i −1.03220 + 1.11698i
\(446\) −14.8165 1.32459i −0.0332208 0.00296994i
\(447\) 85.8682 0.192099
\(448\) −386.389 + 226.732i −0.862476 + 0.506098i
\(449\) 246.858 0.549794 0.274897 0.961474i \(-0.411356\pi\)
0.274897 + 0.961474i \(0.411356\pi\)
\(450\) −8.98721 + 871.747i −0.0199716 + 1.93722i
\(451\) 893.800 1.98182
\(452\) −101.180 + 561.358i −0.223849 + 1.24194i
\(453\) 557.373i 1.23040i
\(454\) −13.5242 + 151.277i −0.0297890 + 0.333210i
\(455\) 132.372 + 399.897i 0.290927 + 0.878894i
\(456\) 74.6989 272.567i 0.163813 0.597735i
\(457\) 445.711i 0.975297i 0.873040 + 0.487648i \(0.162145\pi\)
−0.873040 + 0.487648i \(0.837855\pi\)
\(458\) 437.363 + 39.1003i 0.954940 + 0.0853718i
\(459\) 849.974i 1.85179i
\(460\) 325.230 245.449i 0.707022 0.533586i
\(461\) −194.924 −0.422828 −0.211414 0.977397i \(-0.567807\pi\)
−0.211414 + 0.977397i \(0.567807\pi\)
\(462\) −746.095 + 1103.95i −1.61492 + 2.38951i
\(463\) 279.703i 0.604109i −0.953291 0.302055i \(-0.902327\pi\)
0.953291 0.302055i \(-0.0976725\pi\)
\(464\) −12.9531 + 34.7654i −0.0279161 + 0.0749254i
\(465\) −122.615 113.309i −0.263689 0.243675i
\(466\) −62.8435 + 702.946i −0.134857 + 1.50847i
\(467\) 590.130i 1.26366i −0.775106 0.631831i \(-0.782304\pi\)
0.775106 0.631831i \(-0.217696\pi\)
\(468\) −148.892 + 826.074i −0.318146 + 1.76511i
\(469\) 130.243 235.510i 0.277703 0.502153i
\(470\) −462.573 511.037i −0.984198 1.08731i
\(471\) 313.342 0.665270
\(472\) −180.124 49.3643i −0.381619 0.104585i
\(473\) 1296.70i 2.74143i
\(474\) −41.0756 + 459.458i −0.0866575 + 0.969321i
\(475\) 13.5309 + 171.238i 0.0284861 + 0.360502i
\(476\) −346.507 + 425.450i −0.727956 + 0.893802i
\(477\) −255.495 −0.535629
\(478\) 47.6787 + 4.26248i 0.0997463 + 0.00891733i
\(479\) 259.677i 0.542122i −0.962562 0.271061i \(-0.912625\pi\)
0.962562 0.271061i \(-0.0873746\pi\)
\(480\) 764.271 304.382i 1.59223 0.634130i
\(481\) 364.532i 0.757863i
\(482\) −5.60303 + 62.6736i −0.0116245 + 0.130028i
\(483\) −354.851 + 641.653i −0.734681 + 1.32847i
\(484\) −872.505 157.261i −1.80270 0.324920i
\(485\) 135.343 + 125.071i 0.279059 + 0.257878i
\(486\) −9.00667 + 100.746i −0.0185323 + 0.207296i
\(487\) 743.395i 1.52648i −0.646116 0.763239i \(-0.723608\pi\)
0.646116 0.763239i \(-0.276392\pi\)
\(488\) 505.056 + 138.414i 1.03495 + 0.283636i
\(489\) 1219.76i 2.49440i
\(490\) −132.900 + 471.633i −0.271224 + 0.962516i
\(491\) 489.837i 0.997631i 0.866708 + 0.498816i \(0.166232\pi\)
−0.866708 + 0.498816i \(0.833768\pi\)
\(492\) 977.316 + 176.152i 1.98641 + 0.358033i
\(493\) 45.4395i 0.0921694i
\(494\) −14.7268 + 164.730i −0.0298114 + 0.333461i
\(495\) 1095.22 1185.18i 2.21257 2.39430i
\(496\) −36.2783 + 97.3690i −0.0731417 + 0.196308i
\(497\) −224.644 + 406.208i −0.451999 + 0.817321i
\(498\) −314.950 28.1565i −0.632429 0.0565393i
\(499\) 443.911i 0.889602i −0.895630 0.444801i \(-0.853274\pi\)
0.895630 0.444801i \(-0.146726\pi\)
\(500\) −374.133 + 331.700i −0.748265 + 0.663400i
\(501\) 564.574i 1.12689i
\(502\) −856.259 76.5496i −1.70569 0.152489i
\(503\) −909.757 −1.80866 −0.904331 0.426833i \(-0.859629\pi\)
−0.904331 + 0.426833i \(0.859629\pi\)
\(504\) −681.569 + 699.169i −1.35232 + 1.38724i
\(505\) 430.383 + 397.716i 0.852243 + 0.787557i
\(506\) −751.227 67.1598i −1.48464 0.132727i
\(507\) 124.175i 0.244921i
\(508\) −116.848 + 648.291i −0.230017 + 1.27616i
\(509\) 343.817 0.675475 0.337738 0.941240i \(-0.390338\pi\)
0.337738 + 0.941240i \(0.390338\pi\)
\(510\) 747.000 676.159i 1.46471 1.32580i
\(511\) 167.065 302.093i 0.326938 0.591180i
\(512\) −355.806 368.165i −0.694934 0.719073i
\(513\) 298.016i 0.580927i
\(514\) −360.718 32.2483i −0.701787 0.0627398i
\(515\) 491.135 + 453.857i 0.953660 + 0.881276i
\(516\) 255.556 1417.86i 0.495264 2.74779i
\(517\) 1275.93i 2.46795i
\(518\) 237.441 351.328i 0.458381 0.678239i
\(519\) 128.723 0.248022
\(520\) −408.559 + 254.632i −0.785691 + 0.489677i
\(521\) 117.982i 0.226453i −0.993569 0.113227i \(-0.963881\pi\)
0.993569 0.113227i \(-0.0361186\pi\)
\(522\) −7.20008 + 80.5377i −0.0137933 + 0.154287i
\(523\) 590.248i 1.12858i 0.825576 + 0.564290i \(0.190850\pi\)
−0.825576 + 0.564290i \(0.809150\pi\)
\(524\) 2.69380 + 0.485534i 0.00514085 + 0.000926591i
\(525\) 372.070 819.245i 0.708704 1.56047i
\(526\) −44.0512 + 492.742i −0.0837476 + 0.936772i
\(527\) 127.265i 0.241489i
\(528\) −1426.95 531.661i −2.70256 1.00693i
\(529\) 113.950 0.215407
\(530\) −98.3359 108.638i −0.185539 0.204978i
\(531\) −407.053 −0.766579
\(532\) −121.491 + 149.170i −0.228367 + 0.280395i
\(533\) −581.136 −1.09031
\(534\) 1386.38 + 123.943i 2.59622 + 0.232103i
\(535\) 273.076 + 252.349i 0.510422 + 0.471680i
\(536\) 296.633 + 81.2943i 0.553420 + 0.151668i
\(537\) −955.430 −1.77920
\(538\) 627.278 + 56.0787i 1.16594 + 0.104236i
\(539\) 768.249 482.156i 1.42532 0.894539i
\(540\) 692.415 522.562i 1.28225 0.967708i
\(541\) 31.3915i 0.0580249i −0.999579 0.0290125i \(-0.990764\pi\)
0.999579 0.0290125i \(-0.00923625\pi\)
\(542\) 49.0108 548.219i 0.0904259 1.01147i
\(543\) 579.399i 1.06703i
\(544\) −565.797 270.397i −1.04007 0.497053i
\(545\) 98.1066 106.165i 0.180012 0.194797i
\(546\) 485.101 717.775i 0.888463 1.31461i
\(547\) −189.695 −0.346791 −0.173396 0.984852i \(-0.555474\pi\)
−0.173396 + 0.984852i \(0.555474\pi\)
\(548\) −112.167 + 622.318i −0.204684 + 1.13562i
\(549\) 1141.35 2.07896
\(550\) 925.479 + 9.54116i 1.68269 + 0.0173476i
\(551\) 15.9319i 0.0289145i
\(552\) −808.185 221.489i −1.46410 0.401248i
\(553\) 151.966 274.790i 0.274803 0.496908i
\(554\) −783.562 70.0505i −1.41437 0.126445i
\(555\) −528.462 + 571.867i −0.952183 + 1.03039i
\(556\) −51.5799 9.29681i −0.0927696 0.0167209i
\(557\) 764.805 1.37308 0.686539 0.727093i \(-0.259129\pi\)
0.686539 + 0.727093i \(0.259129\pi\)
\(558\) −20.1656 + 225.566i −0.0361391 + 0.404239i
\(559\) 843.095i 1.50822i
\(560\) −559.617 20.7099i −0.999316 0.0369819i
\(561\) −1865.07 −3.32455
\(562\) −329.517 29.4589i −0.586329 0.0524179i
\(563\) 340.073i 0.604037i 0.953302 + 0.302018i \(0.0976604\pi\)
−0.953302 + 0.302018i \(0.902340\pi\)
\(564\) −251.463 + 1395.15i −0.445857 + 2.47368i
\(565\) −483.906 + 523.651i −0.856470 + 0.926816i
\(566\) 89.3414 999.343i 0.157847 1.76562i
\(567\) −223.878 + 404.824i −0.394847 + 0.713976i
\(568\) −511.634 140.217i −0.900764 0.246861i
\(569\) 86.0796 0.151282 0.0756411 0.997135i \(-0.475900\pi\)
0.0756411 + 0.997135i \(0.475900\pi\)
\(570\) 261.911 237.073i 0.459493 0.415918i
\(571\) 140.396i 0.245878i 0.992414 + 0.122939i \(0.0392319\pi\)
−0.992414 + 0.122939i \(0.960768\pi\)
\(572\) 876.991 + 158.070i 1.53320 + 0.276345i
\(573\) 1507.70i 2.63124i
\(574\) −560.086 378.528i −0.975760 0.659457i
\(575\) 507.737 40.1203i 0.883020 0.0697744i
\(576\) −959.982 568.909i −1.66664 0.987688i
\(577\) −905.252 −1.56889 −0.784447 0.620195i \(-0.787053\pi\)
−0.784447 + 0.620195i \(0.787053\pi\)
\(578\) −189.293 16.9228i −0.327497 0.0292783i
\(579\) −505.698 −0.873399
\(580\) −37.0165 + 27.9361i −0.0638215 + 0.0481658i
\(581\) 188.363 + 104.170i 0.324206 + 0.179294i
\(582\) 33.7484 377.498i 0.0579870 0.648623i
\(583\) 271.243i 0.465254i
\(584\) 380.497 + 104.278i 0.651536 + 0.178558i
\(585\) −712.097 + 770.586i −1.21726 + 1.31724i
\(586\) −98.2439 + 1098.92i −0.167652 + 1.87530i
\(587\) 263.910i 0.449592i 0.974406 + 0.224796i \(0.0721715\pi\)
−0.974406 + 0.224796i \(0.927828\pi\)
\(588\) 935.058 375.801i 1.59024 0.639117i
\(589\) 44.6212i 0.0757575i
\(590\) −156.668 173.082i −0.265539 0.293360i
\(591\) 1473.10i 2.49255i
\(592\) 454.120 + 169.199i 0.767095 + 0.285809i
\(593\) 373.359 0.629611 0.314805 0.949156i \(-0.398061\pi\)
0.314805 + 0.949156i \(0.398061\pi\)
\(594\) −1599.36 142.983i −2.69253 0.240713i
\(595\) −651.133 + 215.534i −1.09434 + 0.362243i
\(596\) 11.8497 65.7436i 0.0198820 0.110308i
\(597\) 529.459 0.886866
\(598\) 488.438 + 43.6664i 0.816785 + 0.0730207i
\(599\) −148.536 −0.247974 −0.123987 0.992284i \(-0.539568\pi\)
−0.123987 + 0.992284i \(0.539568\pi\)
\(600\) 1010.08 + 192.828i 1.68346 + 0.321381i
\(601\) 179.246i 0.298246i −0.988819 0.149123i \(-0.952355\pi\)
0.988819 0.149123i \(-0.0476451\pi\)
\(602\) −549.158 + 812.556i −0.912222 + 1.34976i
\(603\) 670.345 1.11168
\(604\) 426.744 + 76.9166i 0.706529 + 0.127345i
\(605\) −813.898 752.123i −1.34529 1.24318i
\(606\) 107.318 1200.42i 0.177092 1.98089i
\(607\) 597.716 0.984705 0.492353 0.870396i \(-0.336137\pi\)
0.492353 + 0.870396i \(0.336137\pi\)
\(608\) −198.378 94.8059i −0.326280 0.155931i
\(609\) 40.3878 73.0306i 0.0663182 0.119919i
\(610\) 439.287 + 485.311i 0.720143 + 0.795592i
\(611\) 829.593i 1.35776i
\(612\) −1345.06 242.434i −2.19780 0.396134i
\(613\) 505.433 0.824523 0.412261 0.911066i \(-0.364739\pi\)
0.412261 + 0.911066i \(0.364739\pi\)
\(614\) 25.5222 285.482i 0.0415670 0.464955i
\(615\) 911.669 + 842.473i 1.48239 + 1.36987i
\(616\) 742.264 + 723.579i 1.20497 + 1.17464i
\(617\) 579.639i 0.939448i 0.882813 + 0.469724i \(0.155647\pi\)
−0.882813 + 0.469724i \(0.844353\pi\)
\(618\) 122.466 1369.87i 0.198166 2.21662i
\(619\) 638.836 1.03205 0.516023 0.856575i \(-0.327412\pi\)
0.516023 + 0.856575i \(0.327412\pi\)
\(620\) −103.674 + 78.2420i −0.167216 + 0.126197i
\(621\) −883.642 −1.42293
\(622\) 36.4487 407.703i 0.0585992 0.655471i
\(623\) −829.161 458.547i −1.33092 0.736031i
\(624\) 927.784 + 345.679i 1.48683 + 0.553973i
\(625\) −617.244 + 98.1594i −0.987590 + 0.157055i
\(626\) 424.702 + 37.9684i 0.678437 + 0.0606524i
\(627\) −653.927 −1.04295
\(628\) 43.2407 239.905i 0.0688546 0.382015i
\(629\) 593.550 0.943641
\(630\) −1188.23 + 278.842i −1.88608 + 0.442606i
\(631\) −427.036 −0.676761 −0.338381 0.941009i \(-0.609879\pi\)
−0.338381 + 0.941009i \(0.609879\pi\)
\(632\) 346.108 + 94.8534i 0.547640 + 0.150085i
\(633\) 883.561 1.39583
\(634\) 337.671 + 30.1879i 0.532605 + 0.0476149i
\(635\) −558.844 + 604.745i −0.880069 + 0.952354i
\(636\) −53.4572 + 296.588i −0.0840523 + 0.466333i
\(637\) −499.505 + 313.491i −0.784152 + 0.492137i
\(638\) 85.5019 + 7.64388i 0.134016 + 0.0119810i
\(639\) −1156.22 −1.80941
\(640\) −127.577 627.156i −0.199339 0.979931i
\(641\) 934.945 1.45857 0.729286 0.684209i \(-0.239852\pi\)
0.729286 + 0.684209i \(0.239852\pi\)
\(642\) 68.0925 761.660i 0.106063 1.18639i
\(643\) 386.015i 0.600334i −0.953887 0.300167i \(-0.902958\pi\)
0.953887 0.300167i \(-0.0970425\pi\)
\(644\) 442.303 + 360.233i 0.686805 + 0.559368i
\(645\) 1222.23 1322.62i 1.89494 2.05058i
\(646\) −268.221 23.9790i −0.415203 0.0371192i
\(647\) −130.602 −0.201858 −0.100929 0.994894i \(-0.532181\pi\)
−0.100929 + 0.994894i \(0.532181\pi\)
\(648\) −509.891 139.739i −0.786868 0.215647i
\(649\) 432.143i 0.665860i
\(650\) −601.734 6.20353i −0.925744 0.00954390i
\(651\) 113.116 204.540i 0.173757 0.314194i
\(652\) −933.890 168.325i −1.43235 0.258167i
\(653\) −291.551 −0.446479 −0.223240 0.974764i \(-0.571663\pi\)
−0.223240 + 0.974764i \(0.571663\pi\)
\(654\) −296.113 26.4726i −0.452772 0.0404779i
\(655\) 2.51286 + 2.32213i 0.00383643 + 0.00354524i
\(656\) 269.736 723.957i 0.411183 1.10359i
\(657\) 859.865 1.30878
\(658\) 540.362 799.542i 0.821219 1.21511i
\(659\) 1166.00i 1.76934i 0.466217 + 0.884670i \(0.345617\pi\)
−0.466217 + 0.884670i \(0.654383\pi\)
\(660\) −1146.64 1519.35i −1.73734 2.30204i
\(661\) 640.576 0.969101 0.484551 0.874763i \(-0.338983\pi\)
0.484551 + 0.874763i \(0.338983\pi\)
\(662\) 9.39445 105.083i 0.0141910 0.158736i
\(663\) 1212.64 1.82903
\(664\) −65.0202 + 237.251i −0.0979219 + 0.357305i
\(665\) −228.299 + 75.5701i −0.343306 + 0.113639i
\(666\) 1052.02 + 94.0505i 1.57961 + 0.141217i
\(667\) 47.2394 0.0708238
\(668\) −432.257 77.9103i −0.647091 0.116632i
\(669\) 38.2420i 0.0571629i
\(670\) 258.005 + 285.036i 0.385082 + 0.425427i
\(671\) 1211.70i 1.80581i
\(672\) 669.016 + 937.477i 0.995559 + 1.39506i
\(673\) 188.966i 0.280782i −0.990096 0.140391i \(-0.955164\pi\)
0.990096 0.140391i \(-0.0448360\pi\)
\(674\) −18.4437 + 206.305i −0.0273646 + 0.306091i
\(675\) 1080.97 85.4161i 1.60144 0.126542i
\(676\) 95.0727 + 17.1360i 0.140640 + 0.0253491i
\(677\) 330.026i 0.487483i 0.969840 + 0.243741i \(0.0783748\pi\)
−0.969840 + 0.243741i \(0.921625\pi\)
\(678\) 1460.56 + 130.575i 2.15422 + 0.192588i
\(679\) −124.858 + 225.772i −0.183885 + 0.332507i
\(680\) −414.606 665.237i −0.609714 0.978290i
\(681\) 390.453 0.573353
\(682\) 239.469 + 21.4086i 0.351128 + 0.0313908i
\(683\) −728.224 −1.06621 −0.533107 0.846048i \(-0.678976\pi\)
−0.533107 + 0.846048i \(0.678976\pi\)
\(684\) −471.600 85.0016i −0.689474 0.124271i
\(685\) −536.455 + 580.516i −0.783145 + 0.847469i
\(686\) −685.607 23.2210i −0.999427 0.0338499i
\(687\) 1128.85i 1.64316i
\(688\) −1050.30 391.325i −1.52659 0.568787i
\(689\) 176.359i 0.255963i
\(690\) −702.943 776.590i −1.01876 1.12549i
\(691\) 1206.78 1.74643 0.873216 0.487334i \(-0.162030\pi\)
0.873216 + 0.487334i \(0.162030\pi\)
\(692\) 17.7636 98.5550i 0.0256700 0.142421i
\(693\) 1977.05 + 1093.36i 2.85288 + 1.57772i
\(694\) 670.864 + 59.9753i 0.966663 + 0.0864198i
\(695\) −48.1153 44.4633i −0.0692306 0.0639759i
\(696\) 91.9847 + 25.2090i 0.132162 + 0.0362199i
\(697\) 946.237i 1.35758i
\(698\) −586.894 52.4684i −0.840822 0.0751696i
\(699\) 1814.33 2.59561
\(700\) −575.897 397.923i −0.822709 0.568462i
\(701\) 390.880i 0.557603i −0.960349 0.278801i \(-0.910063\pi\)
0.960349 0.278801i \(-0.0899371\pi\)
\(702\) 1039.88 + 92.9658i 1.48132 + 0.132430i
\(703\) 208.109 0.296030
\(704\) −603.975 + 1019.15i −0.857919 + 1.44766i
\(705\) −1202.66 + 1301.44i −1.70590 + 1.84601i
\(706\) −1045.38 93.4571i −1.48071 0.132375i
\(707\) −397.039 + 717.940i −0.561583 + 1.01547i
\(708\) −85.1678 + 472.522i −0.120294 + 0.667405i
\(709\) 790.112i 1.11440i −0.830377 0.557202i \(-0.811875\pi\)
0.830377 0.557202i \(-0.188125\pi\)
\(710\) −445.009 491.632i −0.626773 0.692439i
\(711\) 782.153 1.10007
\(712\) 286.213 1044.36i 0.401985 1.46679i
\(713\) 132.306 0.185562
\(714\) 1168.72 + 789.867i 1.63686 + 1.10626i
\(715\) 818.083 + 755.989i 1.14417 + 1.05733i
\(716\) −131.848 + 731.509i −0.184145 + 1.02166i
\(717\) 123.061i 0.171633i
\(718\) −533.468 47.6921i −0.742991 0.0664235i
\(719\) 1349.86i 1.87742i −0.344710 0.938709i \(-0.612023\pi\)
0.344710 0.938709i \(-0.387977\pi\)
\(720\) −629.444 1244.77i −0.874227 1.72885i
\(721\) −453.085 + 819.283i −0.628412 + 1.13632i
\(722\) 625.089 + 55.8830i 0.865774 + 0.0774003i
\(723\) 161.763 0.223739
\(724\) 443.607 + 79.9561i 0.612717 + 0.110437i
\(725\) −57.7887 + 4.56634i −0.0797086 + 0.00629840i
\(726\) −202.949 + 2270.12i −0.279544 + 3.12688i
\(727\) 543.377 0.747423 0.373712 0.927545i \(-0.378085\pi\)
0.373712 + 0.927545i \(0.378085\pi\)
\(728\) −482.610 470.461i −0.662925 0.646238i
\(729\) 854.808 1.17258
\(730\) 330.948 + 365.622i 0.453354 + 0.500851i
\(731\) −1372.77 −1.87794
\(732\) 238.805 1324.92i 0.326236 1.81000i
\(733\) 772.693i 1.05415i −0.849818 0.527076i \(-0.823288\pi\)
0.849818 0.527076i \(-0.176712\pi\)
\(734\) 714.827 + 63.9056i 0.973879 + 0.0870649i
\(735\) 1238.08 + 232.336i 1.68446 + 0.316103i
\(736\) −281.108 + 588.209i −0.381940 + 0.799197i
\(737\) 711.664i 0.965623i
\(738\) 149.935 1677.12i 0.203164 2.27253i
\(739\) 1333.98i 1.80511i −0.430570 0.902557i \(-0.641687\pi\)
0.430570 0.902557i \(-0.358313\pi\)
\(740\) 364.914 + 483.525i 0.493127 + 0.653412i
\(741\) 425.174 0.573784
\(742\) 114.873 169.970i 0.154815 0.229071i
\(743\) 1224.39i 1.64790i 0.566666 + 0.823948i \(0.308233\pi\)
−0.566666 + 0.823948i \(0.691767\pi\)
\(744\) 257.626 + 70.6041i 0.346271 + 0.0948980i
\(745\) 56.6727 61.3276i 0.0760708 0.0823189i
\(746\) −152.180 13.6049i −0.203994 0.0182371i
\(747\) 536.150i 0.717738i
\(748\) −257.377 + 1427.96i −0.344087 + 1.90904i
\(749\) −251.920 + 455.530i −0.336341 + 0.608184i
\(750\) 934.988 + 882.065i 1.24665 + 1.17609i
\(751\) 1436.98 1.91342 0.956711 0.291039i \(-0.0940010\pi\)
0.956711 + 0.291039i \(0.0940010\pi\)
\(752\) 1033.47 + 385.058i 1.37430 + 0.512045i
\(753\) 2210.04i 2.93498i
\(754\) −55.5922 4.96995i −0.0737296 0.00659144i
\(755\) 398.079 + 367.865i 0.527257 + 0.487238i
\(756\) 941.663 + 766.936i 1.24559 + 1.01447i
\(757\) −966.377 −1.27659 −0.638294 0.769792i \(-0.720360\pi\)
−0.638294 + 0.769792i \(0.720360\pi\)
\(758\) −77.5853 + 867.843i −0.102355 + 1.14491i
\(759\) 1938.95i 2.55461i
\(760\) −145.368 233.244i −0.191274 0.306900i
\(761\) 892.095i 1.17227i −0.810215 0.586133i \(-0.800649\pi\)
0.810215 0.586133i \(-0.199351\pi\)
\(762\) 1686.75 + 150.795i 2.21358 + 0.197894i
\(763\) 177.098 + 97.9396i 0.232107 + 0.128361i
\(764\) −1154.35 208.060i −1.51093 0.272330i
\(765\) −1254.71 1159.47i −1.64014 1.51565i
\(766\) 391.669 + 35.0152i 0.511317 + 0.0457118i
\(767\) 280.974i 0.366328i
\(768\) −861.267 + 995.349i −1.12144 + 1.29603i
\(769\) 586.031i 0.762069i −0.924561 0.381035i \(-0.875568\pi\)
0.924561 0.381035i \(-0.124432\pi\)
\(770\) 296.029 + 1261.47i 0.384453 + 1.63827i
\(771\) 931.030i 1.20756i
\(772\) −69.7855 + 387.179i −0.0903958 + 0.501528i
\(773\) 1458.07i 1.88625i 0.332434 + 0.943127i \(0.392130\pi\)
−0.332434 + 0.943127i \(0.607870\pi\)
\(774\) −2433.12 217.521i −3.14357 0.281035i
\(775\) −161.851 + 12.7892i −0.208841 + 0.0165021i
\(776\) −284.368 77.9331i −0.366454 0.100429i
\(777\) −953.956 527.562i −1.22774 0.678973i
\(778\) 84.3025 942.980i 0.108358 1.21206i