Properties

Label 280.3.c.g.69.17
Level $280$
Weight $3$
Character 280.69
Analytic conductor $7.629$
Analytic rank $0$
Dimension $80$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 280.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.62944740209\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 69.17
Character \(\chi\) \(=\) 280.69
Dual form 280.3.c.g.69.20

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.61056 - 1.18579i) q^{2} -3.23212i q^{3} +(1.18782 + 3.81957i) q^{4} +(3.82711 + 3.21764i) q^{5} +(-3.83261 + 5.20553i) q^{6} +(-6.97525 - 0.588096i) q^{7} +(2.61615 - 7.56014i) q^{8} -1.44659 q^{9} +O(q^{10})\) \(q+(-1.61056 - 1.18579i) q^{2} -3.23212i q^{3} +(1.18782 + 3.81957i) q^{4} +(3.82711 + 3.21764i) q^{5} +(-3.83261 + 5.20553i) q^{6} +(-6.97525 - 0.588096i) q^{7} +(2.61615 - 7.56014i) q^{8} -1.44659 q^{9} +(-2.34837 - 9.72035i) q^{10} +13.5631i q^{11} +(12.3453 - 3.83916i) q^{12} +21.1906i q^{13} +(10.5367 + 9.21833i) q^{14} +(10.3998 - 12.3697i) q^{15} +(-13.1782 + 9.07388i) q^{16} -0.174717 q^{17} +(2.32982 + 1.71535i) q^{18} -20.7233 q^{19} +(-7.74408 + 18.4399i) q^{20} +(-1.90080 + 22.5448i) q^{21} +(16.0829 - 21.8442i) q^{22} +27.0982i q^{23} +(-24.4353 - 8.45570i) q^{24} +(4.29361 + 24.6285i) q^{25} +(25.1275 - 34.1287i) q^{26} -24.4135i q^{27} +(-6.03904 - 27.3410i) q^{28} +18.8246i q^{29} +(-31.4173 + 7.59020i) q^{30} -7.48886i q^{31} +(31.9840 + 1.01250i) q^{32} +43.8375 q^{33} +(0.281393 + 0.207177i) q^{34} +(-24.8028 - 24.6945i) q^{35} +(-1.71828 - 5.52535i) q^{36} +66.6203 q^{37} +(33.3762 + 24.5735i) q^{38} +68.4904 q^{39} +(34.3381 - 20.5157i) q^{40} -40.1326i q^{41} +(29.7947 - 34.0559i) q^{42} +27.6721 q^{43} +(-51.8051 + 16.1104i) q^{44} +(-5.53627 - 4.65461i) q^{45} +(32.1327 - 43.6433i) q^{46} -9.05114 q^{47} +(29.3279 + 42.5935i) q^{48} +(48.3083 + 8.20423i) q^{49} +(22.2891 - 44.7571i) q^{50} +0.564706i q^{51} +(-80.9388 + 25.1705i) q^{52} -60.9906 q^{53} +(-28.9492 + 39.3195i) q^{54} +(-43.6411 + 51.9075i) q^{55} +(-22.6944 + 51.1954i) q^{56} +66.9803i q^{57} +(22.3220 - 30.3181i) q^{58} -14.5469 q^{59} +(59.5999 + 25.0298i) q^{60} +35.7308 q^{61} +(-8.88020 + 12.0613i) q^{62} +(10.0903 + 0.850734i) q^{63} +(-50.3115 - 39.5569i) q^{64} +(-68.1836 + 81.0987i) q^{65} +(-70.6030 - 51.9820i) q^{66} -92.9010 q^{67} +(-0.207532 - 0.667344i) q^{68} +87.5845 q^{69} +(10.6640 + 69.1829i) q^{70} +66.0567 q^{71} +(-3.78449 + 10.9364i) q^{72} -51.4978 q^{73} +(-107.296 - 78.9975i) q^{74} +(79.6024 - 13.8775i) q^{75} +(-24.6155 - 79.1542i) q^{76} +(7.97640 - 94.6060i) q^{77} +(-110.308 - 81.2151i) q^{78} +77.1971 q^{79} +(-79.6309 - 7.67587i) q^{80} -91.9267 q^{81} +(-47.5887 + 64.6360i) q^{82} +94.6032i q^{83} +(-88.3693 + 19.5189i) q^{84} +(-0.668662 - 0.562176i) q^{85} +(-44.5676 - 32.8132i) q^{86} +60.8433 q^{87} +(102.539 + 35.4830i) q^{88} +59.6907i q^{89} +(3.39713 + 14.0614i) q^{90} +(12.4621 - 147.810i) q^{91} +(-103.503 + 32.1876i) q^{92} -24.2049 q^{93} +(14.5774 + 10.7327i) q^{94} +(-79.3106 - 66.6802i) q^{95} +(3.27251 - 103.376i) q^{96} +28.6155 q^{97} +(-68.0750 - 70.4968i) q^{98} -19.6202i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80q + 12q^{4} - 224q^{9} + O(q^{10}) \) \( 80q + 12q^{4} - 224q^{9} + 92q^{14} - 72q^{15} - 172q^{16} - 104q^{25} - 68q^{30} - 564q^{36} - 112q^{39} - 40q^{44} - 224q^{46} + 192q^{49} + 332q^{50} - 356q^{56} + 124q^{60} + 396q^{64} + 472q^{65} + 352q^{70} + 800q^{71} + 672q^{74} + 480q^{79} - 896q^{81} + 408q^{84} + 528q^{86} + 1176q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/280\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(141\) \(241\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61056 1.18579i −0.805281 0.592894i
\(3\) 3.23212i 1.07737i −0.842506 0.538686i \(-0.818921\pi\)
0.842506 0.538686i \(-0.181079\pi\)
\(4\) 1.18782 + 3.81957i 0.296954 + 0.954892i
\(5\) 3.82711 + 3.21764i 0.765423 + 0.643528i
\(6\) −3.83261 + 5.20553i −0.638768 + 0.867588i
\(7\) −6.97525 0.588096i −0.996465 0.0840137i
\(8\) 2.61615 7.56014i 0.327018 0.945018i
\(9\) −1.44659 −0.160732
\(10\) −2.34837 9.72035i −0.234837 0.972035i
\(11\) 13.5631i 1.23301i 0.787352 + 0.616504i \(0.211452\pi\)
−0.787352 + 0.616504i \(0.788548\pi\)
\(12\) 12.3453 3.83916i 1.02877 0.319930i
\(13\) 21.1906i 1.63004i 0.579430 + 0.815022i \(0.303275\pi\)
−0.579430 + 0.815022i \(0.696725\pi\)
\(14\) 10.5367 + 9.21833i 0.752622 + 0.658452i
\(15\) 10.3998 12.3697i 0.693319 0.824646i
\(16\) −13.1782 + 9.07388i −0.823637 + 0.567117i
\(17\) −0.174717 −0.0102775 −0.00513874 0.999987i \(-0.501636\pi\)
−0.00513874 + 0.999987i \(0.501636\pi\)
\(18\) 2.32982 + 1.71535i 0.129435 + 0.0952972i
\(19\) −20.7233 −1.09070 −0.545351 0.838208i \(-0.683604\pi\)
−0.545351 + 0.838208i \(0.683604\pi\)
\(20\) −7.74408 + 18.4399i −0.387204 + 0.921994i
\(21\) −1.90080 + 22.5448i −0.0905141 + 1.07356i
\(22\) 16.0829 21.8442i 0.731043 0.992917i
\(23\) 27.0982i 1.17818i 0.808067 + 0.589091i \(0.200514\pi\)
−0.808067 + 0.589091i \(0.799486\pi\)
\(24\) −24.4353 8.45570i −1.01814 0.352321i
\(25\) 4.29361 + 24.6285i 0.171744 + 0.985142i
\(26\) 25.1275 34.1287i 0.966443 1.31264i
\(27\) 24.4135i 0.904204i
\(28\) −6.03904 27.3410i −0.215680 0.976464i
\(29\) 18.8246i 0.649124i 0.945864 + 0.324562i \(0.105217\pi\)
−0.945864 + 0.324562i \(0.894783\pi\)
\(30\) −31.4173 + 7.59020i −1.04724 + 0.253007i
\(31\) 7.48886i 0.241576i −0.992678 0.120788i \(-0.961458\pi\)
0.992678 0.120788i \(-0.0385421\pi\)
\(32\) 31.9840 + 1.01250i 0.999499 + 0.0316405i
\(33\) 43.8375 1.32841
\(34\) 0.281393 + 0.207177i 0.00827625 + 0.00609345i
\(35\) −24.8028 24.6945i −0.708652 0.705558i
\(36\) −1.71828 5.52535i −0.0477301 0.153482i
\(37\) 66.6203 1.80055 0.900274 0.435324i \(-0.143366\pi\)
0.900274 + 0.435324i \(0.143366\pi\)
\(38\) 33.3762 + 24.5735i 0.878321 + 0.646670i
\(39\) 68.4904 1.75617
\(40\) 34.3381 20.5157i 0.858453 0.512893i
\(41\) 40.1326i 0.978844i −0.872047 0.489422i \(-0.837208\pi\)
0.872047 0.489422i \(-0.162792\pi\)
\(42\) 29.7947 34.0559i 0.709399 0.810855i
\(43\) 27.6721 0.643536 0.321768 0.946818i \(-0.395723\pi\)
0.321768 + 0.946818i \(0.395723\pi\)
\(44\) −51.8051 + 16.1104i −1.17739 + 0.366146i
\(45\) −5.53627 4.65461i −0.123028 0.103436i
\(46\) 32.1327 43.6433i 0.698536 0.948767i
\(47\) −9.05114 −0.192577 −0.0962887 0.995353i \(-0.530697\pi\)
−0.0962887 + 0.995353i \(0.530697\pi\)
\(48\) 29.3279 + 42.5935i 0.610997 + 0.887364i
\(49\) 48.3083 + 8.20423i 0.985883 + 0.167433i
\(50\) 22.2891 44.7571i 0.445782 0.895142i
\(51\) 0.564706i 0.0110727i
\(52\) −80.9388 + 25.1705i −1.55652 + 0.484048i
\(53\) −60.9906 −1.15077 −0.575383 0.817884i \(-0.695147\pi\)
−0.575383 + 0.817884i \(0.695147\pi\)
\(54\) −28.9492 + 39.3195i −0.536097 + 0.728138i
\(55\) −43.6411 + 51.9075i −0.793475 + 0.943773i
\(56\) −22.6944 + 51.1954i −0.405257 + 0.914203i
\(57\) 66.9803i 1.17509i
\(58\) 22.3220 30.3181i 0.384861 0.522727i
\(59\) −14.5469 −0.246557 −0.123279 0.992372i \(-0.539341\pi\)
−0.123279 + 0.992372i \(0.539341\pi\)
\(60\) 59.5999 + 25.0298i 0.993331 + 0.417163i
\(61\) 35.7308 0.585751 0.292875 0.956151i \(-0.405388\pi\)
0.292875 + 0.956151i \(0.405388\pi\)
\(62\) −8.88020 + 12.0613i −0.143229 + 0.194537i
\(63\) 10.0903 + 0.850734i 0.160164 + 0.0135037i
\(64\) −50.3115 39.5569i −0.786118 0.618077i
\(65\) −68.1836 + 81.0987i −1.04898 + 1.24767i
\(66\) −70.6030 51.9820i −1.06974 0.787606i
\(67\) −92.9010 −1.38658 −0.693291 0.720658i \(-0.743840\pi\)
−0.693291 + 0.720658i \(0.743840\pi\)
\(68\) −0.207532 0.667344i −0.00305193 0.00981388i
\(69\) 87.5845 1.26934
\(70\) 10.6640 + 69.1829i 0.152342 + 0.988328i
\(71\) 66.0567 0.930376 0.465188 0.885212i \(-0.345987\pi\)
0.465188 + 0.885212i \(0.345987\pi\)
\(72\) −3.78449 + 10.9364i −0.0525624 + 0.151895i
\(73\) −51.4978 −0.705450 −0.352725 0.935727i \(-0.614745\pi\)
−0.352725 + 0.935727i \(0.614745\pi\)
\(74\) −107.296 78.9975i −1.44995 1.06753i
\(75\) 79.6024 13.8775i 1.06136 0.185033i
\(76\) −24.6155 79.1542i −0.323888 1.04150i
\(77\) 7.97640 94.6060i 0.103590 1.22865i
\(78\) −110.308 81.2151i −1.41421 1.04122i
\(79\) 77.1971 0.977179 0.488589 0.872514i \(-0.337512\pi\)
0.488589 + 0.872514i \(0.337512\pi\)
\(80\) −79.6309 7.67587i −0.995386 0.0959484i
\(81\) −91.9267 −1.13490
\(82\) −47.5887 + 64.6360i −0.580350 + 0.788244i
\(83\) 94.6032i 1.13980i 0.821715 + 0.569899i \(0.193018\pi\)
−0.821715 + 0.569899i \(0.806982\pi\)
\(84\) −88.3693 + 19.5189i −1.05202 + 0.232368i
\(85\) −0.668662 0.562176i −0.00786661 0.00661384i
\(86\) −44.5676 32.8132i −0.518227 0.381549i
\(87\) 60.8433 0.699348
\(88\) 102.539 + 35.4830i 1.16521 + 0.403216i
\(89\) 59.6907i 0.670682i 0.942097 + 0.335341i \(0.108851\pi\)
−0.942097 + 0.335341i \(0.891149\pi\)
\(90\) 3.39713 + 14.0614i 0.0377458 + 0.156237i
\(91\) 12.4621 147.810i 0.136946 1.62428i
\(92\) −103.503 + 32.1876i −1.12504 + 0.349865i
\(93\) −24.2049 −0.260267
\(94\) 14.5774 + 10.7327i 0.155079 + 0.114178i
\(95\) −79.3106 66.6802i −0.834848 0.701897i
\(96\) 3.27251 103.376i 0.0340887 1.07683i
\(97\) 28.6155 0.295006 0.147503 0.989062i \(-0.452876\pi\)
0.147503 + 0.989062i \(0.452876\pi\)
\(98\) −68.0750 70.4968i −0.694643 0.719355i
\(99\) 19.6202i 0.198184i
\(100\) −88.9703 + 45.6539i −0.889703 + 0.456539i
\(101\) −193.520 −1.91604 −0.958021 0.286697i \(-0.907443\pi\)
−0.958021 + 0.286697i \(0.907443\pi\)
\(102\) 0.669622 0.909494i 0.00656492 0.00891661i
\(103\) 164.516 1.59725 0.798624 0.601831i \(-0.205562\pi\)
0.798624 + 0.601831i \(0.205562\pi\)
\(104\) 160.204 + 55.4377i 1.54042 + 0.533054i
\(105\) −79.8157 + 80.1656i −0.760150 + 0.763482i
\(106\) 98.2290 + 72.3218i 0.926689 + 0.682282i
\(107\) −79.2388 −0.740550 −0.370275 0.928922i \(-0.620737\pi\)
−0.370275 + 0.928922i \(0.620737\pi\)
\(108\) 93.2491 28.9987i 0.863417 0.268507i
\(109\) 135.174i 1.24013i 0.784551 + 0.620065i \(0.212894\pi\)
−0.784551 + 0.620065i \(0.787106\pi\)
\(110\) 131.838 31.8511i 1.19853 0.289555i
\(111\) 215.325i 1.93986i
\(112\) 97.2575 55.5426i 0.868371 0.495916i
\(113\) 40.6363i 0.359613i 0.983702 + 0.179807i \(0.0575472\pi\)
−0.983702 + 0.179807i \(0.942453\pi\)
\(114\) 79.4244 107.876i 0.696705 0.946279i
\(115\) −87.1921 + 103.708i −0.758192 + 0.901807i
\(116\) −71.9018 + 22.3601i −0.619843 + 0.192760i
\(117\) 30.6541i 0.262001i
\(118\) 23.4286 + 17.2495i 0.198548 + 0.146182i
\(119\) 1.21870 + 0.102750i 0.0102411 + 0.000863449i
\(120\) −66.3092 110.985i −0.552577 0.924873i
\(121\) −62.9573 −0.520309
\(122\) −57.5466 42.3691i −0.471694 0.347288i
\(123\) −129.713 −1.05458
\(124\) 28.6042 8.89538i 0.230679 0.0717369i
\(125\) −62.8136 + 108.072i −0.502509 + 0.864572i
\(126\) −15.2423 13.3352i −0.120971 0.105835i
\(127\) 102.631i 0.808118i −0.914733 0.404059i \(-0.867599\pi\)
0.914733 0.404059i \(-0.132401\pi\)
\(128\) 34.1237 + 123.368i 0.266592 + 0.963810i
\(129\) 89.4394i 0.693329i
\(130\) 205.980 49.7632i 1.58446 0.382794i
\(131\) −73.4099 −0.560381 −0.280191 0.959944i \(-0.590398\pi\)
−0.280191 + 0.959944i \(0.590398\pi\)
\(132\) 52.0709 + 167.440i 0.394476 + 1.26849i
\(133\) 144.550 + 12.1873i 1.08685 + 0.0916339i
\(134\) 149.623 + 110.161i 1.11659 + 0.822096i
\(135\) 78.5539 93.4333i 0.581880 0.692099i
\(136\) −0.457086 + 1.32089i −0.00336092 + 0.00971240i
\(137\) 34.6820i 0.253153i −0.991957 0.126577i \(-0.959601\pi\)
0.991957 0.126577i \(-0.0403990\pi\)
\(138\) −141.060 103.857i −1.02218 0.752584i
\(139\) 41.2578 0.296819 0.148409 0.988926i \(-0.452585\pi\)
0.148409 + 0.988926i \(0.452585\pi\)
\(140\) 64.8613 124.069i 0.463295 0.886204i
\(141\) 29.2544i 0.207478i
\(142\) −106.388 78.3293i −0.749214 0.551614i
\(143\) −287.410 −2.00986
\(144\) 19.0635 13.1262i 0.132385 0.0911541i
\(145\) −60.5707 + 72.0438i −0.417729 + 0.496854i
\(146\) 82.9404 + 61.0655i 0.568085 + 0.418257i
\(147\) 26.5171 156.138i 0.180388 1.06216i
\(148\) 79.1325 + 254.461i 0.534679 + 1.71933i
\(149\) 197.409i 1.32489i −0.749110 0.662446i \(-0.769518\pi\)
0.749110 0.662446i \(-0.230482\pi\)
\(150\) −144.660 72.0410i −0.964401 0.480273i
\(151\) −77.3543 −0.512280 −0.256140 0.966640i \(-0.582451\pi\)
−0.256140 + 0.966640i \(0.582451\pi\)
\(152\) −54.2153 + 156.671i −0.356680 + 1.03073i
\(153\) 0.252744 0.00165192
\(154\) −125.029 + 142.910i −0.811877 + 0.927989i
\(155\) 24.0964 28.6607i 0.155461 0.184908i
\(156\) 81.3540 + 261.604i 0.521500 + 1.67695i
\(157\) 111.633i 0.711038i −0.934669 0.355519i \(-0.884304\pi\)
0.934669 0.355519i \(-0.115696\pi\)
\(158\) −124.331 91.5394i −0.786903 0.579363i
\(159\) 197.129i 1.23980i
\(160\) 119.148 + 106.788i 0.744678 + 0.667424i
\(161\) 15.9363 189.017i 0.0989834 1.17402i
\(162\) 148.054 + 109.006i 0.913911 + 0.672874i
\(163\) 311.331 1.91001 0.955004 0.296592i \(-0.0958500\pi\)
0.955004 + 0.296592i \(0.0958500\pi\)
\(164\) 153.289 47.6701i 0.934690 0.290671i
\(165\) 167.771 + 141.053i 1.01679 + 0.854868i
\(166\) 112.179 152.364i 0.675779 0.917857i
\(167\) 17.1911 0.102941 0.0514704 0.998675i \(-0.483609\pi\)
0.0514704 + 0.998675i \(0.483609\pi\)
\(168\) 165.469 + 73.3509i 0.984937 + 0.436613i
\(169\) −280.040 −1.65704
\(170\) 0.410300 + 1.69831i 0.00241353 + 0.00999006i
\(171\) 29.9782 0.175311
\(172\) 32.8693 + 105.695i 0.191101 + 0.614508i
\(173\) 192.100i 1.11040i 0.831716 + 0.555201i \(0.187359\pi\)
−0.831716 + 0.555201i \(0.812641\pi\)
\(174\) −97.9918 72.1472i −0.563172 0.414639i
\(175\) −15.4651 174.315i −0.0883719 0.996088i
\(176\) −123.070 178.737i −0.699260 1.01555i
\(177\) 47.0172i 0.265634i
\(178\) 70.7805 96.1355i 0.397643 0.540087i
\(179\) 116.518i 0.650936i −0.945553 0.325468i \(-0.894478\pi\)
0.945553 0.325468i \(-0.105522\pi\)
\(180\) 11.2025 26.6750i 0.0622362 0.148194i
\(181\) 116.427 0.643241 0.321620 0.946869i \(-0.395773\pi\)
0.321620 + 0.946869i \(0.395773\pi\)
\(182\) −195.342 + 223.279i −1.07331 + 1.22681i
\(183\) 115.486i 0.631072i
\(184\) 204.866 + 70.8928i 1.11340 + 0.385287i
\(185\) 254.963 + 214.360i 1.37818 + 1.15870i
\(186\) 38.9834 + 28.7018i 0.209588 + 0.154311i
\(187\) 2.36970i 0.0126722i
\(188\) −10.7511 34.5714i −0.0571866 0.183891i
\(189\) −14.3575 + 170.290i −0.0759655 + 0.901008i
\(190\) 48.6660 + 201.438i 0.256137 + 1.06020i
\(191\) 126.956 0.664692 0.332346 0.943157i \(-0.392160\pi\)
0.332346 + 0.943157i \(0.392160\pi\)
\(192\) −127.853 + 162.613i −0.665899 + 0.846942i
\(193\) 231.635i 1.20018i −0.799932 0.600090i \(-0.795131\pi\)
0.799932 0.600090i \(-0.204869\pi\)
\(194\) −46.0871 33.9320i −0.237562 0.174907i
\(195\) 262.121 + 220.377i 1.34421 + 1.13014i
\(196\) 26.0447 + 194.262i 0.132881 + 0.991132i
\(197\) −77.9924 −0.395900 −0.197950 0.980212i \(-0.563428\pi\)
−0.197950 + 0.980212i \(0.563428\pi\)
\(198\) −23.2654 + 31.5996i −0.117502 + 0.159594i
\(199\) 227.874i 1.14509i 0.819872 + 0.572547i \(0.194044\pi\)
−0.819872 + 0.572547i \(0.805956\pi\)
\(200\) 197.428 + 31.9716i 0.987140 + 0.159858i
\(201\) 300.267i 1.49387i
\(202\) 311.676 + 229.474i 1.54295 + 1.13601i
\(203\) 11.0707 131.306i 0.0545353 0.646829i
\(204\) −2.15693 + 0.670767i −0.0105732 + 0.00328807i
\(205\) 129.132 153.592i 0.629913 0.749229i
\(206\) −264.964 195.082i −1.28623 0.946998i
\(207\) 39.2000i 0.189372i
\(208\) −192.281 279.253i −0.924426 1.34256i
\(209\) 281.072i 1.34484i
\(210\) 223.607 34.4672i 1.06480 0.164129i
\(211\) 214.499i 1.01658i 0.861185 + 0.508291i \(0.169723\pi\)
−0.861185 + 0.508291i \(0.830277\pi\)
\(212\) −72.4455 232.958i −0.341724 1.09886i
\(213\) 213.503i 1.00236i
\(214\) 127.619 + 93.9604i 0.596350 + 0.439067i
\(215\) 105.904 + 89.0387i 0.492578 + 0.414133i
\(216\) −184.570 63.8693i −0.854489 0.295691i
\(217\) −4.40417 + 52.2367i −0.0202957 + 0.240722i
\(218\) 160.288 217.706i 0.735265 0.998652i
\(219\) 166.447i 0.760032i
\(220\) −250.102 105.034i −1.13683 0.477426i
\(221\) 3.70235i 0.0167527i
\(222\) −255.329 + 346.793i −1.15013 + 1.56213i
\(223\) 10.8367 0.0485949 0.0242975 0.999705i \(-0.492265\pi\)
0.0242975 + 0.999705i \(0.492265\pi\)
\(224\) −222.501 25.8721i −0.993307 0.115500i
\(225\) −6.21110 35.6274i −0.0276049 0.158344i
\(226\) 48.1860 65.4472i 0.213212 0.289589i
\(227\) 297.246i 1.30945i −0.755865 0.654727i \(-0.772784\pi\)
0.755865 0.654727i \(-0.227216\pi\)
\(228\) −255.836 + 79.5602i −1.12209 + 0.348948i
\(229\) 39.4044 0.172072 0.0860358 0.996292i \(-0.472580\pi\)
0.0860358 + 0.996292i \(0.472580\pi\)
\(230\) 263.404 63.6364i 1.14523 0.276680i
\(231\) −305.778 25.7807i −1.32371 0.111605i
\(232\) 142.317 + 49.2479i 0.613433 + 0.212275i
\(233\) 316.557i 1.35861i −0.733855 0.679306i \(-0.762281\pi\)
0.733855 0.679306i \(-0.237719\pi\)
\(234\) −36.3492 + 49.3703i −0.155339 + 0.210984i
\(235\) −34.6398 29.1233i −0.147403 0.123929i
\(236\) −17.2790 55.5627i −0.0732161 0.235435i
\(237\) 249.510i 1.05279i
\(238\) −1.84094 1.61060i −0.00773506 0.00676723i
\(239\) −181.500 −0.759416 −0.379708 0.925106i \(-0.623976\pi\)
−0.379708 + 0.925106i \(0.623976\pi\)
\(240\) −24.8093 + 257.377i −0.103372 + 1.07240i
\(241\) 203.756i 0.845460i −0.906256 0.422730i \(-0.861072\pi\)
0.906256 0.422730i \(-0.138928\pi\)
\(242\) 101.397 + 74.6540i 0.418994 + 0.308488i
\(243\) 77.3963i 0.318503i
\(244\) 42.4416 + 136.476i 0.173941 + 0.559329i
\(245\) 158.483 + 186.837i 0.646870 + 0.762600i
\(246\) 208.911 + 153.812i 0.849232 + 0.625254i
\(247\) 439.139i 1.77789i
\(248\) −56.6168 19.5920i −0.228294 0.0789998i
\(249\) 305.769 1.22799
\(250\) 229.315 99.5722i 0.917260 0.398289i
\(251\) 120.326 0.479388 0.239694 0.970848i \(-0.422953\pi\)
0.239694 + 0.970848i \(0.422953\pi\)
\(252\) 8.73602 + 39.5512i 0.0346667 + 0.156949i
\(253\) −367.535 −1.45271
\(254\) −121.699 + 165.293i −0.479128 + 0.650762i
\(255\) −1.81702 + 2.16120i −0.00712557 + 0.00847528i
\(256\) 91.3294 239.155i 0.356756 0.934198i
\(257\) 214.282 0.833783 0.416892 0.908956i \(-0.363119\pi\)
0.416892 + 0.908956i \(0.363119\pi\)
\(258\) −106.056 + 144.048i −0.411070 + 0.558324i
\(259\) −464.693 39.1791i −1.79418 0.151271i
\(260\) −390.752 164.101i −1.50289 0.631160i
\(261\) 27.2315i 0.104335i
\(262\) 118.231 + 87.0486i 0.451264 + 0.332247i
\(263\) 388.319i 1.47650i 0.674529 + 0.738248i \(0.264347\pi\)
−0.674529 + 0.738248i \(0.735653\pi\)
\(264\) 114.685 331.418i 0.434414 1.25537i
\(265\) −233.418 196.246i −0.880822 0.740549i
\(266\) −218.356 191.035i −0.820887 0.718175i
\(267\) 192.927 0.722574
\(268\) −110.349 354.842i −0.411751 1.32404i
\(269\) 442.119 1.64357 0.821783 0.569800i \(-0.192980\pi\)
0.821783 + 0.569800i \(0.192980\pi\)
\(270\) −237.308 + 57.3319i −0.878918 + 0.212340i
\(271\) 277.087i 1.02246i −0.859444 0.511231i \(-0.829190\pi\)
0.859444 0.511231i \(-0.170810\pi\)
\(272\) 2.30245 1.58536i 0.00846491 0.00582854i
\(273\) −477.738 40.2789i −1.74996 0.147542i
\(274\) −41.1255 + 55.8575i −0.150093 + 0.203859i
\(275\) −334.039 + 58.2346i −1.21469 + 0.211762i
\(276\) 104.034 + 334.535i 0.376935 + 1.21208i
\(277\) 287.260 1.03704 0.518520 0.855065i \(-0.326483\pi\)
0.518520 + 0.855065i \(0.326483\pi\)
\(278\) −66.4482 48.9230i −0.239022 0.175982i
\(279\) 10.8333i 0.0388291i
\(280\) −251.582 + 122.908i −0.898508 + 0.438958i
\(281\) 234.412 0.834206 0.417103 0.908859i \(-0.363045\pi\)
0.417103 + 0.908859i \(0.363045\pi\)
\(282\) 34.6895 47.1159i 0.123012 0.167078i
\(283\) 76.8321i 0.271491i 0.990744 + 0.135746i \(0.0433430\pi\)
−0.990744 + 0.135746i \(0.956657\pi\)
\(284\) 78.4632 + 252.308i 0.276279 + 0.888409i
\(285\) −215.518 + 256.341i −0.756204 + 0.899443i
\(286\) 462.891 + 340.807i 1.61850 + 1.19163i
\(287\) −23.6018 + 279.935i −0.0822363 + 0.975383i
\(288\) −46.2677 1.46467i −0.160652 0.00508566i
\(289\) −288.969 −0.999894
\(290\) 182.982 44.2070i 0.630971 0.152438i
\(291\) 92.4889i 0.317831i
\(292\) −61.1699 196.699i −0.209486 0.673628i
\(293\) 248.602i 0.848472i 0.905552 + 0.424236i \(0.139457\pi\)
−0.905552 + 0.424236i \(0.860543\pi\)
\(294\) −227.854 + 220.026i −0.775014 + 0.748389i
\(295\) −55.6725 46.8066i −0.188720 0.158666i
\(296\) 174.288 503.659i 0.588812 1.70155i
\(297\) 331.123 1.11489
\(298\) −234.085 + 317.939i −0.785520 + 1.06691i
\(299\) −574.226 −1.92049
\(300\) 147.559 + 287.563i 0.491863 + 0.958542i
\(301\) −193.020 16.2738i −0.641261 0.0540659i
\(302\) 124.584 + 91.7257i 0.412529 + 0.303728i
\(303\) 625.481i 2.06429i
\(304\) 273.096 188.041i 0.898342 0.618556i
\(305\) 136.746 + 114.969i 0.448347 + 0.376947i
\(306\) −0.407060 0.299701i −0.00133026 0.000979415i
\(307\) 244.931i 0.797822i −0.916990 0.398911i \(-0.869388\pi\)
0.916990 0.398911i \(-0.130612\pi\)
\(308\) 370.828 81.9080i 1.20399 0.265935i
\(309\) 531.737i 1.72083i
\(310\) −72.7943 + 17.5866i −0.234820 + 0.0567309i
\(311\) 556.903i 1.79069i 0.445378 + 0.895343i \(0.353069\pi\)
−0.445378 + 0.895343i \(0.646931\pi\)
\(312\) 179.181 517.798i 0.574298 1.65961i
\(313\) 64.7781 0.206959 0.103479 0.994632i \(-0.467002\pi\)
0.103479 + 0.994632i \(0.467002\pi\)
\(314\) −132.373 + 179.792i −0.421570 + 0.572585i
\(315\) 35.8795 + 35.7229i 0.113903 + 0.113406i
\(316\) 91.6959 + 294.860i 0.290177 + 0.933100i
\(317\) −562.104 −1.77320 −0.886599 0.462539i \(-0.846938\pi\)
−0.886599 + 0.462539i \(0.846938\pi\)
\(318\) 233.753 317.488i 0.735072 0.998389i
\(319\) −255.319 −0.800375
\(320\) −65.2683 313.273i −0.203963 0.978979i
\(321\) 256.109i 0.797848i
\(322\) −249.800 + 285.526i −0.775776 + 0.886726i
\(323\) 3.62072 0.0112097
\(324\) −109.192 351.120i −0.337012 1.08370i
\(325\) −521.893 + 90.9841i −1.60582 + 0.279951i
\(326\) −501.418 369.173i −1.53809 1.13243i
\(327\) 436.899 1.33608
\(328\) −303.408 104.993i −0.925025 0.320100i
\(329\) 63.1340 + 5.32294i 0.191897 + 0.0161791i
\(330\) −102.947 426.116i −0.311959 1.29126i
\(331\) 115.044i 0.347566i 0.984784 + 0.173783i \(0.0555991\pi\)
−0.984784 + 0.173783i \(0.944401\pi\)
\(332\) −361.343 + 112.371i −1.08838 + 0.338467i
\(333\) −96.3722 −0.289406
\(334\) −27.6873 20.3850i −0.0828962 0.0610330i
\(335\) −355.543 298.922i −1.06132 0.892304i
\(336\) −179.520 314.348i −0.534286 0.935559i
\(337\) 93.7824i 0.278286i 0.990272 + 0.139143i \(0.0444348\pi\)
−0.990272 + 0.139143i \(0.955565\pi\)
\(338\) 451.022 + 332.068i 1.33438 + 0.982451i
\(339\) 131.341 0.387437
\(340\) 1.35302 3.22176i 0.00397948 0.00947577i
\(341\) 101.572 0.297865
\(342\) −48.2817 35.5478i −0.141175 0.103941i
\(343\) −332.138 85.6365i −0.968331 0.249669i
\(344\) 72.3942 209.205i 0.210448 0.608154i
\(345\) 335.196 + 281.815i 0.971582 + 0.816856i
\(346\) 227.789 309.388i 0.658350 0.894185i
\(347\) 306.423 0.883063 0.441531 0.897246i \(-0.354435\pi\)
0.441531 + 0.897246i \(0.354435\pi\)
\(348\) 72.2706 + 232.395i 0.207674 + 0.667802i
\(349\) 386.434 1.10726 0.553631 0.832762i \(-0.313242\pi\)
0.553631 + 0.832762i \(0.313242\pi\)
\(350\) −181.794 + 299.084i −0.519410 + 0.854525i
\(351\) 517.336 1.47389
\(352\) −13.7326 + 433.801i −0.0390130 + 1.23239i
\(353\) 140.883 0.399103 0.199551 0.979887i \(-0.436052\pi\)
0.199551 + 0.979887i \(0.436052\pi\)
\(354\) 55.7524 75.7241i 0.157493 0.213910i
\(355\) 252.807 + 212.547i 0.712131 + 0.598723i
\(356\) −227.993 + 70.9015i −0.640429 + 0.199161i
\(357\) 0.332101 3.93897i 0.000930256 0.0110335i
\(358\) −138.165 + 187.659i −0.385936 + 0.524186i
\(359\) −331.195 −0.922549 −0.461274 0.887258i \(-0.652608\pi\)
−0.461274 + 0.887258i \(0.652608\pi\)
\(360\) −49.6732 + 29.6779i −0.137981 + 0.0824385i
\(361\) 68.4565 0.189630
\(362\) −187.512 138.057i −0.517989 0.381373i
\(363\) 203.486i 0.560566i
\(364\) 579.371 127.971i 1.59168 0.351568i
\(365\) −197.088 165.701i −0.539967 0.453976i
\(366\) −136.942 + 185.998i −0.374159 + 0.508190i
\(367\) −2.40380 −0.00654988 −0.00327494 0.999995i \(-0.501042\pi\)
−0.00327494 + 0.999995i \(0.501042\pi\)
\(368\) −245.886 357.105i −0.668167 0.970394i
\(369\) 58.0554i 0.157332i
\(370\) −156.449 647.572i −0.422835 1.75019i
\(371\) 425.424 + 35.8683i 1.14670 + 0.0966800i
\(372\) −28.7509 92.4522i −0.0772874 0.248527i
\(373\) −91.6748 −0.245777 −0.122889 0.992420i \(-0.539216\pi\)
−0.122889 + 0.992420i \(0.539216\pi\)
\(374\) −2.80996 + 3.81655i −0.00751327 + 0.0102047i
\(375\) 349.300 + 203.021i 0.931467 + 0.541389i
\(376\) −23.6791 + 68.4279i −0.0629764 + 0.181989i
\(377\) −398.904 −1.05810
\(378\) 225.052 257.238i 0.595375 0.680524i
\(379\) 217.188i 0.573055i 0.958072 + 0.286527i \(0.0925009\pi\)
−0.958072 + 0.286527i \(0.907499\pi\)
\(380\) 160.483 382.136i 0.422324 1.00562i
\(381\) −331.715 −0.870644
\(382\) −204.471 150.543i −0.535264 0.394092i
\(383\) 425.682 1.11144 0.555721 0.831369i \(-0.312442\pi\)
0.555721 + 0.831369i \(0.312442\pi\)
\(384\) 398.739 110.292i 1.03838 0.287219i
\(385\) 334.934 336.403i 0.869959 0.873773i
\(386\) −274.670 + 373.062i −0.711580 + 0.966482i
\(387\) −40.0302 −0.103437
\(388\) 33.9900 + 109.299i 0.0876030 + 0.281699i
\(389\) 678.005i 1.74294i −0.490446 0.871471i \(-0.663166\pi\)
0.490446 0.871471i \(-0.336834\pi\)
\(390\) −160.841 665.751i −0.412412 1.70705i
\(391\) 4.73451i 0.0121087i
\(392\) 188.407 343.754i 0.480630 0.876924i
\(393\) 237.270i 0.603739i
\(394\) 125.611 + 92.4824i 0.318811 + 0.234727i
\(395\) 295.442 + 248.392i 0.747955 + 0.628841i
\(396\) 74.9408 23.3052i 0.189245 0.0588516i
\(397\) 8.36325i 0.0210661i −0.999945 0.0105331i \(-0.996647\pi\)
0.999945 0.0105331i \(-0.00335284\pi\)
\(398\) 270.210 367.004i 0.678919 0.922121i
\(399\) 39.3908 467.204i 0.0987239 1.17094i
\(400\) −280.058 285.600i −0.700146 0.714000i
\(401\) 579.986 1.44635 0.723174 0.690665i \(-0.242682\pi\)
0.723174 + 0.690665i \(0.242682\pi\)
\(402\) 356.053 483.599i 0.885704 1.20298i
\(403\) 158.693 0.393780
\(404\) −229.866 739.164i −0.568976 1.82961i
\(405\) −351.814 295.787i −0.868677 0.730338i
\(406\) −173.531 + 198.349i −0.427417 + 0.488545i
\(407\) 903.576i 2.22009i
\(408\) 4.26926 + 1.47735i 0.0104639 + 0.00362097i
\(409\) 374.870i 0.916551i −0.888810 0.458276i \(-0.848467\pi\)
0.888810 0.458276i \(-0.151533\pi\)
\(410\) −390.103 + 94.2460i −0.951470 + 0.229868i
\(411\) −112.096 −0.272740
\(412\) 195.415 + 628.382i 0.474309 + 1.52520i
\(413\) 101.468 + 8.55495i 0.245685 + 0.0207142i
\(414\) −46.4828 + 63.1339i −0.112277 + 0.152497i
\(415\) −304.399 + 362.057i −0.733491 + 0.872427i
\(416\) −21.4554 + 677.759i −0.0515755 + 1.62923i
\(417\) 133.350i 0.319784i
\(418\) −333.292 + 452.684i −0.797350 + 1.08298i
\(419\) −142.070 −0.339068 −0.169534 0.985524i \(-0.554226\pi\)
−0.169534 + 0.985524i \(0.554226\pi\)
\(420\) −401.004 209.640i −0.954772 0.499142i
\(421\) 92.9811i 0.220858i −0.993884 0.110429i \(-0.964778\pi\)
0.993884 0.110429i \(-0.0352224\pi\)
\(422\) 254.350 345.464i 0.602725 0.818634i
\(423\) 13.0933 0.0309534
\(424\) −159.560 + 461.097i −0.376321 + 1.08749i
\(425\) −0.750167 4.30303i −0.00176510 0.0101248i
\(426\) −253.169 + 343.860i −0.594294 + 0.807183i
\(427\) −249.231 21.0131i −0.583680 0.0492111i
\(428\) −94.1211 302.658i −0.219909 0.707145i
\(429\) 928.942i 2.16537i
\(430\) −64.9842 268.982i −0.151126 0.625540i
\(431\) −432.813 −1.00421 −0.502103 0.864808i \(-0.667440\pi\)
−0.502103 + 0.864808i \(0.667440\pi\)
\(432\) 221.525 + 321.726i 0.512790 + 0.744736i
\(433\) 681.677 1.57431 0.787156 0.616755i \(-0.211553\pi\)
0.787156 + 0.616755i \(0.211553\pi\)
\(434\) 69.0348 78.9080i 0.159066 0.181816i
\(435\) 232.854 + 195.772i 0.535297 + 0.450050i
\(436\) −516.307 + 160.562i −1.18419 + 0.368261i
\(437\) 561.564i 1.28504i
\(438\) 197.371 268.073i 0.450618 0.612039i
\(439\) 676.687i 1.54143i 0.637181 + 0.770714i \(0.280101\pi\)
−0.637181 + 0.770714i \(0.719899\pi\)
\(440\) 278.257 + 465.731i 0.632401 + 1.05848i
\(441\) −69.8823 11.8682i −0.158463 0.0269120i
\(442\) −4.39021 + 5.96287i −0.00993259 + 0.0134907i
\(443\) 57.8517 0.130591 0.0652954 0.997866i \(-0.479201\pi\)
0.0652954 + 0.997866i \(0.479201\pi\)
\(444\) 822.447 255.766i 1.85236 0.576049i
\(445\) −192.063 + 228.443i −0.431602 + 0.513355i
\(446\) −17.4531 12.8500i −0.0391326 0.0288116i
\(447\) −638.049 −1.42740
\(448\) 327.672 + 305.507i 0.731412 + 0.681936i
\(449\) 509.913 1.13566 0.567832 0.823145i \(-0.307782\pi\)
0.567832 + 0.823145i \(0.307782\pi\)
\(450\) −32.2432 + 64.7452i −0.0716516 + 0.143878i
\(451\) 544.322 1.20692
\(452\) −155.213 + 48.2684i −0.343392 + 0.106788i
\(453\) 250.018i 0.551916i
\(454\) −352.471 + 478.733i −0.776367 + 1.05448i
\(455\) 523.292 525.586i 1.15009 1.15513i
\(456\) 506.380 + 175.230i 1.11048 + 0.384277i
\(457\) 470.149i 1.02877i −0.857559 0.514386i \(-0.828020\pi\)
0.857559 0.514386i \(-0.171980\pi\)
\(458\) −63.4632 46.7253i −0.138566 0.102020i
\(459\) 4.26546i 0.00929294i
\(460\) −499.687 209.850i −1.08628 0.456197i
\(461\) −210.628 −0.456893 −0.228447 0.973556i \(-0.573365\pi\)
−0.228447 + 0.973556i \(0.573365\pi\)
\(462\) 461.903 + 404.109i 0.999791 + 0.874694i
\(463\) 708.908i 1.53112i −0.643365 0.765559i \(-0.722462\pi\)
0.643365 0.765559i \(-0.277538\pi\)
\(464\) −170.812 248.074i −0.368129 0.534642i
\(465\) −92.6348 77.8825i −0.199215 0.167489i
\(466\) −375.369 + 509.834i −0.805513 + 1.09406i
\(467\) 630.872i 1.35090i −0.737404 0.675452i \(-0.763949\pi\)
0.737404 0.675452i \(-0.236051\pi\)
\(468\) 117.085 36.4114i 0.250182 0.0778021i
\(469\) 648.008 + 54.6347i 1.38168 + 0.116492i
\(470\) 21.2554 + 87.9802i 0.0452243 + 0.187192i
\(471\) −360.811 −0.766053
\(472\) −38.0567 + 109.976i −0.0806287 + 0.233001i
\(473\) 375.319i 0.793486i
\(474\) −295.866 + 401.851i −0.624190 + 0.847788i
\(475\) −88.9779 510.385i −0.187322 1.07450i
\(476\) 1.05512 + 4.77694i 0.00221664 + 0.0100356i
\(477\) 88.2284 0.184965
\(478\) 292.317 + 215.221i 0.611543 + 0.450253i
\(479\) 235.461i 0.491569i 0.969325 + 0.245784i \(0.0790455\pi\)
−0.969325 + 0.245784i \(0.920954\pi\)
\(480\) 345.151 385.102i 0.719064 0.802296i
\(481\) 1411.72i 2.93497i
\(482\) −241.611 + 328.161i −0.501268 + 0.680833i
\(483\) −610.924 51.5081i −1.26485 0.106642i
\(484\) −74.7817 240.470i −0.154508 0.496838i
\(485\) 109.515 + 92.0745i 0.225804 + 0.189844i
\(486\) 91.7756 124.652i 0.188839 0.256485i
\(487\) 11.0384i 0.0226661i 0.999936 + 0.0113331i \(0.00360750\pi\)
−0.999936 + 0.0113331i \(0.996392\pi\)
\(488\) 93.4770 270.130i 0.191551 0.553545i
\(489\) 1006.26i 2.05779i
\(490\) −33.6976 488.840i −0.0687705 0.997633i
\(491\) 423.608i 0.862745i 0.902174 + 0.431373i \(0.141971\pi\)
−0.902174 + 0.431373i \(0.858029\pi\)
\(492\) −154.075 495.449i −0.313161 1.00701i
\(493\) 3.28898i 0.00667135i
\(494\) −520.726 + 707.261i −1.05410 + 1.43170i
\(495\) 63.1308 75.0889i 0.127537 0.151695i
\(496\) 67.9530 + 98.6896i 0.137002 + 0.198971i
\(497\) −460.762 38.8477i −0.927087 0.0781644i
\(498\) −492.459 362.577i −0.988874 0.728066i
\(499\) 16.3655i 0.0327966i −0.999866 0.0163983i \(-0.994780\pi\)
0.999866 0.0163983i \(-0.00521997\pi\)
\(500\) −487.397 111.552i −0.974795 0.223103i
\(501\) 55.5637i 0.110906i
\(502\) −193.793 142.682i −0.386042 0.284226i
\(503\) 399.152 0.793542 0.396771 0.917918i \(-0.370131\pi\)
0.396771 + 0.917918i \(0.370131\pi\)
\(504\) 32.8295 74.0587i 0.0651378 0.146942i
\(505\) −740.624 622.678i −1.46658 1.23303i
\(506\) 591.937 + 435.818i 1.16984 + 0.861301i
\(507\) 905.123i 1.78525i
\(508\) 392.006 121.907i 0.771665 0.239974i
\(509\) 32.2063 0.0632737 0.0316369 0.999499i \(-0.489928\pi\)
0.0316369 + 0.999499i \(0.489928\pi\)
\(510\) 5.48914 1.32614i 0.0107630 0.00260027i
\(511\) 359.210 + 30.2857i 0.702956 + 0.0592674i
\(512\) −430.678 + 276.876i −0.841168 + 0.540773i
\(513\) 505.929i 0.986217i
\(514\) −345.115 254.093i −0.671429 0.494345i
\(515\) 629.623 + 529.354i 1.22257 + 1.02787i
\(516\) 341.620 106.237i 0.662054 0.205887i
\(517\) 122.761i 0.237450i
\(518\) 701.959 + 614.128i 1.35513 + 1.18557i
\(519\) 620.888 1.19632
\(520\) 434.740 + 727.644i 0.836038 + 1.39932i
\(521\) 180.110i 0.345701i 0.984948 + 0.172850i \(0.0552977\pi\)
−0.984948 + 0.172850i \(0.944702\pi\)
\(522\) −32.2907 + 43.8580i −0.0618597 + 0.0840191i
\(523\) 92.5194i 0.176901i −0.996081 0.0884507i \(-0.971808\pi\)
0.996081 0.0884507i \(-0.0281916\pi\)
\(524\) −87.1974 280.394i −0.166407 0.535103i
\(525\) −563.408 + 49.9850i −1.07316 + 0.0952095i
\(526\) 460.464 625.411i 0.875406 1.18899i
\(527\) 1.30843i 0.00248279i
\(528\) −577.699 + 397.776i −1.09413 + 0.753364i
\(529\) −205.311 −0.388111
\(530\) 143.228 + 592.849i 0.270242 + 1.11858i
\(531\) 21.0434 0.0396297
\(532\) 125.149 + 566.597i 0.235242 + 1.06503i
\(533\) 850.432 1.59556
\(534\) −310.721 228.771i −0.581875 0.428410i
\(535\) −303.256 254.962i −0.566834 0.476564i
\(536\) −243.043 + 702.345i −0.453438 + 1.31035i
\(537\) −376.599 −0.701301
\(538\) −712.060 524.260i −1.32353 0.974460i
\(539\) −111.275 + 655.210i −0.206447 + 1.21560i
\(540\) 450.182 + 189.060i 0.833671 + 0.350112i
\(541\) 99.4342i 0.183797i 0.995768 + 0.0918986i \(0.0292936\pi\)
−0.995768 + 0.0918986i \(0.970706\pi\)
\(542\) −328.566 + 446.266i −0.606211 + 0.823368i
\(543\) 376.304i 0.693010i
\(544\) −5.58815 0.176901i −0.0102723 0.000325185i
\(545\) −434.941 + 517.327i −0.798057 + 0.949223i
\(546\) 721.664 + 631.368i 1.32173 + 1.15635i
\(547\) 103.740 0.189652 0.0948262 0.995494i \(-0.469770\pi\)
0.0948262 + 0.995494i \(0.469770\pi\)
\(548\) 132.470 41.1958i 0.241734 0.0751748i
\(549\) −51.6879 −0.0941491
\(550\) 607.044 + 302.309i 1.10372 + 0.549653i
\(551\) 390.108i 0.708000i
\(552\) 229.134 662.151i 0.415098 1.19955i
\(553\) −538.469 45.3993i −0.973724 0.0820964i
\(554\) −462.650 340.630i −0.835109 0.614855i
\(555\) 692.836 824.072i 1.24835 1.48481i
\(556\) 49.0066 + 157.587i 0.0881414 + 0.283430i
\(557\) −547.554 −0.983041 −0.491520 0.870866i \(-0.663559\pi\)
−0.491520 + 0.870866i \(0.663559\pi\)
\(558\) 12.8460 17.4477i 0.0230215 0.0312683i
\(559\) 586.387i 1.04899i
\(560\) 550.931 + 100.372i 0.983806 + 0.179235i
\(561\) −7.65916 −0.0136527
\(562\) −377.535 277.963i −0.671770 0.494595i
\(563\) 801.866i 1.42427i 0.702041 + 0.712137i \(0.252272\pi\)
−0.702041 + 0.712137i \(0.747728\pi\)
\(564\) −111.739 + 34.7488i −0.198119 + 0.0616113i
\(565\) −130.753 + 155.520i −0.231421 + 0.275256i
\(566\) 91.1065 123.743i 0.160966 0.218627i
\(567\) 641.212 + 54.0617i 1.13089 + 0.0953469i
\(568\) 172.814 499.398i 0.304250 0.879222i
\(569\) 429.252 0.754398 0.377199 0.926132i \(-0.376887\pi\)
0.377199 + 0.926132i \(0.376887\pi\)
\(570\) 651.072 157.294i 1.14223 0.275955i
\(571\) 705.248i 1.23511i −0.786527 0.617556i \(-0.788123\pi\)
0.786527 0.617556i \(-0.211877\pi\)
\(572\) −341.389 1097.78i −0.596835 1.91920i
\(573\) 410.338i 0.716122i
\(574\) 369.956 422.866i 0.644522 0.736700i
\(575\) −667.388 + 116.349i −1.16068 + 0.202346i
\(576\) 72.7802 + 57.2226i 0.126355 + 0.0993449i
\(577\) 856.994 1.48526 0.742629 0.669702i \(-0.233578\pi\)
0.742629 + 0.669702i \(0.233578\pi\)
\(578\) 465.403 + 342.656i 0.805196 + 0.592831i
\(579\) −748.671 −1.29304
\(580\) −347.123 145.779i −0.598488 0.251343i
\(581\) 55.6358 659.881i 0.0957586 1.13577i
\(582\) −109.672 + 148.959i −0.188440 + 0.255943i
\(583\) 827.220i 1.41890i
\(584\) −134.726 + 389.331i −0.230695 + 0.666663i
\(585\) 98.6338 117.317i 0.168605 0.200541i
\(586\) 294.790 400.389i 0.503054 0.683258i
\(587\) 87.0152i 0.148237i 0.997249 + 0.0741186i \(0.0236143\pi\)
−0.997249 + 0.0741186i \(0.976386\pi\)
\(588\) 627.877 84.1795i 1.06782 0.143162i
\(589\) 155.194i 0.263487i
\(590\) 34.1614 + 141.401i 0.0579006 + 0.239662i
\(591\) 252.081i 0.426532i
\(592\) −877.934 + 604.504i −1.48300 + 1.02112i
\(593\) −330.416 −0.557193 −0.278597 0.960408i \(-0.589869\pi\)
−0.278597 + 0.960408i \(0.589869\pi\)
\(594\) −533.293 392.641i −0.897800 0.661012i
\(595\) 4.33347 + 4.31456i 0.00728315 + 0.00725136i
\(596\) 754.017 234.485i 1.26513 0.393432i
\(597\) 736.514 1.23369
\(598\) 924.826 + 680.910i 1.54653 + 1.13865i
\(599\) 734.397 1.22604 0.613019 0.790068i \(-0.289955\pi\)
0.613019 + 0.790068i \(0.289955\pi\)
\(600\) 103.336 638.111i 0.172226 1.06352i
\(601\) 806.504i 1.34194i −0.741486 0.670969i \(-0.765879\pi\)
0.741486 0.670969i \(-0.234121\pi\)
\(602\) 291.573 + 255.090i 0.484340 + 0.423738i
\(603\) 134.390 0.222869
\(604\) −91.8826 295.460i −0.152123 0.489172i
\(605\) −240.945 202.574i −0.398256 0.334833i
\(606\) 741.687 1007.37i 1.22391 1.66233i
\(607\) 771.044 1.27025 0.635127 0.772408i \(-0.280948\pi\)
0.635127 + 0.772408i \(0.280948\pi\)
\(608\) −662.815 20.9823i −1.09016 0.0345104i
\(609\) −424.397 35.7817i −0.696876 0.0587548i
\(610\) −83.9090 347.316i −0.137556 0.569370i
\(611\) 191.799i 0.313910i
\(612\) 0.300213 + 0.965373i 0.000490545 + 0.00157741i
\(613\) 933.654 1.52309 0.761545 0.648112i \(-0.224441\pi\)
0.761545 + 0.648112i \(0.224441\pi\)
\(614\) −290.437 + 394.477i −0.473024 + 0.642471i
\(615\) −496.428 417.370i −0.807199 0.678651i
\(616\) −694.367 307.806i −1.12722 0.499685i
\(617\) 256.389i 0.415542i −0.978178 0.207771i \(-0.933379\pi\)
0.978178 0.207771i \(-0.0666208\pi\)
\(618\) −630.527 + 856.395i −1.02027 + 1.38575i
\(619\) −298.064 −0.481524 −0.240762 0.970584i \(-0.577397\pi\)
−0.240762 + 0.970584i \(0.577397\pi\)
\(620\) 138.094 + 57.9943i 0.222732 + 0.0935392i
\(621\) 661.562 1.06532
\(622\) 660.369 896.927i 1.06169 1.44200i
\(623\) 35.1038 416.358i 0.0563465 0.668311i
\(624\) −902.580 + 621.474i −1.44644 + 0.995952i
\(625\) −588.130 + 211.491i −0.941008 + 0.338385i
\(626\) −104.329 76.8130i −0.166660 0.122705i
\(627\) −908.459 −1.44890
\(628\) 426.390 132.599i 0.678965 0.211146i
\(629\) −11.6397 −0.0185051
\(630\) −15.4264 100.079i −0.0244863 0.158856i
\(631\) −526.570 −0.834501 −0.417250 0.908792i \(-0.637006\pi\)
−0.417250 + 0.908792i \(0.637006\pi\)
\(632\) 201.959 583.621i 0.319555 0.923451i
\(633\) 693.286 1.09524
\(634\) 905.302 + 666.536i 1.42792 + 1.05132i
\(635\) 330.229 392.780i 0.520046 0.618552i
\(636\) −752.946 + 234.152i −1.18388 + 0.368164i
\(637\) −173.852 + 1023.68i −0.272924 + 1.60703i
\(638\) 411.208 + 302.755i 0.644526 + 0.474537i
\(639\) −95.5571 −0.149542
\(640\) −266.357 + 581.940i −0.416183 + 0.909281i
\(641\) −204.664 −0.319289 −0.159644 0.987175i \(-0.551035\pi\)
−0.159644 + 0.987175i \(0.551035\pi\)
\(642\) 303.691 412.480i 0.473039 0.642492i
\(643\) 580.457i 0.902733i −0.892339 0.451367i \(-0.850937\pi\)
0.892339 0.451367i \(-0.149063\pi\)
\(644\) 740.891 163.647i 1.15045 0.254110i
\(645\) 287.784 342.295i 0.446176 0.530690i
\(646\) −5.83139 4.29341i −0.00902692 0.00664614i
\(647\) −1027.02 −1.58735 −0.793676 0.608341i \(-0.791835\pi\)
−0.793676 + 0.608341i \(0.791835\pi\)
\(648\) −240.494 + 694.979i −0.371132 + 1.07250i
\(649\) 197.300i 0.304007i
\(650\) 948.428 + 472.319i 1.45912 + 0.726644i
\(651\) 168.835 + 14.2348i 0.259347 + 0.0218660i
\(652\) 369.804 + 1189.15i 0.567184 + 1.82385i
\(653\) −540.051 −0.827030 −0.413515 0.910497i \(-0.635699\pi\)
−0.413515 + 0.910497i \(0.635699\pi\)
\(654\) −703.652 518.069i −1.07592 0.792155i
\(655\) −280.948 236.207i −0.428929 0.360621i
\(656\) 364.158 + 528.875i 0.555119 + 0.806212i
\(657\) 74.4963 0.113389
\(658\) −95.3693 83.4364i −0.144938 0.126803i
\(659\) 648.051i 0.983386i −0.870769 0.491693i \(-0.836378\pi\)
0.870769 0.491693i \(-0.163622\pi\)
\(660\) −339.481 + 808.358i −0.514365 + 1.22479i
\(661\) 63.5996 0.0962172 0.0481086 0.998842i \(-0.484681\pi\)
0.0481086 + 0.998842i \(0.484681\pi\)
\(662\) 136.418 185.286i 0.206070 0.279888i
\(663\) −11.9664 −0.0180489
\(664\) 715.214 + 247.496i 1.07713 + 0.372735i
\(665\) 513.997 + 511.753i 0.772928 + 0.769554i
\(666\) 155.213 + 114.277i 0.233053 + 0.171587i
\(667\) −510.112 −0.764785
\(668\) 20.4199 + 65.6626i 0.0305687 + 0.0982973i
\(669\) 35.0254i 0.0523549i
\(670\) 218.166 + 903.030i 0.325620 + 1.34781i
\(671\) 484.620i 0.722235i
\(672\) −83.6216 + 719.149i −0.124437 + 1.07016i
\(673\) 499.088i 0.741587i 0.928715 + 0.370793i \(0.120914\pi\)
−0.928715 + 0.370793i \(0.879086\pi\)
\(674\) 111.206 151.042i 0.164994 0.224098i
\(675\) 601.269 104.822i 0.890769 0.155292i
\(676\) −332.636 1069.63i −0.492065 1.58230i
\(677\) 528.808i 0.781105i 0.920581 + 0.390553i \(0.127716\pi\)
−0.920581 + 0.390553i \(0.872284\pi\)
\(678\) −211.533 155.743i −0.311996 0.229709i
\(679\) −199.601 16.8287i −0.293963 0.0247845i
\(680\) −5.99945 + 3.58445i −0.00882272 + 0.00527125i
\(681\) −960.735 −1.41077
\(682\) −163.588 120.443i −0.239865 0.176602i
\(683\) −300.950 −0.440629 −0.220315 0.975429i \(-0.570708\pi\)
−0.220315 + 0.975429i \(0.570708\pi\)
\(684\) 35.6085 + 114.504i 0.0520593 + 0.167403i
\(685\) 111.594 132.732i 0.162911 0.193769i
\(686\) 433.381 + 531.768i 0.631751 + 0.775171i
\(687\) 127.360i 0.185385i
\(688\) −364.668 + 251.093i −0.530040 + 0.364961i
\(689\) 1292.42i 1.87580i
\(690\) −205.681 851.352i −0.298088 1.23384i
\(691\) −761.277 −1.10170 −0.550852 0.834603i \(-0.685697\pi\)
−0.550852 + 0.834603i \(0.685697\pi\)
\(692\) −733.737 + 228.179i −1.06031 + 0.329738i
\(693\) −11.5386 + 136.856i −0.0166502 + 0.197484i
\(694\) −493.513 363.352i −0.711113 0.523562i
\(695\) 157.898 + 132.753i 0.227192 + 0.191011i
\(696\) 159.175 459.984i 0.228700 0.660897i
\(697\) 7.01185i 0.0100600i
\(698\) −622.376 458.229i −0.891656 0.656488i
\(699\) −1023.15 −1.46373
\(700\) 647.439 266.124i 0.924914 0.380178i
\(701\) 1086.65i 1.55015i 0.631870 + 0.775074i \(0.282288\pi\)
−0.631870 + 0.775074i \(0.717712\pi\)
\(702\) −833.202 613.451i −1.18690 0.873862i
\(703\) −1380.59 −1.96386
\(704\) 536.514 682.380i 0.762093 0.969290i
\(705\) −94.1299 + 111.960i −0.133518 + 0.158808i
\(706\) −226.901 167.058i −0.321390 0.236625i
\(707\) 1349.85 + 113.808i 1.90927 + 0.160974i
\(708\) −179.585 + 55.8477i −0.253652 + 0.0788810i
\(709\) 353.798i 0.499010i −0.968374 0.249505i \(-0.919732\pi\)
0.968374 0.249505i \(-0.0802679\pi\)
\(710\) −155.125 642.094i −0.218487 0.904358i
\(711\) −111.673 −0.157064
\(712\) 451.270 + 156.160i 0.633806 + 0.219325i
\(713\) 202.934 0.284620
\(714\) −5.20565 + 5.95015i −0.00729083 + 0.00833354i
\(715\) −1099.95 924.780i −1.53839 1.29340i
\(716\) 445.047 138.401i 0.621574 0.193298i
\(717\) 586.631i 0.818174i
\(718\) 533.410 + 392.727i 0.742911 + 0.546973i
\(719\) 63.4719i 0.0882781i −0.999025 0.0441390i \(-0.985946\pi\)
0.999025 0.0441390i \(-0.0140545\pi\)
\(720\) 115.193 + 11.1038i 0.159991 + 0.0154220i
\(721\) −1147.54 96.7515i −1.59160 0.134191i
\(722\) −110.253 81.1749i −0.152706 0.112431i
\(723\) −658.563 −0.910876
\(724\) 138.293 + 444.699i 0.191013 + 0.614225i
\(725\) −463.622 + 80.8255i −0.639479 + 0.111483i
\(726\) 241.291 327.726i 0.332356 0.451413i
\(727\) −888.016 −1.22148 −0.610740 0.791831i \(-0.709128\pi\)
−0.610740 + 0.791831i \(0.709128\pi\)
\(728\) −1084.86 480.907i −1.49019 0.660586i
\(729\) −577.186 −0.791750
\(730\) 120.936 + 500.577i 0.165665 + 0.685722i
\(731\) −4.83478 −0.00661393
\(732\) 441.107 137.176i 0.602606 0.187399i
\(733\) 54.1893i 0.0739281i −0.999317 0.0369640i \(-0.988231\pi\)
0.999317 0.0369640i \(-0.0117687\pi\)
\(734\) 3.87147 + 2.85040i 0.00527449 + 0.00388338i
\(735\) 603.880 512.236i 0.821605 0.696920i
\(736\) −27.4368 + 866.707i −0.0372783 + 1.17759i
\(737\) 1260.02i 1.70967i
\(738\) 68.8414 93.5018i 0.0932811 0.126696i
\(739\) 1414.92i 1.91464i −0.289034 0.957319i \(-0.593334\pi\)
0.289034 0.957319i \(-0.406666\pi\)
\(740\) −515.913 + 1228.47i −0.697179 + 1.66009i
\(741\) −1419.35 −1.91545
\(742\) −642.640 562.231i −0.866092 0.757724i
\(743\) 51.9266i 0.0698877i 0.999389 + 0.0349439i \(0.0111252\pi\)
−0.999389 + 0.0349439i \(0.988875\pi\)
\(744\) −63.3235 + 182.992i −0.0851123 + 0.245957i
\(745\) 635.190 755.506i 0.852605 1.01410i
\(746\) 147.648 + 108.707i 0.197920 + 0.145720i
\(747\) 136.852i 0.183202i
\(748\) 9.05124 2.81477i 0.0121006 0.00376306i
\(749\) 552.711 + 46.6000i 0.737932 + 0.0622163i
\(750\) −321.829 741.173i −0.429106 0.988231i
\(751\) 926.269 1.23338 0.616690 0.787206i \(-0.288473\pi\)
0.616690 + 0.787206i \(0.288473\pi\)
\(752\) 119.278 82.1290i 0.158614 0.109214i
\(753\) 388.909i 0.516480i
\(754\) 642.459 + 473.015i 0.852067 + 0.627341i
\(755\) −296.044 248.898i −0.392111 0.329666i
\(756\) −667.490 + 147.434i −0.882923 + 0.195019i
\(757\) 899.385 1.18809 0.594046 0.804431i \(-0.297530\pi\)
0.594046 + 0.804431i \(0.297530\pi\)
\(758\) 257.539 349.794i 0.339761 0.461470i
\(759\) 1187.92i 1.56511i
\(760\) −711.600 + 425.154i −0.936316 + 0.559413i
\(761\) 673.539i 0.885071i 0.896751 + 0.442536i \(0.145921\pi\)
−0.896751 + 0.442536i \(0.854079\pi\)
\(762\) 534.248 + 393.344i 0.701113 + 0.516200i
\(763\) 79.4953 942.873i 0.104188 1.23575i
\(764\) 150.801 + 484.918i 0.197383 + 0.634709i
\(765\) 0.967281 + 0.813239i 0.00126442 + 0.00106306i
\(766\) −685.587 504.768i −0.895022 0.658967i
\(767\) 308.256i 0.401899i
\(768\) −772.976 295.188i −1.00648 0.384359i
\(769\) 1344.86i 1.74884i 0.485172 + 0.874419i \(0.338757\pi\)
−0.485172 + 0.874419i \(0.661243\pi\)
\(770\) −938.334 + 144.636i −1.21862 + 0.187839i
\(771\) 692.586i 0.898295i
\(772\) 884.745 275.139i 1.14604 0.356398i
\(773\) 163.160i 0.211074i −0.994415 0.105537i \(-0.966344\pi\)
0.994415 0.105537i \(-0.0336561\pi\)
\(774\) 64.4710 + 47.4673i 0.0832959 + 0.0613272i
\(775\) 184.440 32.1542i 0.237987 0.0414894i
\(776\) 74.8625 216.338i 0.0964723 0.278786i
\(777\) −126.631 + 1501.94i −0.162975 + 1.93300i
\(778\) −803.970 + 1091.97i −1.03338 +