Properties

Label 280.3.c.g.69.14
Level $280$
Weight $3$
Character 280.69
Analytic conductor $7.629$
Analytic rank $0$
Dimension $80$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 280.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.62944740209\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 69.14
Character \(\chi\) \(=\) 280.69
Dual form 280.3.c.g.69.15

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.65383 - 1.12465i) q^{2} +2.74983i q^{3} +(1.47034 + 3.71996i) q^{4} +(4.72637 + 1.63138i) q^{5} +(3.09259 - 4.54776i) q^{6} +(-1.41172 - 6.85617i) q^{7} +(1.75195 - 7.80581i) q^{8} +1.43843 q^{9} +O(q^{10})\) \(q+(-1.65383 - 1.12465i) q^{2} +2.74983i q^{3} +(1.47034 + 3.71996i) q^{4} +(4.72637 + 1.63138i) q^{5} +(3.09259 - 4.54776i) q^{6} +(-1.41172 - 6.85617i) q^{7} +(1.75195 - 7.80581i) q^{8} +1.43843 q^{9} +(-5.98192 - 8.01353i) q^{10} -14.1984i q^{11} +(-10.2293 + 4.04318i) q^{12} -5.89684i q^{13} +(-5.37601 + 12.9267i) q^{14} +(-4.48601 + 12.9967i) q^{15} +(-11.6762 + 10.9392i) q^{16} +10.0079 q^{17} +(-2.37893 - 1.61773i) q^{18} +18.9481 q^{19} +(0.880700 + 19.9806i) q^{20} +(18.8533 - 3.88200i) q^{21} +(-15.9682 + 23.4818i) q^{22} -11.5809i q^{23} +(21.4647 + 4.81757i) q^{24} +(19.6772 + 15.4210i) q^{25} +(-6.63186 + 9.75239i) q^{26} +28.7039i q^{27} +(23.4290 - 15.3324i) q^{28} +31.7681i q^{29} +(22.0359 - 16.4493i) q^{30} -48.2661i q^{31} +(31.6133 - 4.95997i) q^{32} +39.0431 q^{33} +(-16.5513 - 11.2553i) q^{34} +(4.51266 - 34.7079i) q^{35} +(2.11498 + 5.35091i) q^{36} -39.7143 q^{37} +(-31.3370 - 21.3099i) q^{38} +16.2153 q^{39} +(21.0146 - 34.0351i) q^{40} +15.8176i q^{41} +(-35.5461 - 14.7831i) q^{42} +30.0245 q^{43} +(52.8174 - 20.8764i) q^{44} +(6.79856 + 2.34662i) q^{45} +(-13.0244 + 19.1529i) q^{46} +83.3321 q^{47} +(-30.0809 - 32.1076i) q^{48} +(-45.0141 + 19.3580i) q^{49} +(-15.1997 - 47.6337i) q^{50} +27.5199i q^{51} +(21.9360 - 8.67033i) q^{52} +17.9248 q^{53} +(32.2818 - 47.4715i) q^{54} +(23.1629 - 67.1069i) q^{55} +(-55.9912 - 0.992031i) q^{56} +52.1041i q^{57} +(35.7279 - 52.5391i) q^{58} -109.697 q^{59} +(-54.9433 + 2.42178i) q^{60} +35.4866 q^{61} +(-54.2824 + 79.8242i) q^{62} +(-2.03067 - 9.86212i) q^{63} +(-57.8613 - 27.3508i) q^{64} +(9.61996 - 27.8707i) q^{65} +(-64.5709 - 43.9098i) q^{66} +44.5578 q^{67} +(14.7149 + 37.2289i) q^{68} +31.8455 q^{69} +(-46.4973 + 52.3259i) q^{70} -75.5330 q^{71} +(2.52006 - 11.2281i) q^{72} +81.9741 q^{73} +(65.6809 + 44.6646i) q^{74} +(-42.4051 + 54.1090i) q^{75} +(27.8601 + 70.4862i) q^{76} +(-97.3465 + 20.0442i) q^{77} +(-26.8174 - 18.2365i) q^{78} +89.6824 q^{79} +(-73.0321 + 32.6544i) q^{80} -65.9850 q^{81} +(17.7892 - 26.1596i) q^{82} +107.645i q^{83} +(42.1616 + 64.4257i) q^{84} +(47.3009 + 16.3266i) q^{85} +(-49.6555 - 33.7669i) q^{86} -87.3568 q^{87} +(-110.830 - 24.8749i) q^{88} +145.006i q^{89} +(-8.60457 - 11.5269i) q^{90} +(-40.4297 + 8.32471i) q^{91} +(43.0805 - 17.0278i) q^{92} +132.724 q^{93} +(-137.817 - 93.7192i) q^{94} +(89.5558 + 30.9115i) q^{95} +(13.6391 + 86.9311i) q^{96} +13.4460 q^{97} +(96.2168 + 18.6100i) q^{98} -20.4234i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80q + 12q^{4} - 224q^{9} + O(q^{10}) \) \( 80q + 12q^{4} - 224q^{9} + 92q^{14} - 72q^{15} - 172q^{16} - 104q^{25} - 68q^{30} - 564q^{36} - 112q^{39} - 40q^{44} - 224q^{46} + 192q^{49} + 332q^{50} - 356q^{56} + 124q^{60} + 396q^{64} + 472q^{65} + 352q^{70} + 800q^{71} + 672q^{74} + 480q^{79} - 896q^{81} + 408q^{84} + 528q^{86} + 1176q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/280\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(141\) \(241\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.65383 1.12465i −0.826917 0.562324i
\(3\) 2.74983i 0.916610i 0.888795 + 0.458305i \(0.151543\pi\)
−0.888795 + 0.458305i \(0.848457\pi\)
\(4\) 1.47034 + 3.71996i 0.367584 + 0.929990i
\(5\) 4.72637 + 1.63138i 0.945275 + 0.326275i
\(6\) 3.09259 4.54776i 0.515432 0.757961i
\(7\) −1.41172 6.85617i −0.201675 0.979453i
\(8\) 1.75195 7.80581i 0.218994 0.975726i
\(9\) 1.43843 0.159826
\(10\) −5.98192 8.01353i −0.598192 0.801353i
\(11\) 14.1984i 1.29076i −0.763861 0.645381i \(-0.776699\pi\)
0.763861 0.645381i \(-0.223301\pi\)
\(12\) −10.2293 + 4.04318i −0.852439 + 0.336931i
\(13\) 5.89684i 0.453603i −0.973941 0.226801i \(-0.927173\pi\)
0.973941 0.226801i \(-0.0728268\pi\)
\(14\) −5.37601 + 12.9267i −0.384001 + 0.923333i
\(15\) −4.48601 + 12.9967i −0.299067 + 0.866449i
\(16\) −11.6762 + 10.9392i −0.729764 + 0.683699i
\(17\) 10.0079 0.588698 0.294349 0.955698i \(-0.404897\pi\)
0.294349 + 0.955698i \(0.404897\pi\)
\(18\) −2.37893 1.61773i −0.132163 0.0898738i
\(19\) 18.9481 0.997268 0.498634 0.866813i \(-0.333835\pi\)
0.498634 + 0.866813i \(0.333835\pi\)
\(20\) 0.880700 + 19.9806i 0.0440350 + 0.999030i
\(21\) 18.8533 3.88200i 0.897776 0.184857i
\(22\) −15.9682 + 23.4818i −0.725826 + 1.06735i
\(23\) 11.5809i 0.503517i −0.967790 0.251759i \(-0.918991\pi\)
0.967790 0.251759i \(-0.0810089\pi\)
\(24\) 21.4647 + 4.81757i 0.894361 + 0.200732i
\(25\) 19.6772 + 15.4210i 0.787089 + 0.616840i
\(26\) −6.63186 + 9.75239i −0.255072 + 0.375092i
\(27\) 28.7039i 1.06311i
\(28\) 23.4290 15.3324i 0.836749 0.547587i
\(29\) 31.7681i 1.09545i 0.836658 + 0.547725i \(0.184506\pi\)
−0.836658 + 0.547725i \(0.815494\pi\)
\(30\) 22.0359 16.4493i 0.734528 0.548309i
\(31\) 48.2661i 1.55697i −0.627662 0.778486i \(-0.715988\pi\)
0.627662 0.778486i \(-0.284012\pi\)
\(32\) 31.6133 4.95997i 0.987915 0.154999i
\(33\) 39.0431 1.18313
\(34\) −16.5513 11.2553i −0.486804 0.331039i
\(35\) 4.51266 34.7079i 0.128933 0.991653i
\(36\) 2.11498 + 5.35091i 0.0587494 + 0.148636i
\(37\) −39.7143 −1.07336 −0.536680 0.843786i \(-0.680322\pi\)
−0.536680 + 0.843786i \(0.680322\pi\)
\(38\) −31.3370 21.3099i −0.824658 0.560788i
\(39\) 16.2153 0.415777
\(40\) 21.0146 34.0351i 0.525365 0.850877i
\(41\) 15.8176i 0.385794i 0.981219 + 0.192897i \(0.0617883\pi\)
−0.981219 + 0.192897i \(0.938212\pi\)
\(42\) −35.5461 14.7831i −0.846336 0.351979i
\(43\) 30.0245 0.698243 0.349122 0.937077i \(-0.386480\pi\)
0.349122 + 0.937077i \(0.386480\pi\)
\(44\) 52.8174 20.8764i 1.20040 0.474463i
\(45\) 6.79856 + 2.34662i 0.151079 + 0.0521472i
\(46\) −13.0244 + 19.1529i −0.283140 + 0.416367i
\(47\) 83.3321 1.77302 0.886511 0.462707i \(-0.153122\pi\)
0.886511 + 0.462707i \(0.153122\pi\)
\(48\) −30.0809 32.1076i −0.626686 0.668909i
\(49\) −45.0141 + 19.3580i −0.918654 + 0.395062i
\(50\) −15.1997 47.6337i −0.303994 0.952674i
\(51\) 27.5199i 0.539606i
\(52\) 21.9360 8.67033i 0.421846 0.166737i
\(53\) 17.9248 0.338203 0.169102 0.985599i \(-0.445913\pi\)
0.169102 + 0.985599i \(0.445913\pi\)
\(54\) 32.2818 47.4715i 0.597811 0.879102i
\(55\) 23.1629 67.1069i 0.421144 1.22012i
\(56\) −55.9912 0.992031i −0.999843 0.0177148i
\(57\) 52.1041i 0.914106i
\(58\) 35.7279 52.5391i 0.615998 0.905847i
\(59\) −109.697 −1.85927 −0.929634 0.368484i \(-0.879877\pi\)
−0.929634 + 0.368484i \(0.879877\pi\)
\(60\) −54.9433 + 2.42178i −0.915721 + 0.0403629i
\(61\) 35.4866 0.581748 0.290874 0.956761i \(-0.406054\pi\)
0.290874 + 0.956761i \(0.406054\pi\)
\(62\) −54.2824 + 79.8242i −0.875522 + 1.28749i
\(63\) −2.03067 9.86212i −0.0322328 0.156542i
\(64\) −57.8613 27.3508i −0.904083 0.427357i
\(65\) 9.61996 27.8707i 0.147999 0.428779i
\(66\) −64.5709 43.9098i −0.978347 0.665300i
\(67\) 44.5578 0.665042 0.332521 0.943096i \(-0.392101\pi\)
0.332521 + 0.943096i \(0.392101\pi\)
\(68\) 14.7149 + 37.2289i 0.216396 + 0.547483i
\(69\) 31.8455 0.461529
\(70\) −46.4973 + 52.3259i −0.664247 + 0.747513i
\(71\) −75.5330 −1.06384 −0.531922 0.846793i \(-0.678530\pi\)
−0.531922 + 0.846793i \(0.678530\pi\)
\(72\) 2.52006 11.2281i 0.0350009 0.155946i
\(73\) 81.9741 1.12293 0.561466 0.827500i \(-0.310237\pi\)
0.561466 + 0.827500i \(0.310237\pi\)
\(74\) 65.6809 + 44.6646i 0.887580 + 0.603576i
\(75\) −42.4051 + 54.1090i −0.565402 + 0.721454i
\(76\) 27.8601 + 70.4862i 0.366580 + 0.927450i
\(77\) −97.3465 + 20.0442i −1.26424 + 0.260314i
\(78\) −26.8174 18.2365i −0.343813 0.233801i
\(79\) 89.6824 1.13522 0.567610 0.823297i \(-0.307868\pi\)
0.567610 + 0.823297i \(0.307868\pi\)
\(80\) −73.0321 + 32.6544i −0.912902 + 0.408180i
\(81\) −65.9850 −0.814630
\(82\) 17.7892 26.1596i 0.216941 0.319020i
\(83\) 107.645i 1.29693i 0.761246 + 0.648463i \(0.224588\pi\)
−0.761246 + 0.648463i \(0.775412\pi\)
\(84\) 42.1616 + 64.4257i 0.501924 + 0.766973i
\(85\) 47.3009 + 16.3266i 0.556481 + 0.192078i
\(86\) −49.6555 33.7669i −0.577389 0.392639i
\(87\) −87.3568 −1.00410
\(88\) −110.830 24.8749i −1.25943 0.282669i
\(89\) 145.006i 1.62928i 0.579965 + 0.814641i \(0.303066\pi\)
−0.579965 + 0.814641i \(0.696934\pi\)
\(90\) −8.60457 11.5269i −0.0956064 0.128077i
\(91\) −40.4297 + 8.32471i −0.444282 + 0.0914803i
\(92\) 43.0805 17.0278i 0.468266 0.185085i
\(93\) 132.724 1.42714
\(94\) −137.817 93.7192i −1.46614 0.997013i
\(95\) 89.5558 + 30.9115i 0.942693 + 0.325384i
\(96\) 13.6391 + 86.9311i 0.142074 + 0.905533i
\(97\) 13.4460 0.138619 0.0693093 0.997595i \(-0.477920\pi\)
0.0693093 + 0.997595i \(0.477920\pi\)
\(98\) 96.2168 + 18.6100i 0.981804 + 0.189898i
\(99\) 20.4234i 0.206297i
\(100\) −28.4334 + 95.8725i −0.284334 + 0.958725i
\(101\) −45.8794 −0.454251 −0.227126 0.973865i \(-0.572933\pi\)
−0.227126 + 0.973865i \(0.572933\pi\)
\(102\) 30.9502 45.5134i 0.303434 0.446210i
\(103\) −103.275 −1.00267 −0.501334 0.865254i \(-0.667157\pi\)
−0.501334 + 0.865254i \(0.667157\pi\)
\(104\) −46.0296 10.3310i −0.442592 0.0993363i
\(105\) 95.4408 + 12.4090i 0.908960 + 0.118181i
\(106\) −29.6446 20.1591i −0.279666 0.190180i
\(107\) −183.182 −1.71198 −0.855992 0.516990i \(-0.827052\pi\)
−0.855992 + 0.516990i \(0.827052\pi\)
\(108\) −106.777 + 42.2044i −0.988680 + 0.390782i
\(109\) 183.478i 1.68328i −0.540035 0.841642i \(-0.681589\pi\)
0.540035 0.841642i \(-0.318411\pi\)
\(110\) −113.779 + 84.9335i −1.03436 + 0.772123i
\(111\) 109.208i 0.983853i
\(112\) 91.4845 + 64.6110i 0.816826 + 0.576884i
\(113\) 50.0317i 0.442759i −0.975188 0.221379i \(-0.928944\pi\)
0.975188 0.221379i \(-0.0710559\pi\)
\(114\) 58.5987 86.1715i 0.514024 0.755890i
\(115\) 18.8928 54.7356i 0.164285 0.475962i
\(116\) −118.176 + 46.7097i −1.01876 + 0.402670i
\(117\) 8.48219i 0.0724974i
\(118\) 181.420 + 123.370i 1.53746 + 1.04551i
\(119\) −14.1283 68.6156i −0.118726 0.576602i
\(120\) 93.5907 + 57.7866i 0.779923 + 0.481555i
\(121\) −80.5940 −0.666066
\(122\) −58.6890 39.9099i −0.481057 0.327131i
\(123\) −43.4956 −0.353623
\(124\) 179.548 70.9674i 1.44797 0.572318i
\(125\) 67.8445 + 104.986i 0.542756 + 0.839891i
\(126\) −7.73302 + 18.5941i −0.0613732 + 0.147572i
\(127\) 82.7028i 0.651203i −0.945507 0.325602i \(-0.894433\pi\)
0.945507 0.325602i \(-0.105567\pi\)
\(128\) 64.9330 + 110.307i 0.507289 + 0.861776i
\(129\) 82.5622i 0.640017i
\(130\) −47.2545 + 35.2744i −0.363496 + 0.271341i
\(131\) −87.5299 −0.668167 −0.334084 0.942543i \(-0.608427\pi\)
−0.334084 + 0.942543i \(0.608427\pi\)
\(132\) 57.4065 + 145.239i 0.434898 + 1.10030i
\(133\) −26.7495 129.911i −0.201124 0.976777i
\(134\) −73.6912 50.1118i −0.549935 0.373969i
\(135\) −46.8269 + 135.665i −0.346866 + 1.00493i
\(136\) 17.5333 78.1195i 0.128921 0.574408i
\(137\) 61.5426i 0.449216i −0.974449 0.224608i \(-0.927890\pi\)
0.974449 0.224608i \(-0.0721101\pi\)
\(138\) −52.6672 35.8150i −0.381646 0.259529i
\(139\) −15.9192 −0.114527 −0.0572634 0.998359i \(-0.518237\pi\)
−0.0572634 + 0.998359i \(0.518237\pi\)
\(140\) 135.747 34.2453i 0.969622 0.244609i
\(141\) 229.149i 1.62517i
\(142\) 124.919 + 84.9479i 0.879711 + 0.598225i
\(143\) −83.7255 −0.585493
\(144\) −16.7954 + 15.7353i −0.116635 + 0.109273i
\(145\) −51.8257 + 150.148i −0.357419 + 1.03550i
\(146\) −135.572 92.1919i −0.928572 0.631452i
\(147\) −53.2313 123.781i −0.362118 0.842048i
\(148\) −58.3934 147.736i −0.394550 0.998215i
\(149\) 56.3566i 0.378232i −0.981955 0.189116i \(-0.939438\pi\)
0.981955 0.189116i \(-0.0605623\pi\)
\(150\) 130.985 41.7966i 0.873231 0.278644i
\(151\) −50.9865 −0.337659 −0.168829 0.985645i \(-0.553999\pi\)
−0.168829 + 0.985645i \(0.553999\pi\)
\(152\) 33.1962 147.905i 0.218396 0.973061i
\(153\) 14.3956 0.0940890
\(154\) 183.538 + 76.3307i 1.19180 + 0.495654i
\(155\) 78.7402 228.124i 0.508001 1.47177i
\(156\) 23.8419 + 60.3203i 0.152833 + 0.386669i
\(157\) 222.491i 1.41714i −0.705641 0.708570i \(-0.749341\pi\)
0.705641 0.708570i \(-0.250659\pi\)
\(158\) −148.320 100.861i −0.938733 0.638361i
\(159\) 49.2901i 0.310001i
\(160\) 157.508 + 28.1305i 0.984423 + 0.175816i
\(161\) −79.4005 + 16.3490i −0.493171 + 0.101547i
\(162\) 109.128 + 74.2099i 0.673632 + 0.458086i
\(163\) −69.7727 −0.428053 −0.214027 0.976828i \(-0.568658\pi\)
−0.214027 + 0.976828i \(0.568658\pi\)
\(164\) −58.8407 + 23.2571i −0.358785 + 0.141812i
\(165\) 184.532 + 63.6941i 1.11838 + 0.386025i
\(166\) 121.063 178.027i 0.729293 1.07245i
\(167\) −36.9782 −0.221426 −0.110713 0.993852i \(-0.535313\pi\)
−0.110713 + 0.993852i \(0.535313\pi\)
\(168\) 2.72792 153.966i 0.0162376 0.916466i
\(169\) 134.227 0.794244
\(170\) −59.8662 80.1983i −0.352154 0.471755i
\(171\) 27.2555 0.159389
\(172\) 44.1460 + 111.690i 0.256663 + 0.649360i
\(173\) 111.750i 0.645954i 0.946407 + 0.322977i \(0.104684\pi\)
−0.946407 + 0.322977i \(0.895316\pi\)
\(174\) 144.474 + 98.2456i 0.830309 + 0.564630i
\(175\) 77.9501 156.681i 0.445429 0.895317i
\(176\) 155.319 + 165.783i 0.882493 + 0.941952i
\(177\) 301.648i 1.70422i
\(178\) 163.081 239.816i 0.916184 1.34728i
\(179\) 157.855i 0.881874i 0.897538 + 0.440937i \(0.145354\pi\)
−0.897538 + 0.440937i \(0.854646\pi\)
\(180\) 1.26683 + 28.7407i 0.00703792 + 0.159671i
\(181\) 89.1362 0.492465 0.246232 0.969211i \(-0.420807\pi\)
0.246232 + 0.969211i \(0.420807\pi\)
\(182\) 76.2264 + 31.7015i 0.418826 + 0.174184i
\(183\) 97.5822i 0.533236i
\(184\) −90.3982 20.2892i −0.491295 0.110267i
\(185\) −187.705 64.7890i −1.01462 0.350211i
\(186\) −219.503 149.267i −1.18012 0.802512i
\(187\) 142.095i 0.759869i
\(188\) 122.526 + 309.992i 0.651735 + 1.64889i
\(189\) 196.799 40.5220i 1.04126 0.214402i
\(190\) −113.346 151.841i −0.596558 0.799164i
\(191\) −102.321 −0.535711 −0.267855 0.963459i \(-0.586315\pi\)
−0.267855 + 0.963459i \(0.586315\pi\)
\(192\) 75.2101 159.109i 0.391719 0.828692i
\(193\) 141.825i 0.734844i 0.930054 + 0.367422i \(0.119760\pi\)
−0.930054 + 0.367422i \(0.880240\pi\)
\(194\) −22.2375 15.1220i −0.114626 0.0779485i
\(195\) 76.6396 + 26.4533i 0.393024 + 0.135658i
\(196\) −138.197 138.988i −0.705087 0.709121i
\(197\) −51.0345 −0.259058 −0.129529 0.991576i \(-0.541347\pi\)
−0.129529 + 0.991576i \(0.541347\pi\)
\(198\) −22.9691 + 33.7769i −0.116006 + 0.170590i
\(199\) 75.4770i 0.379281i 0.981854 + 0.189641i \(0.0607323\pi\)
−0.981854 + 0.189641i \(0.939268\pi\)
\(200\) 154.847 126.580i 0.774234 0.632899i
\(201\) 122.526i 0.609584i
\(202\) 75.8769 + 51.5981i 0.375628 + 0.255436i
\(203\) 217.807 44.8478i 1.07294 0.220925i
\(204\) −102.373 + 40.4635i −0.501829 + 0.198351i
\(205\) −25.8044 + 74.7597i −0.125875 + 0.364681i
\(206\) 170.799 + 116.148i 0.829123 + 0.563824i
\(207\) 16.6583i 0.0804749i
\(208\) 64.5066 + 68.8528i 0.310128 + 0.331023i
\(209\) 269.032i 1.28724i
\(210\) −143.887 127.860i −0.685178 0.608856i
\(211\) 187.728i 0.889706i −0.895604 0.444853i \(-0.853256\pi\)
0.895604 0.444853i \(-0.146744\pi\)
\(212\) 26.3555 + 66.6795i 0.124318 + 0.314526i
\(213\) 207.703i 0.975131i
\(214\) 302.953 + 206.015i 1.41567 + 0.962689i
\(215\) 141.907 + 48.9812i 0.660032 + 0.227820i
\(216\) 224.057 + 50.2879i 1.03730 + 0.232814i
\(217\) −330.921 + 68.1384i −1.52498 + 0.314002i
\(218\) −206.348 + 303.442i −0.946551 + 1.39194i
\(219\) 225.415i 1.02929i
\(220\) 283.692 12.5045i 1.28951 0.0568387i
\(221\) 59.0147i 0.267035i
\(222\) −122.820 + 180.611i −0.553244 + 0.813565i
\(223\) −315.595 −1.41523 −0.707613 0.706600i \(-0.750228\pi\)
−0.707613 + 0.706600i \(0.750228\pi\)
\(224\) −78.6356 209.744i −0.351052 0.936356i
\(225\) 28.3043 + 22.1820i 0.125797 + 0.0985868i
\(226\) −56.2681 + 82.7442i −0.248974 + 0.366125i
\(227\) 7.37331i 0.0324815i 0.999868 + 0.0162408i \(0.00516983\pi\)
−0.999868 + 0.0162408i \(0.994830\pi\)
\(228\) −193.825 + 76.6105i −0.850110 + 0.336011i
\(229\) 60.8674 0.265797 0.132898 0.991130i \(-0.457572\pi\)
0.132898 + 0.991130i \(0.457572\pi\)
\(230\) −92.8038 + 69.2759i −0.403495 + 0.301200i
\(231\) −55.1182 267.686i −0.238607 1.15882i
\(232\) 247.976 + 55.6562i 1.06886 + 0.239897i
\(233\) 336.839i 1.44566i 0.691024 + 0.722831i \(0.257160\pi\)
−0.691024 + 0.722831i \(0.742840\pi\)
\(234\) −9.53948 + 14.0281i −0.0407670 + 0.0599493i
\(235\) 393.859 + 135.946i 1.67599 + 0.578494i
\(236\) −161.291 408.068i −0.683437 1.72910i
\(237\) 246.611i 1.04055i
\(238\) −53.8024 + 129.368i −0.226061 + 0.543564i
\(239\) 135.916 0.568688 0.284344 0.958722i \(-0.408224\pi\)
0.284344 + 0.958722i \(0.408224\pi\)
\(240\) −89.7940 200.826i −0.374142 0.836775i
\(241\) 67.8933i 0.281715i 0.990030 + 0.140857i \(0.0449859\pi\)
−0.990030 + 0.140857i \(0.955014\pi\)
\(242\) 133.289 + 90.6399i 0.550782 + 0.374545i
\(243\) 76.8876i 0.316410i
\(244\) 52.1773 + 132.009i 0.213841 + 0.541020i
\(245\) −244.334 + 18.0584i −0.997280 + 0.0737078i
\(246\) 71.9345 + 48.9172i 0.292417 + 0.198850i
\(247\) 111.734i 0.452364i
\(248\) −376.756 84.5599i −1.51918 0.340968i
\(249\) −296.005 −1.18878
\(250\) 5.86913 249.931i 0.0234765 0.999724i
\(251\) 224.184 0.893164 0.446582 0.894743i \(-0.352641\pi\)
0.446582 + 0.894743i \(0.352641\pi\)
\(252\) 33.7010 22.0546i 0.133734 0.0875184i
\(253\) −164.430 −0.649921
\(254\) −93.0115 + 136.777i −0.366187 + 0.538491i
\(255\) −44.8954 + 130.069i −0.176060 + 0.510076i
\(256\) 16.6684 255.457i 0.0651109 0.997878i
\(257\) −55.9674 −0.217772 −0.108886 0.994054i \(-0.534728\pi\)
−0.108886 + 0.994054i \(0.534728\pi\)
\(258\) 92.8534 136.544i 0.359897 0.529241i
\(259\) 56.0657 + 272.288i 0.216470 + 1.05131i
\(260\) 117.822 5.19335i 0.453163 0.0199744i
\(261\) 45.6962i 0.175081i
\(262\) 144.760 + 98.4403i 0.552519 + 0.375726i
\(263\) 74.4566i 0.283105i −0.989931 0.141552i \(-0.954791\pi\)
0.989931 0.141552i \(-0.0452094\pi\)
\(264\) 68.4017 304.763i 0.259098 1.15441i
\(265\) 84.7192 + 29.2421i 0.319695 + 0.110347i
\(266\) −101.865 + 244.936i −0.382952 + 0.920810i
\(267\) −398.742 −1.49342
\(268\) 65.5149 + 165.753i 0.244459 + 0.618482i
\(269\) −377.527 −1.40345 −0.701724 0.712449i \(-0.747586\pi\)
−0.701724 + 0.712449i \(0.747586\pi\)
\(270\) 230.020 171.704i 0.851925 0.635942i
\(271\) 463.315i 1.70965i 0.518915 + 0.854826i \(0.326336\pi\)
−0.518915 + 0.854826i \(0.673664\pi\)
\(272\) −116.854 + 109.478i −0.429610 + 0.402492i
\(273\) −22.8915 111.175i −0.0838518 0.407234i
\(274\) −69.2137 + 101.781i −0.252605 + 0.371464i
\(275\) 218.953 279.385i 0.796193 1.01594i
\(276\) 46.8236 + 118.464i 0.169651 + 0.429217i
\(277\) −319.935 −1.15500 −0.577500 0.816391i \(-0.695972\pi\)
−0.577500 + 0.816391i \(0.695972\pi\)
\(278\) 26.3278 + 17.9035i 0.0947042 + 0.0644012i
\(279\) 69.4275i 0.248844i
\(280\) −263.017 96.0315i −0.939347 0.342970i
\(281\) 398.504 1.41816 0.709081 0.705127i \(-0.249110\pi\)
0.709081 + 0.705127i \(0.249110\pi\)
\(282\) 257.712 378.975i 0.913872 1.34388i
\(283\) 211.268i 0.746529i 0.927725 + 0.373264i \(0.121762\pi\)
−0.927725 + 0.373264i \(0.878238\pi\)
\(284\) −111.059 280.980i −0.391052 0.989365i
\(285\) −85.0014 + 246.263i −0.298250 + 0.864082i
\(286\) 138.468 + 94.1617i 0.484154 + 0.329237i
\(287\) 108.448 22.3300i 0.377867 0.0778050i
\(288\) 45.4735 7.13457i 0.157894 0.0247728i
\(289\) −188.843 −0.653435
\(290\) 254.574 190.034i 0.877843 0.655289i
\(291\) 36.9742i 0.127059i
\(292\) 120.529 + 304.940i 0.412772 + 1.04432i
\(293\) 68.4081i 0.233475i −0.993163 0.116737i \(-0.962756\pi\)
0.993163 0.116737i \(-0.0372436\pi\)
\(294\) −51.1743 + 264.580i −0.174062 + 0.899932i
\(295\) −518.468 178.957i −1.75752 0.606633i
\(296\) −69.5776 + 310.003i −0.235060 + 1.04731i
\(297\) 407.549 1.37222
\(298\) −63.3813 + 93.2045i −0.212689 + 0.312767i
\(299\) −68.2906 −0.228397
\(300\) −263.633 78.1869i −0.878778 0.260623i
\(301\) −42.3863 205.853i −0.140818 0.683896i
\(302\) 84.3232 + 57.3418i 0.279216 + 0.189874i
\(303\) 126.160i 0.416371i
\(304\) −221.242 + 207.277i −0.727771 + 0.681832i
\(305\) 167.723 + 57.8920i 0.549912 + 0.189810i
\(306\) −23.8080 16.1900i −0.0778038 0.0529085i
\(307\) 127.999i 0.416936i 0.978029 + 0.208468i \(0.0668477\pi\)
−0.978029 + 0.208468i \(0.933152\pi\)
\(308\) −217.696 332.653i −0.706804 1.08004i
\(309\) 283.988i 0.919056i
\(310\) −386.782 + 288.724i −1.24768 + 0.931367i
\(311\) 460.410i 1.48042i 0.672376 + 0.740210i \(0.265274\pi\)
−0.672376 + 0.740210i \(0.734726\pi\)
\(312\) 28.4084 126.574i 0.0910527 0.405685i
\(313\) −158.669 −0.506930 −0.253465 0.967345i \(-0.581570\pi\)
−0.253465 + 0.967345i \(0.581570\pi\)
\(314\) −250.224 + 367.963i −0.796891 + 1.17186i
\(315\) 6.49114 49.9249i 0.0206068 0.158492i
\(316\) 131.863 + 333.615i 0.417289 + 1.05574i
\(317\) −298.341 −0.941138 −0.470569 0.882363i \(-0.655951\pi\)
−0.470569 + 0.882363i \(0.655951\pi\)
\(318\) 55.4340 81.5177i 0.174321 0.256345i
\(319\) 451.055 1.41397
\(320\) −228.855 223.664i −0.715171 0.698949i
\(321\) 503.720i 1.56922i
\(322\) 149.702 + 62.2590i 0.464914 + 0.193351i
\(323\) 189.630 0.587090
\(324\) −97.0202 245.462i −0.299445 0.757598i
\(325\) 90.9351 116.033i 0.279800 0.357026i
\(326\) 115.392 + 78.4696i 0.353964 + 0.240704i
\(327\) 504.533 1.54292
\(328\) 123.469 + 27.7116i 0.376429 + 0.0844866i
\(329\) −117.642 571.339i −0.357574 1.73659i
\(330\) −233.553 312.873i −0.707736 0.948101i
\(331\) 255.386i 0.771558i −0.922591 0.385779i \(-0.873933\pi\)
0.922591 0.385779i \(-0.126067\pi\)
\(332\) −400.435 + 158.274i −1.20613 + 0.476729i
\(333\) −57.1263 −0.171551
\(334\) 61.1558 + 41.5874i 0.183101 + 0.124513i
\(335\) 210.597 + 72.6906i 0.628647 + 0.216987i
\(336\) −177.669 + 251.567i −0.528778 + 0.748711i
\(337\) 98.5741i 0.292505i −0.989247 0.146252i \(-0.953279\pi\)
0.989247 0.146252i \(-0.0467212\pi\)
\(338\) −221.990 150.958i −0.656774 0.446623i
\(339\) 137.579 0.405837
\(340\) 8.81393 + 199.963i 0.0259233 + 0.588127i
\(341\) −685.301 −2.00968
\(342\) −45.0761 30.6529i −0.131802 0.0896283i
\(343\) 196.269 + 281.296i 0.572214 + 0.820104i
\(344\) 52.6014 234.365i 0.152911 0.681294i
\(345\) 150.514 + 51.9520i 0.436272 + 0.150586i
\(346\) 125.679 184.816i 0.363235 0.534151i
\(347\) −367.417 −1.05884 −0.529420 0.848360i \(-0.677590\pi\)
−0.529420 + 0.848360i \(0.677590\pi\)
\(348\) −128.444 324.964i −0.369092 0.933805i
\(349\) 170.008 0.487128 0.243564 0.969885i \(-0.421683\pi\)
0.243564 + 0.969885i \(0.421683\pi\)
\(350\) −305.127 + 171.457i −0.871791 + 0.489878i
\(351\) 169.262 0.482229
\(352\) −70.4235 448.857i −0.200067 1.27516i
\(353\) 573.815 1.62554 0.812769 0.582587i \(-0.197959\pi\)
0.812769 + 0.582587i \(0.197959\pi\)
\(354\) −339.247 + 498.875i −0.958326 + 1.40925i
\(355\) −356.997 123.223i −1.00563 0.347106i
\(356\) −539.417 + 213.208i −1.51522 + 0.598898i
\(357\) 188.681 38.8506i 0.528519 0.108825i
\(358\) 177.532 261.067i 0.495899 0.729237i
\(359\) −130.637 −0.363890 −0.181945 0.983309i \(-0.558239\pi\)
−0.181945 + 0.983309i \(0.558239\pi\)
\(360\) 30.2280 48.9571i 0.0839668 0.135992i
\(361\) −1.96954 −0.00545579
\(362\) −147.416 100.247i −0.407228 0.276925i
\(363\) 221.620i 0.610523i
\(364\) −90.4128 138.157i −0.248387 0.379552i
\(365\) 387.440 + 133.731i 1.06148 + 0.366385i
\(366\) 109.746 161.385i 0.299851 0.440942i
\(367\) −338.502 −0.922349 −0.461175 0.887309i \(-0.652572\pi\)
−0.461175 + 0.887309i \(0.652572\pi\)
\(368\) 126.686 + 135.221i 0.344254 + 0.367449i
\(369\) 22.7525i 0.0616598i
\(370\) 237.568 + 318.252i 0.642075 + 0.860141i
\(371\) −25.3049 122.895i −0.0682071 0.331254i
\(372\) 195.148 + 493.727i 0.524592 + 1.32722i
\(373\) 433.913 1.16330 0.581652 0.813438i \(-0.302406\pi\)
0.581652 + 0.813438i \(0.302406\pi\)
\(374\) −159.807 + 235.002i −0.427292 + 0.628348i
\(375\) −288.695 + 186.561i −0.769852 + 0.497495i
\(376\) 145.994 650.474i 0.388282 1.72998i
\(377\) 187.331 0.496900
\(378\) −371.046 154.313i −0.981602 0.408235i
\(379\) 2.34294i 0.00618191i 0.999995 + 0.00309096i \(0.000983883\pi\)
−0.999995 + 0.00309096i \(0.999016\pi\)
\(380\) 16.6876 + 378.594i 0.0439147 + 0.996301i
\(381\) 227.419 0.596900
\(382\) 169.222 + 115.075i 0.442988 + 0.301243i
\(383\) 752.048 1.96357 0.981786 0.189992i \(-0.0608461\pi\)
0.981786 + 0.189992i \(0.0608461\pi\)
\(384\) −303.326 + 178.555i −0.789913 + 0.464986i
\(385\) −492.795 64.0724i −1.27999 0.166422i
\(386\) 159.503 234.555i 0.413220 0.607656i
\(387\) 43.1881 0.111597
\(388\) 19.7701 + 50.0186i 0.0509540 + 0.128914i
\(389\) 365.187i 0.938784i −0.882990 0.469392i \(-0.844473\pi\)
0.882990 0.469392i \(-0.155527\pi\)
\(390\) −96.9986 129.942i −0.248714 0.333184i
\(391\) 115.900i 0.296419i
\(392\) 72.2426 + 385.286i 0.184292 + 0.982871i
\(393\) 240.692i 0.612449i
\(394\) 84.4026 + 57.3958i 0.214220 + 0.145675i
\(395\) 423.873 + 146.306i 1.07310 + 0.370394i
\(396\) 75.9742 30.0292i 0.191854 0.0758314i
\(397\) 675.156i 1.70064i 0.526262 + 0.850322i \(0.323593\pi\)
−0.526262 + 0.850322i \(0.676407\pi\)
\(398\) 84.8850 124.826i 0.213279 0.313634i
\(399\) 357.234 73.5566i 0.895324 0.184352i
\(400\) −398.449 + 35.1938i −0.996122 + 0.0879846i
\(401\) 719.884 1.79522 0.897611 0.440789i \(-0.145301\pi\)
0.897611 + 0.440789i \(0.145301\pi\)
\(402\) 137.799 202.638i 0.342784 0.504076i
\(403\) −284.617 −0.706247
\(404\) −67.4581 170.669i −0.166975 0.422449i
\(405\) −311.870 107.646i −0.770049 0.265794i
\(406\) −410.655 170.786i −1.01147 0.420654i
\(407\) 563.879i 1.38545i
\(408\) 214.815 + 48.2136i 0.526508 + 0.118171i
\(409\) 352.382i 0.861570i −0.902455 0.430785i \(-0.858237\pi\)
0.902455 0.430785i \(-0.141763\pi\)
\(410\) 126.754 94.6193i 0.309157 0.230779i
\(411\) 169.232 0.411756
\(412\) −151.849 384.178i −0.368565 0.932471i
\(413\) 154.862 + 752.100i 0.374968 + 1.82107i
\(414\) −18.7347 + 27.5501i −0.0452530 + 0.0665461i
\(415\) −175.609 + 508.770i −0.423155 + 1.22595i
\(416\) −29.2481 186.418i −0.0703080 0.448121i
\(417\) 43.7752i 0.104976i
\(418\) −302.567 + 444.935i −0.723843 + 1.06444i
\(419\) 207.738 0.495795 0.247898 0.968786i \(-0.420260\pi\)
0.247898 + 0.968786i \(0.420260\pi\)
\(420\) 94.1688 + 373.281i 0.224212 + 0.888765i
\(421\) 480.271i 1.14079i 0.821372 + 0.570393i \(0.193209\pi\)
−0.821372 + 0.570393i \(0.806791\pi\)
\(422\) −211.128 + 310.471i −0.500303 + 0.735713i
\(423\) 119.867 0.283375
\(424\) 31.4034 139.917i 0.0740646 0.329994i
\(425\) 196.927 + 154.331i 0.463357 + 0.363132i
\(426\) −233.592 + 343.506i −0.548339 + 0.806352i
\(427\) −50.0973 243.302i −0.117324 0.569794i
\(428\) −269.339 681.431i −0.629298 1.59213i
\(429\) 230.231i 0.536669i
\(430\) −179.604 240.602i −0.417683 0.559539i
\(431\) −362.214 −0.840405 −0.420202 0.907430i \(-0.638041\pi\)
−0.420202 + 0.907430i \(0.638041\pi\)
\(432\) −313.998 335.153i −0.726846 0.775818i
\(433\) −603.870 −1.39462 −0.697309 0.716771i \(-0.745619\pi\)
−0.697309 + 0.716771i \(0.745619\pi\)
\(434\) 623.919 + 259.479i 1.43760 + 0.597879i
\(435\) −412.881 142.512i −0.949152 0.327614i
\(436\) 682.531 269.774i 1.56544 0.618749i
\(437\) 219.436i 0.502142i
\(438\) 253.512 372.799i 0.578795 0.851139i
\(439\) 173.388i 0.394961i 0.980307 + 0.197480i \(0.0632759\pi\)
−0.980307 + 0.197480i \(0.936724\pi\)
\(440\) −483.243 298.373i −1.09828 0.678121i
\(441\) −64.7496 + 27.8452i −0.146825 + 0.0631410i
\(442\) −66.3708 + 97.6006i −0.150160 + 0.220816i
\(443\) 350.334 0.790821 0.395410 0.918505i \(-0.370602\pi\)
0.395410 + 0.918505i \(0.370602\pi\)
\(444\) 406.248 160.572i 0.914974 0.361649i
\(445\) −236.560 + 685.353i −0.531595 + 1.54012i
\(446\) 521.943 + 354.934i 1.17027 + 0.795815i
\(447\) 154.971 0.346692
\(448\) −105.838 + 435.319i −0.236245 + 0.971694i
\(449\) −768.172 −1.71085 −0.855426 0.517926i \(-0.826704\pi\)
−0.855426 + 0.517926i \(0.826704\pi\)
\(450\) −21.8637 68.5178i −0.0485860 0.152262i
\(451\) 224.584 0.497968
\(452\) 186.116 73.5635i 0.411761 0.162751i
\(453\) 140.204i 0.309502i
\(454\) 8.29238 12.1942i 0.0182651 0.0268595i
\(455\) −204.667 26.6104i −0.449817 0.0584844i
\(456\) 406.714 + 91.2839i 0.891918 + 0.200184i
\(457\) 375.067i 0.820716i −0.911925 0.410358i \(-0.865404\pi\)
0.911925 0.410358i \(-0.134596\pi\)
\(458\) −100.665 68.4544i −0.219792 0.149464i
\(459\) 287.265i 0.625849i
\(460\) 231.393 10.1993i 0.503029 0.0221724i
\(461\) −39.7150 −0.0861497 −0.0430748 0.999072i \(-0.513715\pi\)
−0.0430748 + 0.999072i \(0.513715\pi\)
\(462\) −209.896 + 504.697i −0.454321 + 1.09242i
\(463\) 22.9529i 0.0495743i −0.999693 0.0247872i \(-0.992109\pi\)
0.999693 0.0247872i \(-0.00789081\pi\)
\(464\) −347.517 370.931i −0.748959 0.799421i
\(465\) 627.302 + 216.522i 1.34904 + 0.465639i
\(466\) 378.826 557.077i 0.812931 1.19544i
\(467\) 41.0354i 0.0878702i −0.999034 0.0439351i \(-0.986011\pi\)
0.999034 0.0439351i \(-0.0139895\pi\)
\(468\) 31.5534 12.4717i 0.0674219 0.0266489i
\(469\) −62.9033 305.496i −0.134122 0.651377i
\(470\) −498.485 667.784i −1.06061 1.42082i
\(471\) 611.812 1.29896
\(472\) −192.184 + 856.273i −0.407169 + 1.81414i
\(473\) 426.299i 0.901266i
\(474\) 277.351 407.855i 0.585129 0.860453i
\(475\) 372.846 + 292.198i 0.784939 + 0.615155i
\(476\) 234.474 153.445i 0.492592 0.322363i
\(477\) 25.7836 0.0540536
\(478\) −224.783 152.858i −0.470258 0.319787i
\(479\) 740.675i 1.54629i 0.634227 + 0.773147i \(0.281319\pi\)
−0.634227 + 0.773147i \(0.718681\pi\)
\(480\) −77.3541 + 433.120i −0.161154 + 0.902332i
\(481\) 234.189i 0.486879i
\(482\) 76.3560 112.284i 0.158415 0.232955i
\(483\) −44.9571 218.338i −0.0930788 0.452046i
\(484\) −118.500 299.807i −0.244835 0.619435i
\(485\) 63.5509 + 21.9355i 0.131033 + 0.0452278i
\(486\) 86.4714 127.159i 0.177925 0.261645i
\(487\) 701.882i 1.44124i −0.693332 0.720618i \(-0.743858\pi\)
0.693332 0.720618i \(-0.256142\pi\)
\(488\) 62.1709 277.002i 0.127399 0.567627i
\(489\) 191.863i 0.392358i
\(490\) 424.397 + 244.924i 0.866116 + 0.499844i
\(491\) 725.694i 1.47799i 0.673709 + 0.738996i \(0.264700\pi\)
−0.673709 + 0.738996i \(0.735300\pi\)
\(492\) −63.9532 161.802i −0.129986 0.328866i
\(493\) 317.931i 0.644890i
\(494\) −125.661 + 184.789i −0.254375 + 0.374067i
\(495\) 33.3182 96.5286i 0.0673096 0.195007i
\(496\) 527.992 + 563.566i 1.06450 + 1.13622i
\(497\) 106.632 + 517.867i 0.214551 + 1.04199i
\(498\) 489.544 + 332.902i 0.983019 + 0.668477i
\(499\) 624.305i 1.25111i 0.780179 + 0.625556i \(0.215128\pi\)
−0.780179 + 0.625556i \(0.784872\pi\)
\(500\) −290.791 + 406.744i −0.581582 + 0.813488i
\(501\) 101.684i 0.202962i
\(502\) −370.763 252.128i −0.738572 0.502247i
\(503\) −419.530 −0.834057 −0.417028 0.908894i \(-0.636928\pi\)
−0.417028 + 0.908894i \(0.636928\pi\)
\(504\) −80.5395 1.42697i −0.159801 0.00283129i
\(505\) −216.843 74.8465i −0.429392 0.148211i
\(506\) 271.940 + 184.926i 0.537431 + 0.365466i
\(507\) 369.102i 0.728013i
\(508\) 307.651 121.601i 0.605613 0.239372i
\(509\) 312.970 0.614872 0.307436 0.951569i \(-0.400529\pi\)
0.307436 + 0.951569i \(0.400529\pi\)
\(510\) 220.532 164.622i 0.432415 0.322788i
\(511\) −115.725 562.028i −0.226467 1.09986i
\(512\) −314.866 + 403.737i −0.614972 + 0.788549i
\(513\) 543.885i 1.06020i
\(514\) 92.5609 + 62.9436i 0.180080 + 0.122458i
\(515\) −488.115 168.480i −0.947797 0.327146i
\(516\) −307.128 + 121.394i −0.595210 + 0.235260i
\(517\) 1183.18i 2.28855i
\(518\) 213.505 513.374i 0.412171 0.991069i
\(519\) −307.294 −0.592088
\(520\) −200.699 123.920i −0.385960 0.238307i
\(521\) 519.109i 0.996370i −0.867071 0.498185i \(-0.834000\pi\)
0.867071 0.498185i \(-0.166000\pi\)
\(522\) 51.3921 75.5739i 0.0984523 0.144778i
\(523\) 422.665i 0.808155i −0.914725 0.404078i \(-0.867593\pi\)
0.914725 0.404078i \(-0.132407\pi\)
\(524\) −128.698 325.608i −0.245608 0.621389i
\(525\) 430.845 + 214.350i 0.820657 + 0.408285i
\(526\) −83.7374 + 123.139i −0.159197 + 0.234104i
\(527\) 483.041i 0.916586i
\(528\) −455.876 + 427.100i −0.863402 + 0.808902i
\(529\) 394.883 0.746471
\(530\) −107.225 143.641i −0.202310 0.271020i
\(531\) −157.791 −0.297159
\(532\) 443.934 290.520i 0.834463 0.546091i
\(533\) 93.2735 0.174997
\(534\) 659.454 + 448.445i 1.23493 + 0.839784i
\(535\) −865.787 298.839i −1.61829 0.558578i
\(536\) 78.0632 347.810i 0.145640 0.648899i
\(537\) −434.076 −0.808335
\(538\) 624.368 + 424.585i 1.16053 + 0.789192i
\(539\) 274.853 + 639.127i 0.509931 + 1.18576i
\(540\) −573.521 + 25.2795i −1.06208 + 0.0468140i
\(541\) 423.091i 0.782053i 0.920379 + 0.391026i \(0.127880\pi\)
−0.920379 + 0.391026i \(0.872120\pi\)
\(542\) 521.067 766.247i 0.961377 1.41374i
\(543\) 245.109i 0.451398i
\(544\) 316.381 49.6387i 0.581583 0.0912476i
\(545\) 299.322 867.186i 0.549214 1.59117i
\(546\) −87.1737 + 209.610i −0.159659 + 0.383901i
\(547\) 451.054 0.824597 0.412298 0.911049i \(-0.364726\pi\)
0.412298 + 0.911049i \(0.364726\pi\)
\(548\) 228.936 90.4882i 0.417766 0.165125i
\(549\) 51.0450 0.0929782
\(550\) −676.321 + 215.811i −1.22968 + 0.392383i
\(551\) 601.945i 1.09246i
\(552\) 55.7918 248.580i 0.101072 0.450326i
\(553\) −126.607 614.878i −0.228945 1.11189i
\(554\) 529.119 + 359.814i 0.955089 + 0.649484i
\(555\) 178.159 516.156i 0.321007 0.930012i
\(556\) −23.4066 59.2189i −0.0420982 0.106509i
\(557\) −263.706 −0.473439 −0.236720 0.971578i \(-0.576072\pi\)
−0.236720 + 0.971578i \(0.576072\pi\)
\(558\) −78.0814 + 114.822i −0.139931 + 0.205773i
\(559\) 177.049i 0.316725i
\(560\) 326.985 + 454.622i 0.583902 + 0.811824i
\(561\) 390.738 0.696503
\(562\) −659.059 448.176i −1.17270 0.797467i
\(563\) 529.494i 0.940487i 0.882537 + 0.470244i \(0.155834\pi\)
−0.882537 + 0.470244i \(0.844166\pi\)
\(564\) −852.426 + 336.926i −1.51139 + 0.597387i
\(565\) 81.6206 236.469i 0.144461 0.418529i
\(566\) 237.602 349.402i 0.419791 0.617317i
\(567\) 93.1527 + 452.404i 0.164290 + 0.797892i
\(568\) −132.330 + 589.596i −0.232976 + 1.03802i
\(569\) −605.747 −1.06458 −0.532291 0.846562i \(-0.678669\pi\)
−0.532291 + 0.846562i \(0.678669\pi\)
\(570\) 417.538 311.682i 0.732522 0.546811i
\(571\) 618.848i 1.08380i −0.840444 0.541898i \(-0.817706\pi\)
0.840444 0.541898i \(-0.182294\pi\)
\(572\) −123.105 311.456i −0.215218 0.544503i
\(573\) 281.365i 0.491038i
\(574\) −204.468 85.0354i −0.356216 0.148145i
\(575\) 178.589 227.880i 0.310589 0.396313i
\(576\) −83.2295 39.3423i −0.144496 0.0683025i
\(577\) −98.2803 −0.170330 −0.0851649 0.996367i \(-0.527142\pi\)
−0.0851649 + 0.996367i \(0.527142\pi\)
\(578\) 312.315 + 212.381i 0.540337 + 0.367442i
\(579\) −389.995 −0.673566
\(580\) −634.745 + 27.9781i −1.09439 + 0.0482382i
\(581\) 738.031 151.965i 1.27028 0.261557i
\(582\) 41.5830 61.1493i 0.0714484 0.105067i
\(583\) 254.503i 0.436540i
\(584\) 143.615 639.874i 0.245916 1.09567i
\(585\) 13.8377 40.0900i 0.0236541 0.0685299i
\(586\) −76.9350 + 113.136i −0.131288 + 0.193064i
\(587\) 191.410i 0.326081i −0.986619 0.163041i \(-0.947870\pi\)
0.986619 0.163041i \(-0.0521301\pi\)
\(588\) 382.193 380.018i 0.649988 0.646290i
\(589\) 914.551i 1.55272i
\(590\) 656.197 + 879.059i 1.11220 + 1.48993i
\(591\) 140.336i 0.237456i
\(592\) 463.713 434.442i 0.783300 0.733856i
\(593\) −926.369 −1.56217 −0.781087 0.624423i \(-0.785334\pi\)
−0.781087 + 0.624423i \(0.785334\pi\)
\(594\) −674.019 458.349i −1.13471 0.771632i
\(595\) 45.1620 347.352i 0.0759026 0.583784i
\(596\) 209.644 82.8631i 0.351752 0.139032i
\(597\) −207.549 −0.347653
\(598\) 112.941 + 76.8029i 0.188865 + 0.128433i
\(599\) 378.246 0.631462 0.315731 0.948849i \(-0.397750\pi\)
0.315731 + 0.948849i \(0.397750\pi\)
\(600\) 348.073 + 425.803i 0.580122 + 0.709671i
\(601\) 893.893i 1.48734i 0.668545 + 0.743671i \(0.266917\pi\)
−0.668545 + 0.743671i \(0.733083\pi\)
\(602\) −161.412 + 388.116i −0.268126 + 0.644711i
\(603\) 64.0933 0.106291
\(604\) −74.9673 189.668i −0.124118 0.314019i
\(605\) −380.917 131.479i −0.629616 0.217321i
\(606\) −141.886 + 208.649i −0.234135 + 0.344304i
\(607\) −433.820 −0.714696 −0.357348 0.933971i \(-0.616319\pi\)
−0.357348 + 0.933971i \(0.616319\pi\)
\(608\) 599.011 93.9820i 0.985216 0.154576i
\(609\) 123.324 + 598.933i 0.202502 + 0.983470i
\(610\) −212.278 284.373i −0.347997 0.466185i
\(611\) 491.396i 0.804248i
\(612\) 21.1664 + 53.5511i 0.0345856 + 0.0875019i
\(613\) 202.703 0.330674 0.165337 0.986237i \(-0.447129\pi\)
0.165337 + 0.986237i \(0.447129\pi\)
\(614\) 143.954 211.690i 0.234453 0.344772i
\(615\) −205.576 70.9577i −0.334271 0.115378i
\(616\) −14.0852 + 794.985i −0.0228656 + 1.29056i
\(617\) 952.378i 1.54356i 0.635888 + 0.771781i \(0.280634\pi\)
−0.635888 + 0.771781i \(0.719366\pi\)
\(618\) −319.387 + 469.669i −0.516807 + 0.759983i
\(619\) −742.737 −1.19990 −0.599949 0.800038i \(-0.704813\pi\)
−0.599949 + 0.800038i \(0.704813\pi\)
\(620\) 964.386 42.5080i 1.55546 0.0685612i
\(621\) 332.417 0.535293
\(622\) 517.799 761.443i 0.832475 1.22418i
\(623\) 994.187 204.709i 1.59581 0.328585i
\(624\) −189.334 + 177.382i −0.303419 + 0.284266i
\(625\) 149.386 + 606.885i 0.239018 + 0.971015i
\(626\) 262.413 + 178.447i 0.419189 + 0.285059i
\(627\) 739.793 1.17989
\(628\) 827.657 327.136i 1.31793 0.520918i
\(629\) −397.456 −0.631885
\(630\) −66.8831 + 75.2672i −0.106164 + 0.119472i
\(631\) 707.912 1.12189 0.560944 0.827854i \(-0.310438\pi\)
0.560944 + 0.827854i \(0.310438\pi\)
\(632\) 157.119 700.044i 0.248607 1.10766i
\(633\) 516.220 0.815513
\(634\) 493.406 + 335.528i 0.778244 + 0.529225i
\(635\) 134.919 390.884i 0.212472 0.615566i
\(636\) −183.357 + 72.4730i −0.288298 + 0.113951i
\(637\) 114.151 + 265.441i 0.179201 + 0.416704i
\(638\) −745.971 507.278i −1.16923 0.795107i
\(639\) −108.649 −0.170030
\(640\) 126.945 + 627.284i 0.198351 + 0.980131i
\(641\) −256.060 −0.399470 −0.199735 0.979850i \(-0.564008\pi\)
−0.199735 + 0.979850i \(0.564008\pi\)
\(642\) −566.507 + 833.069i −0.882410 + 1.29762i
\(643\) 743.551i 1.15638i −0.815903 0.578189i \(-0.803760\pi\)
0.815903 0.578189i \(-0.196240\pi\)
\(644\) −177.563 271.328i −0.275719 0.421317i
\(645\) −134.690 + 390.220i −0.208822 + 0.604992i
\(646\) −313.617 213.267i −0.485475 0.330134i
\(647\) −780.148 −1.20579 −0.602896 0.797819i \(-0.705987\pi\)
−0.602896 + 0.797819i \(0.705987\pi\)
\(648\) −115.603 + 515.067i −0.178399 + 0.794856i
\(649\) 1557.52i 2.39987i
\(650\) −280.888 + 89.6301i −0.432136 + 0.137892i
\(651\) −187.369 909.976i −0.287817 1.39781i
\(652\) −102.589 259.552i −0.157345 0.398085i
\(653\) −800.379 −1.22570 −0.612848 0.790201i \(-0.709976\pi\)
−0.612848 + 0.790201i \(0.709976\pi\)
\(654\) −834.415 567.422i −1.27586 0.867618i
\(655\) −413.699 142.794i −0.631602 0.218006i
\(656\) −173.031 184.689i −0.263767 0.281539i
\(657\) 117.914 0.179473
\(658\) −447.994 + 1077.21i −0.680843 + 1.63709i
\(659\) 824.020i 1.25041i 0.780461 + 0.625205i \(0.214985\pi\)
−0.780461 + 0.625205i \(0.785015\pi\)
\(660\) 34.3853 + 780.105i 0.0520989 + 1.18198i
\(661\) −1004.18 −1.51918 −0.759589 0.650403i \(-0.774600\pi\)
−0.759589 + 0.650403i \(0.774600\pi\)
\(662\) −287.219 + 422.366i −0.433866 + 0.638015i
\(663\) 162.281 0.244767
\(664\) 840.256 + 188.589i 1.26545 + 0.284019i
\(665\) 85.5062 657.648i 0.128581 0.988944i
\(666\) 94.4775 + 64.2470i 0.141858 + 0.0964669i
\(667\) 367.903 0.551578
\(668\) −54.3703 137.557i −0.0813927 0.205924i
\(669\) 867.834i 1.29721i
\(670\) −266.541 357.065i −0.397822 0.532933i
\(671\) 503.853i 0.750898i
\(672\) 576.760 216.235i 0.858274 0.321778i
\(673\) 209.582i 0.311414i −0.987803 0.155707i \(-0.950234\pi\)
0.987803 0.155707i \(-0.0497655\pi\)
\(674\) −110.861 + 163.025i −0.164482 + 0.241877i
\(675\) −442.643 + 564.813i −0.655767 + 0.836760i
\(676\) 197.359 + 499.320i 0.291952 + 0.738640i
\(677\) 910.828i 1.34539i −0.739920 0.672695i \(-0.765137\pi\)
0.739920 0.672695i \(-0.234863\pi\)
\(678\) −227.533 154.728i −0.335594 0.228212i
\(679\) −18.9821 92.1881i −0.0279559 0.135770i
\(680\) 210.311 340.618i 0.309281 0.500909i
\(681\) −20.2754 −0.0297729
\(682\) 1133.37 + 770.722i 1.66184 + 1.13009i
\(683\) 313.801 0.459445 0.229722 0.973256i \(-0.426218\pi\)
0.229722 + 0.973256i \(0.426218\pi\)
\(684\) 40.0748 + 101.390i 0.0585889 + 0.148230i
\(685\) 100.399 290.873i 0.146568 0.424632i
\(686\) −8.23846 685.951i −0.0120094 0.999928i
\(687\) 167.375i 0.243632i
\(688\) −350.572 + 328.443i −0.509553 + 0.477388i
\(689\) 105.700i 0.153410i
\(690\) −190.497 255.195i −0.276083 0.369848i
\(691\) −2.99680 −0.00433690 −0.00216845 0.999998i \(-0.500690\pi\)
−0.00216845 + 0.999998i \(0.500690\pi\)
\(692\) −415.706 + 164.310i −0.600731 + 0.237442i
\(693\) −140.026 + 28.8322i −0.202058 + 0.0416049i
\(694\) 607.647 + 413.215i 0.875573 + 0.595411i
\(695\) −75.2402 25.9703i −0.108259 0.0373673i
\(696\) −153.045 + 681.891i −0.219892 + 0.979728i
\(697\) 158.300i 0.227116i
\(698\) −281.165 191.199i −0.402815 0.273924i
\(699\) −926.251 −1.32511
\(700\) 697.458 + 59.5983i 0.996369 + 0.0851405i
\(701\) 276.084i 0.393843i −0.980419 0.196921i \(-0.936906\pi\)
0.980419 0.196921i \(-0.0630944\pi\)
\(702\) −279.932 190.360i −0.398763 0.271169i
\(703\) −752.511 −1.07043
\(704\) −388.337 + 821.537i −0.551616 + 1.16696i
\(705\) −373.829 + 1083.04i −0.530253 + 1.53623i
\(706\) −948.994 645.339i −1.34418 0.914078i
\(707\) 64.7690 + 314.557i 0.0916110 + 0.444917i
\(708\) 1122.12 443.524i 1.58491 0.626446i
\(709\) 364.044i 0.513461i 0.966483 + 0.256731i \(0.0826453\pi\)
−0.966483 + 0.256731i \(0.917355\pi\)
\(710\) 451.832 + 605.286i 0.636383 + 0.852515i
\(711\) 129.002 0.181437
\(712\) 1131.89 + 254.044i 1.58973 + 0.356803i
\(713\) −558.965 −0.783962
\(714\) −355.741 147.948i −0.498236 0.207209i
\(715\) −395.718 136.588i −0.553452 0.191032i
\(716\) −587.216 + 232.101i −0.820134 + 0.324163i
\(717\) 373.747i 0.521265i
\(718\) 216.051 + 146.920i 0.300907 + 0.204624i
\(719\) 200.157i 0.278383i −0.990265 0.139191i \(-0.955550\pi\)
0.990265 0.139191i \(-0.0444503\pi\)
\(720\) −105.052 + 46.9710i −0.145905 + 0.0652376i
\(721\) 145.796 + 708.069i 0.202213 + 0.982065i
\(722\) 3.25729 + 2.21504i 0.00451149 + 0.00306792i
\(723\) −186.695 −0.258223
\(724\) 131.060 + 331.583i 0.181022 + 0.457988i
\(725\) −489.895 + 625.107i −0.675718 + 0.862217i
\(726\) −249.244 + 366.523i −0.343312 + 0.504852i
\(727\) −417.422 −0.574170 −0.287085 0.957905i \(-0.592686\pi\)
−0.287085 + 0.957905i \(0.592686\pi\)
\(728\) −5.84984 + 330.171i −0.00803550 + 0.453532i
\(729\) −805.293 −1.10465
\(730\) −490.362 656.902i −0.671729 0.899865i
\(731\) 300.481 0.411054
\(732\) −363.002 + 143.479i −0.495904 + 0.196009i
\(733\) 1102.88i 1.50461i 0.658814 + 0.752306i \(0.271058\pi\)
−0.658814 + 0.752306i \(0.728942\pi\)
\(734\) 559.826 + 380.696i 0.762706 + 0.518659i
\(735\) −49.6576 671.876i −0.0675613 0.914117i
\(736\) −57.4408 366.110i −0.0780446 0.497432i
\(737\) 632.649i 0.858411i
\(738\) 25.5885 37.6288i 0.0346728 0.0509875i
\(739\) 721.307i 0.976059i −0.872827 0.488029i \(-0.837716\pi\)
0.872827 0.488029i \(-0.162284\pi\)
\(740\) −34.9764 793.516i −0.0472654 1.07232i
\(741\) 307.249 0.414641
\(742\) −96.3639 + 231.708i −0.129870 + 0.312274i
\(743\) 588.343i 0.791847i −0.918283 0.395924i \(-0.870424\pi\)
0.918283 0.395924i \(-0.129576\pi\)
\(744\) 232.526 1036.02i 0.312534 1.39249i
\(745\) 91.9388 266.362i 0.123408 0.357533i
\(746\) −717.619 487.999i −0.961956 0.654154i
\(747\) 154.840i 0.207282i
\(748\) 528.590 208.928i 0.706671 0.279316i
\(749\) 258.603 + 1255.93i 0.345264 + 1.67681i
\(750\) 687.268 + 16.1391i 0.916358 + 0.0215188i
\(751\) −1459.31 −1.94315 −0.971576 0.236730i \(-0.923924\pi\)
−0.971576 + 0.236730i \(0.923924\pi\)
\(752\) −973.004 + 911.585i −1.29389 + 1.21221i
\(753\) 616.468i 0.818683i
\(754\) −309.815 210.682i −0.410895 0.279418i
\(755\) −240.981 83.1782i −0.319180 0.110170i
\(756\) 440.101 + 672.503i 0.582144 + 0.889555i
\(757\) 982.060 1.29730 0.648652 0.761085i \(-0.275333\pi\)
0.648652 + 0.761085i \(0.275333\pi\)
\(758\) 2.63499 3.87484i 0.00347624 0.00511193i
\(759\) 452.154i 0.595724i
\(760\) 398.187 644.900i 0.523930 0.848553i
\(761\) 900.760i 1.18365i −0.806065 0.591826i \(-0.798407\pi\)
0.806065 0.591826i \(-0.201593\pi\)
\(762\) −376.113 255.766i −0.493587 0.335651i
\(763\) −1257.96 + 259.020i −1.64870 + 0.339476i
\(764\) −150.446 380.629i −0.196919 0.498206i
\(765\) 68.0391 + 23.4847i 0.0889400 + 0.0306989i
\(766\) −1243.76 845.789i −1.62371 1.10416i
\(767\) 646.864i 0.843369i
\(768\) 702.463 + 45.8353i 0.914665 + 0.0596813i
\(769\) 282.871i 0.367843i 0.982941 + 0.183921i \(0.0588792\pi\)
−0.982941 + 0.183921i \(0.941121\pi\)
\(770\) 742.943 + 660.186i 0.964861 + 0.857385i
\(771\) 153.901i 0.199612i
\(772\) −527.583 + 208.530i −0.683398 + 0.270117i
\(773\) 849.275i 1.09867i −0.835601 0.549337i \(-0.814880\pi\)
0.835601 0.549337i \(-0.185120\pi\)
\(774\) −71.4260 48.5714i −0.0922816 0.0627537i
\(775\) 744.311 949.743i 0.960402 1.22547i
\(776\) 23.5568 104.957i 0.0303567 0.135254i
\(777\) −748.746 + 154.171i −0.963637 + 0.198418i
\(77