Properties

Label 280.3.c.g.69.11
Level $280$
Weight $3$
Character 280.69
Analytic conductor $7.629$
Analytic rank $0$
Dimension $80$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 280.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.62944740209\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 69.11
Character \(\chi\) \(=\) 280.69
Dual form 280.3.c.g.69.10

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.79455 + 0.882954i) q^{2} -1.20162i q^{3} +(2.44078 - 3.16900i) q^{4} +(-1.26609 - 4.83705i) q^{5} +(1.06097 + 2.15635i) q^{6} +(2.96368 - 6.34166i) q^{7} +(-1.58202 + 7.84202i) q^{8} +7.55612 q^{9} +O(q^{10})\) \(q+(-1.79455 + 0.882954i) q^{2} -1.20162i q^{3} +(2.44078 - 3.16900i) q^{4} +(-1.26609 - 4.83705i) q^{5} +(1.06097 + 2.15635i) q^{6} +(2.96368 - 6.34166i) q^{7} +(-1.58202 + 7.84202i) q^{8} +7.55612 q^{9} +(6.54294 + 7.56240i) q^{10} +6.35173i q^{11} +(-3.80792 - 2.93289i) q^{12} -11.4646i q^{13} +(0.280929 + 13.9972i) q^{14} +(-5.81227 + 1.52135i) q^{15} +(-4.08514 - 15.4697i) q^{16} -17.8708 q^{17} +(-13.5598 + 6.67171i) q^{18} +3.65270 q^{19} +(-18.4189 - 7.79395i) q^{20} +(-7.62023 - 3.56121i) q^{21} +(-5.60828 - 11.3985i) q^{22} -1.47479i q^{23} +(9.42309 + 1.90098i) q^{24} +(-21.7940 + 12.2483i) q^{25} +(10.1227 + 20.5737i) q^{26} -19.8941i q^{27} +(-12.8630 - 24.8705i) q^{28} +13.9833i q^{29} +(9.08710 - 7.86210i) q^{30} -31.1953i q^{31} +(20.9900 + 24.1541i) q^{32} +7.63234 q^{33} +(32.0699 - 15.7791i) q^{34} +(-34.4272 - 6.30637i) q^{35} +(18.4429 - 23.9454i) q^{36} -10.8744 q^{37} +(-6.55494 + 3.22517i) q^{38} -13.7760 q^{39} +(39.9352 - 2.27640i) q^{40} -60.7473i q^{41} +(16.8192 - 0.337568i) q^{42} -34.9718 q^{43} +(20.1286 + 15.5032i) q^{44} +(-9.56671 - 36.5493i) q^{45} +(1.30217 + 2.64658i) q^{46} +54.6600 q^{47} +(-18.5886 + 4.90877i) q^{48} +(-31.4332 - 37.5893i) q^{49} +(28.2957 - 41.2232i) q^{50} +21.4738i q^{51} +(-36.3313 - 27.9826i) q^{52} -50.2489 q^{53} +(17.5656 + 35.7008i) q^{54} +(30.7236 - 8.04185i) q^{55} +(45.0428 + 33.2738i) q^{56} -4.38915i q^{57} +(-12.3466 - 25.0936i) q^{58} -48.8348 q^{59} +(-9.36534 + 22.1324i) q^{60} +13.3248 q^{61} +(27.5440 + 55.9814i) q^{62} +(22.3939 - 47.9183i) q^{63} +(-58.9945 - 24.8124i) q^{64} +(-55.4547 + 14.5152i) q^{65} +(-13.6966 + 6.73900i) q^{66} +105.220 q^{67} +(-43.6187 + 56.6325i) q^{68} -1.77213 q^{69} +(67.3493 - 19.0805i) q^{70} +65.2930 q^{71} +(-11.9539 + 59.2552i) q^{72} -97.4832 q^{73} +(19.5146 - 9.60159i) q^{74} +(14.7177 + 26.1881i) q^{75} +(8.91547 - 11.5754i) q^{76} +(40.2805 + 18.8245i) q^{77} +(24.7217 - 12.1636i) q^{78} -12.8701 q^{79} +(-69.6555 + 39.3460i) q^{80} +44.1000 q^{81} +(53.6371 + 109.014i) q^{82} +140.293i q^{83} +(-29.8848 + 15.4564i) q^{84} +(22.6260 + 86.4417i) q^{85} +(62.7586 - 30.8785i) q^{86} +16.8025 q^{87} +(-49.8104 - 10.0485i) q^{88} +25.4993i q^{89} +(49.4393 + 57.1424i) q^{90} +(-72.7044 - 33.9774i) q^{91} +(-4.67362 - 3.59965i) q^{92} -37.4848 q^{93} +(-98.0899 + 48.2623i) q^{94} +(-4.62465 - 17.6683i) q^{95} +(29.0239 - 25.2219i) q^{96} -117.389 q^{97} +(89.5979 + 39.7016i) q^{98} +47.9944i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80q + 12q^{4} - 224q^{9} + O(q^{10}) \) \( 80q + 12q^{4} - 224q^{9} + 92q^{14} - 72q^{15} - 172q^{16} - 104q^{25} - 68q^{30} - 564q^{36} - 112q^{39} - 40q^{44} - 224q^{46} + 192q^{49} + 332q^{50} - 356q^{56} + 124q^{60} + 396q^{64} + 472q^{65} + 352q^{70} + 800q^{71} + 672q^{74} + 480q^{79} - 896q^{81} + 408q^{84} + 528q^{86} + 1176q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/280\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(141\) \(241\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.79455 + 0.882954i −0.897273 + 0.441477i
\(3\) 1.20162i 0.400539i −0.979741 0.200269i \(-0.935818\pi\)
0.979741 0.200269i \(-0.0641817\pi\)
\(4\) 2.44078 3.16900i 0.610196 0.792250i
\(5\) −1.26609 4.83705i −0.253218 0.967409i
\(6\) 1.06097 + 2.15635i 0.176829 + 0.359392i
\(7\) 2.96368 6.34166i 0.423383 0.905951i
\(8\) −1.58202 + 7.84202i −0.197752 + 0.980252i
\(9\) 7.55612 0.839569
\(10\) 6.54294 + 7.56240i 0.654294 + 0.756240i
\(11\) 6.35173i 0.577430i 0.957415 + 0.288715i \(0.0932280\pi\)
−0.957415 + 0.288715i \(0.906772\pi\)
\(12\) −3.80792 2.93289i −0.317327 0.244407i
\(13\) 11.4646i 0.881890i −0.897534 0.440945i \(-0.854643\pi\)
0.897534 0.440945i \(-0.145357\pi\)
\(14\) 0.280929 + 13.9972i 0.0200663 + 0.999799i
\(15\) −5.81227 + 1.52135i −0.387485 + 0.101423i
\(16\) −4.08514 15.4697i −0.255321 0.966856i
\(17\) −17.8708 −1.05122 −0.525611 0.850725i \(-0.676163\pi\)
−0.525611 + 0.850725i \(0.676163\pi\)
\(18\) −13.5598 + 6.67171i −0.753322 + 0.370650i
\(19\) 3.65270 0.192248 0.0961238 0.995369i \(-0.469356\pi\)
0.0961238 + 0.995369i \(0.469356\pi\)
\(20\) −18.4189 7.79395i −0.920943 0.389698i
\(21\) −7.62023 3.56121i −0.362868 0.169581i
\(22\) −5.60828 11.3985i −0.254922 0.518112i
\(23\) 1.47479i 0.0641214i −0.999486 0.0320607i \(-0.989793\pi\)
0.999486 0.0320607i \(-0.0102070\pi\)
\(24\) 9.42309 + 1.90098i 0.392629 + 0.0792073i
\(25\) −21.7940 + 12.2483i −0.871762 + 0.489930i
\(26\) 10.1227 + 20.5737i 0.389334 + 0.791296i
\(27\) 19.8941i 0.736818i
\(28\) −12.8630 24.8705i −0.459393 0.888233i
\(29\) 13.9833i 0.482182i 0.970503 + 0.241091i \(0.0775052\pi\)
−0.970503 + 0.241091i \(0.922495\pi\)
\(30\) 9.08710 7.86210i 0.302903 0.262070i
\(31\) 31.1953i 1.00630i −0.864199 0.503150i \(-0.832174\pi\)
0.864199 0.503150i \(-0.167826\pi\)
\(32\) 20.9900 + 24.1541i 0.655938 + 0.754815i
\(33\) 7.63234 0.231283
\(34\) 32.0699 15.7791i 0.943232 0.464090i
\(35\) −34.4272 6.30637i −0.983633 0.180182i
\(36\) 18.4429 23.9454i 0.512302 0.665149i
\(37\) −10.8744 −0.293902 −0.146951 0.989144i \(-0.546946\pi\)
−0.146951 + 0.989144i \(0.546946\pi\)
\(38\) −6.55494 + 3.22517i −0.172499 + 0.0848729i
\(39\) −13.7760 −0.353231
\(40\) 39.9352 2.27640i 0.998379 0.0569100i
\(41\) 60.7473i 1.48164i −0.671703 0.740821i \(-0.734437\pi\)
0.671703 0.740821i \(-0.265563\pi\)
\(42\) 16.8192 0.337568i 0.400458 0.00803734i
\(43\) −34.9718 −0.813299 −0.406649 0.913584i \(-0.633303\pi\)
−0.406649 + 0.913584i \(0.633303\pi\)
\(44\) 20.1286 + 15.5032i 0.457469 + 0.352345i
\(45\) −9.56671 36.5493i −0.212594 0.812207i
\(46\) 1.30217 + 2.64658i 0.0283081 + 0.0575343i
\(47\) 54.6600 1.16298 0.581490 0.813554i \(-0.302470\pi\)
0.581490 + 0.813554i \(0.302470\pi\)
\(48\) −18.5886 + 4.90877i −0.387263 + 0.102266i
\(49\) −31.4332 37.5893i −0.641493 0.767129i
\(50\) 28.2957 41.2232i 0.565915 0.824464i
\(51\) 21.4738i 0.421055i
\(52\) −36.3313 27.9826i −0.698678 0.538126i
\(53\) −50.2489 −0.948093 −0.474047 0.880500i \(-0.657207\pi\)
−0.474047 + 0.880500i \(0.657207\pi\)
\(54\) 17.5656 + 35.7008i 0.325288 + 0.661127i
\(55\) 30.7236 8.04185i 0.558611 0.146215i
\(56\) 45.0428 + 33.2738i 0.804335 + 0.594176i
\(57\) 4.38915i 0.0770026i
\(58\) −12.3466 25.0936i −0.212872 0.432649i
\(59\) −48.8348 −0.827709 −0.413855 0.910343i \(-0.635818\pi\)
−0.413855 + 0.910343i \(0.635818\pi\)
\(60\) −9.36534 + 22.1324i −0.156089 + 0.368873i
\(61\) 13.3248 0.218440 0.109220 0.994018i \(-0.465165\pi\)
0.109220 + 0.994018i \(0.465165\pi\)
\(62\) 27.5440 + 55.9814i 0.444258 + 0.902925i
\(63\) 22.3939 47.9183i 0.355459 0.760608i
\(64\) −58.9945 24.8124i −0.921788 0.387694i
\(65\) −55.4547 + 14.5152i −0.853149 + 0.223310i
\(66\) −13.6966 + 6.73900i −0.207524 + 0.102106i
\(67\) 105.220 1.57045 0.785224 0.619212i \(-0.212548\pi\)
0.785224 + 0.619212i \(0.212548\pi\)
\(68\) −43.6187 + 56.6325i −0.641451 + 0.832830i
\(69\) −1.77213 −0.0256831
\(70\) 67.3493 19.0805i 0.962133 0.272579i
\(71\) 65.2930 0.919620 0.459810 0.888017i \(-0.347917\pi\)
0.459810 + 0.888017i \(0.347917\pi\)
\(72\) −11.9539 + 59.2552i −0.166026 + 0.822989i
\(73\) −97.4832 −1.33539 −0.667693 0.744437i \(-0.732718\pi\)
−0.667693 + 0.744437i \(0.732718\pi\)
\(74\) 19.5146 9.60159i 0.263711 0.129751i
\(75\) 14.7177 + 26.1881i 0.196236 + 0.349174i
\(76\) 8.91547 11.5754i 0.117309 0.152308i
\(77\) 40.2805 + 18.8245i 0.523123 + 0.244474i
\(78\) 24.7217 12.1636i 0.316945 0.155943i
\(79\) −12.8701 −0.162913 −0.0814563 0.996677i \(-0.525957\pi\)
−0.0814563 + 0.996677i \(0.525957\pi\)
\(80\) −69.6555 + 39.3460i −0.870694 + 0.491825i
\(81\) 44.1000 0.544445
\(82\) 53.6371 + 109.014i 0.654111 + 1.32944i
\(83\) 140.293i 1.69027i 0.534550 + 0.845137i \(0.320481\pi\)
−0.534550 + 0.845137i \(0.679519\pi\)
\(84\) −29.8848 + 15.4564i −0.355772 + 0.184005i
\(85\) 22.6260 + 86.4417i 0.266188 + 1.01696i
\(86\) 62.7586 30.8785i 0.729751 0.359053i
\(87\) 16.8025 0.193132
\(88\) −49.8104 10.0485i −0.566027 0.114188i
\(89\) 25.4993i 0.286509i 0.989686 + 0.143255i \(0.0457568\pi\)
−0.989686 + 0.143255i \(0.954243\pi\)
\(90\) 49.4393 + 57.1424i 0.549325 + 0.634916i
\(91\) −72.7044 33.9774i −0.798949 0.373378i
\(92\) −4.67362 3.59965i −0.0508002 0.0391266i
\(93\) −37.4848 −0.403062
\(94\) −98.0899 + 48.2623i −1.04351 + 0.513429i
\(95\) −4.62465 17.6683i −0.0486805 0.185982i
\(96\) 29.0239 25.2219i 0.302333 0.262728i
\(97\) −117.389 −1.21019 −0.605097 0.796152i \(-0.706866\pi\)
−0.605097 + 0.796152i \(0.706866\pi\)
\(98\) 89.5979 + 39.7016i 0.914264 + 0.405119i
\(99\) 47.9944i 0.484792i
\(100\) −14.3798 + 98.9607i −0.143798 + 0.989607i
\(101\) −83.2390 −0.824148 −0.412074 0.911150i \(-0.635196\pi\)
−0.412074 + 0.911150i \(0.635196\pi\)
\(102\) −18.9604 38.5357i −0.185886 0.377801i
\(103\) 157.514 1.52926 0.764631 0.644468i \(-0.222921\pi\)
0.764631 + 0.644468i \(0.222921\pi\)
\(104\) 89.9054 + 18.1371i 0.864475 + 0.174396i
\(105\) −7.57784 + 41.3682i −0.0721699 + 0.393983i
\(106\) 90.1740 44.3675i 0.850698 0.418561i
\(107\) 89.9587 0.840735 0.420368 0.907354i \(-0.361901\pi\)
0.420368 + 0.907354i \(0.361901\pi\)
\(108\) −63.0444 48.5572i −0.583745 0.449604i
\(109\) 38.4998i 0.353210i −0.984282 0.176605i \(-0.943489\pi\)
0.984282 0.176605i \(-0.0565115\pi\)
\(110\) −48.0343 + 41.5590i −0.436676 + 0.377809i
\(111\) 13.0668i 0.117719i
\(112\) −110.211 19.9407i −0.984023 0.178042i
\(113\) 146.901i 1.30001i 0.759930 + 0.650005i \(0.225233\pi\)
−0.759930 + 0.650005i \(0.774767\pi\)
\(114\) 3.87541 + 7.87652i 0.0339949 + 0.0690923i
\(115\) −7.13363 + 1.86722i −0.0620316 + 0.0162367i
\(116\) 44.3130 + 34.1302i 0.382009 + 0.294226i
\(117\) 86.6277i 0.740408i
\(118\) 87.6363 43.1189i 0.742681 0.365415i
\(119\) −52.9632 + 113.330i −0.445069 + 0.952354i
\(120\) −2.73536 47.9867i −0.0227947 0.399889i
\(121\) 80.6555 0.666575
\(122\) −23.9120 + 11.7652i −0.196000 + 0.0964361i
\(123\) −72.9949 −0.593455
\(124\) −98.8579 76.1410i −0.797241 0.614040i
\(125\) 86.8386 + 89.9114i 0.694709 + 0.719291i
\(126\) 2.12273 + 105.764i 0.0168471 + 0.839400i
\(127\) 162.061i 1.27607i −0.770008 0.638034i \(-0.779748\pi\)
0.770008 0.638034i \(-0.220252\pi\)
\(128\) 127.776 7.56243i 0.998253 0.0590815i
\(129\) 42.0227i 0.325757i
\(130\) 86.6997 75.0121i 0.666921 0.577016i
\(131\) 17.0555 0.130195 0.0650975 0.997879i \(-0.479264\pi\)
0.0650975 + 0.997879i \(0.479264\pi\)
\(132\) 18.6289 24.1869i 0.141128 0.183234i
\(133\) 10.8255 23.1642i 0.0813944 0.174167i
\(134\) −188.822 + 92.9044i −1.40912 + 0.693316i
\(135\) −96.2287 + 25.1877i −0.712805 + 0.186575i
\(136\) 28.2718 140.143i 0.207881 1.03046i
\(137\) 122.950i 0.897447i −0.893671 0.448724i \(-0.851879\pi\)
0.893671 0.448724i \(-0.148121\pi\)
\(138\) 3.18017 1.56471i 0.0230447 0.0113385i
\(139\) 233.445 1.67946 0.839730 0.543004i \(-0.182713\pi\)
0.839730 + 0.543004i \(0.182713\pi\)
\(140\) −104.014 + 93.7072i −0.742959 + 0.669337i
\(141\) 65.6803i 0.465818i
\(142\) −117.171 + 57.6507i −0.825150 + 0.405991i
\(143\) 72.8199 0.509230
\(144\) −30.8678 116.891i −0.214360 0.811742i
\(145\) 67.6378 17.7041i 0.466467 0.122097i
\(146\) 174.938 86.0732i 1.19821 0.589542i
\(147\) −45.1679 + 37.7706i −0.307265 + 0.256943i
\(148\) −26.5420 + 34.4610i −0.179338 + 0.232844i
\(149\) 213.221i 1.43101i −0.698607 0.715505i \(-0.746196\pi\)
0.698607 0.715505i \(-0.253804\pi\)
\(150\) −49.5344 34.0006i −0.330230 0.226671i
\(151\) 87.8507 0.581793 0.290896 0.956755i \(-0.406047\pi\)
0.290896 + 0.956755i \(0.406047\pi\)
\(152\) −5.77864 + 28.6446i −0.0380173 + 0.188451i
\(153\) −135.034 −0.882572
\(154\) −88.9063 + 1.78438i −0.577314 + 0.0115869i
\(155\) −150.893 + 39.4960i −0.973504 + 0.254813i
\(156\) −33.6243 + 43.6562i −0.215540 + 0.279848i
\(157\) 104.488i 0.665530i −0.943010 0.332765i \(-0.892018\pi\)
0.943010 0.332765i \(-0.107982\pi\)
\(158\) 23.0960 11.3637i 0.146177 0.0719222i
\(159\) 60.3799i 0.379748i
\(160\) 90.2592 132.111i 0.564120 0.825693i
\(161\) −9.35262 4.37081i −0.0580908 0.0271479i
\(162\) −79.1395 + 38.9383i −0.488515 + 0.240360i
\(163\) 110.004 0.674873 0.337437 0.941348i \(-0.390440\pi\)
0.337437 + 0.941348i \(0.390440\pi\)
\(164\) −192.508 148.271i −1.17383 0.904092i
\(165\) −9.66321 36.9180i −0.0585649 0.223745i
\(166\) −123.872 251.762i −0.746217 1.51664i
\(167\) −114.859 −0.687779 −0.343889 0.939010i \(-0.611745\pi\)
−0.343889 + 0.939010i \(0.611745\pi\)
\(168\) 39.9824 54.1241i 0.237990 0.322167i
\(169\) 37.5635 0.222269
\(170\) −116.927 135.146i −0.687808 0.794975i
\(171\) 27.6003 0.161405
\(172\) −85.3587 + 110.826i −0.496272 + 0.644336i
\(173\) 81.3690i 0.470341i −0.971954 0.235170i \(-0.924435\pi\)
0.971954 0.235170i \(-0.0755648\pi\)
\(174\) −30.1529 + 14.8359i −0.173292 + 0.0852635i
\(175\) 13.0836 + 174.510i 0.0747635 + 0.997201i
\(176\) 98.2593 25.9477i 0.558292 0.147430i
\(177\) 58.6807i 0.331529i
\(178\) −22.5147 45.7597i −0.126487 0.257077i
\(179\) 199.041i 1.11196i 0.831196 + 0.555979i \(0.187657\pi\)
−0.831196 + 0.555979i \(0.812343\pi\)
\(180\) −139.175 58.8920i −0.773195 0.327178i
\(181\) 271.498 1.49999 0.749993 0.661445i \(-0.230057\pi\)
0.749993 + 0.661445i \(0.230057\pi\)
\(182\) 160.472 3.22073i 0.881713 0.0176963i
\(183\) 16.0113i 0.0874935i
\(184\) 11.5653 + 2.33314i 0.0628551 + 0.0126801i
\(185\) 13.7679 + 52.5999i 0.0744213 + 0.284324i
\(186\) 67.2681 33.0973i 0.361656 0.177943i
\(187\) 113.510i 0.607006i
\(188\) 133.413 173.218i 0.709646 0.921371i
\(189\) −126.161 58.9598i −0.667521 0.311956i
\(190\) 23.8994 + 27.6232i 0.125787 + 0.145385i
\(191\) 152.273 0.797240 0.398620 0.917116i \(-0.369489\pi\)
0.398620 + 0.917116i \(0.369489\pi\)
\(192\) −29.8150 + 70.8887i −0.155286 + 0.369212i
\(193\) 178.881i 0.926843i 0.886138 + 0.463422i \(0.153378\pi\)
−0.886138 + 0.463422i \(0.846622\pi\)
\(194\) 210.660 103.649i 1.08587 0.534273i
\(195\) 17.4417 + 66.6352i 0.0894444 + 0.341719i
\(196\) −195.842 + 7.86442i −0.999195 + 0.0401246i
\(197\) 271.801 1.37970 0.689849 0.723953i \(-0.257677\pi\)
0.689849 + 0.723953i \(0.257677\pi\)
\(198\) −42.3769 86.1282i −0.214025 0.434991i
\(199\) 39.6863i 0.199429i 0.995016 + 0.0997144i \(0.0317929\pi\)
−0.995016 + 0.0997144i \(0.968207\pi\)
\(200\) −61.5725 190.286i −0.307863 0.951431i
\(201\) 126.434i 0.629025i
\(202\) 149.376 73.4962i 0.739486 0.363843i
\(203\) 88.6771 + 41.4420i 0.436833 + 0.204148i
\(204\) 68.0505 + 52.4129i 0.333581 + 0.256926i
\(205\) −293.838 + 76.9114i −1.43335 + 0.375178i
\(206\) −282.666 + 139.078i −1.37217 + 0.675134i
\(207\) 11.1437i 0.0538343i
\(208\) −177.354 + 46.8344i −0.852661 + 0.225165i
\(209\) 23.2010i 0.111010i
\(210\) −22.9275 80.9280i −0.109178 0.385372i
\(211\) 415.917i 1.97117i −0.169182 0.985585i \(-0.554113\pi\)
0.169182 0.985585i \(-0.445887\pi\)
\(212\) −122.647 + 159.239i −0.578523 + 0.751127i
\(213\) 78.4571i 0.368343i
\(214\) −161.435 + 79.4294i −0.754369 + 0.371165i
\(215\) 44.2774 + 169.160i 0.205942 + 0.786793i
\(216\) 156.010 + 31.4728i 0.722268 + 0.145707i
\(217\) −197.830 92.4529i −0.911658 0.426050i
\(218\) 33.9936 + 69.0897i 0.155934 + 0.316925i
\(219\) 117.137i 0.534874i
\(220\) 49.5051 116.992i 0.225023 0.531780i
\(221\) 204.881i 0.927062i
\(222\) −11.5374 23.4490i −0.0519703 0.105626i
\(223\) −80.3875 −0.360482 −0.180241 0.983622i \(-0.557688\pi\)
−0.180241 + 0.983622i \(0.557688\pi\)
\(224\) 215.385 61.5263i 0.961538 0.274671i
\(225\) −164.678 + 92.5493i −0.731904 + 0.411330i
\(226\) −129.707 263.621i −0.573925 1.16646i
\(227\) 115.865i 0.510417i −0.966886 0.255208i \(-0.917856\pi\)
0.966886 0.255208i \(-0.0821441\pi\)
\(228\) −13.9092 10.7130i −0.0610053 0.0469867i
\(229\) 368.810 1.61052 0.805262 0.592919i \(-0.202025\pi\)
0.805262 + 0.592919i \(0.202025\pi\)
\(230\) 11.1530 9.64947i 0.0484911 0.0419542i
\(231\) 22.6198 48.4016i 0.0979213 0.209531i
\(232\) −109.657 22.1218i −0.472660 0.0953524i
\(233\) 298.852i 1.28263i −0.767280 0.641313i \(-0.778390\pi\)
0.767280 0.641313i \(-0.221610\pi\)
\(234\) 76.4883 + 155.457i 0.326873 + 0.664348i
\(235\) −69.2044 264.393i −0.294487 1.12508i
\(236\) −119.195 + 154.758i −0.505065 + 0.655753i
\(237\) 15.4649i 0.0652528i
\(238\) −5.02041 250.140i −0.0210941 1.05101i
\(239\) −52.4564 −0.219483 −0.109741 0.993960i \(-0.535002\pi\)
−0.109741 + 0.993960i \(0.535002\pi\)
\(240\) 47.2788 + 83.6992i 0.196995 + 0.348746i
\(241\) 389.409i 1.61580i 0.589317 + 0.807902i \(0.299397\pi\)
−0.589317 + 0.807902i \(0.700603\pi\)
\(242\) −144.740 + 71.2151i −0.598099 + 0.294277i
\(243\) 232.038i 0.954889i
\(244\) 32.5230 42.2264i 0.133291 0.173059i
\(245\) −142.024 + 199.635i −0.579690 + 0.814837i
\(246\) 130.993 64.4511i 0.532490 0.261997i
\(247\) 41.8767i 0.169541i
\(248\) 244.634 + 49.3514i 0.986428 + 0.198998i
\(249\) 168.578 0.677020
\(250\) −235.223 84.6756i −0.940893 0.338703i
\(251\) −21.5558 −0.0858796 −0.0429398 0.999078i \(-0.513672\pi\)
−0.0429398 + 0.999078i \(0.513672\pi\)
\(252\) −97.1944 187.925i −0.385692 0.745733i
\(253\) 9.36747 0.0370256
\(254\) 143.092 + 290.825i 0.563355 + 1.14498i
\(255\) 103.870 27.1877i 0.407332 0.106618i
\(256\) −222.623 + 126.392i −0.869622 + 0.493718i
\(257\) 287.660 1.11930 0.559649 0.828729i \(-0.310936\pi\)
0.559649 + 0.828729i \(0.310936\pi\)
\(258\) −37.1041 75.4117i −0.143814 0.292293i
\(259\) −32.2282 + 68.9616i −0.124433 + 0.266261i
\(260\) −89.3544 + 211.164i −0.343671 + 0.812171i
\(261\) 105.659i 0.404825i
\(262\) −30.6070 + 15.0593i −0.116820 + 0.0574781i
\(263\) 222.984i 0.847850i 0.905697 + 0.423925i \(0.139348\pi\)
−0.905697 + 0.423925i \(0.860652\pi\)
\(264\) −12.0745 + 59.8529i −0.0457367 + 0.226716i
\(265\) 63.6196 + 243.056i 0.240074 + 0.917194i
\(266\) 1.02615 + 51.1276i 0.00385770 + 0.192209i
\(267\) 30.6404 0.114758
\(268\) 256.819 333.442i 0.958281 1.24419i
\(269\) −473.218 −1.75917 −0.879587 0.475738i \(-0.842181\pi\)
−0.879587 + 0.475738i \(0.842181\pi\)
\(270\) 150.447 130.166i 0.557212 0.482096i
\(271\) 289.845i 1.06954i 0.844998 + 0.534769i \(0.179601\pi\)
−0.844998 + 0.534769i \(0.820399\pi\)
\(272\) 73.0046 + 276.455i 0.268399 + 1.01638i
\(273\) −40.8277 + 87.3627i −0.149552 + 0.320010i
\(274\) 108.559 + 220.640i 0.396202 + 0.805255i
\(275\) −77.7976 138.430i −0.282900 0.503381i
\(276\) −4.32539 + 5.61589i −0.0156717 + 0.0203474i
\(277\) −76.0683 −0.274615 −0.137307 0.990528i \(-0.543845\pi\)
−0.137307 + 0.990528i \(0.543845\pi\)
\(278\) −418.928 + 206.121i −1.50693 + 0.741443i
\(279\) 235.715i 0.844858i
\(280\) 103.919 260.002i 0.371139 0.928577i
\(281\) −38.4073 −0.136681 −0.0683403 0.997662i \(-0.521770\pi\)
−0.0683403 + 0.997662i \(0.521770\pi\)
\(282\) 57.9927 + 117.866i 0.205648 + 0.417966i
\(283\) 36.9983i 0.130736i 0.997861 + 0.0653680i \(0.0208221\pi\)
−0.997861 + 0.0653680i \(0.979178\pi\)
\(284\) 159.366 206.914i 0.561149 0.728569i
\(285\) −21.2305 + 5.55705i −0.0744930 + 0.0194984i
\(286\) −130.679 + 64.2966i −0.456918 + 0.224813i
\(287\) −385.238 180.036i −1.34229 0.627302i
\(288\) 158.603 + 182.511i 0.550705 + 0.633719i
\(289\) 30.3640 0.105066
\(290\) −105.747 + 91.4918i −0.364645 + 0.315489i
\(291\) 141.056i 0.484729i
\(292\) −237.935 + 308.924i −0.814848 + 1.05796i
\(293\) 444.003i 1.51537i 0.652621 + 0.757684i \(0.273669\pi\)
−0.652621 + 0.757684i \(0.726331\pi\)
\(294\) 47.7061 107.662i 0.162266 0.366198i
\(295\) 61.8292 + 236.216i 0.209591 + 0.800734i
\(296\) 17.2035 85.2771i 0.0581198 0.288098i
\(297\) 126.362 0.425461
\(298\) 188.264 + 382.634i 0.631758 + 1.28401i
\(299\) −16.9079 −0.0565480
\(300\) 118.913 + 17.2790i 0.396376 + 0.0575967i
\(301\) −103.645 + 221.779i −0.344337 + 0.736809i
\(302\) −157.652 + 77.5681i −0.522027 + 0.256848i
\(303\) 100.021i 0.330103i
\(304\) −14.9218 56.5062i −0.0490849 0.185876i
\(305\) −16.8704 64.4528i −0.0553128 0.211321i
\(306\) 242.324 119.228i 0.791908 0.389635i
\(307\) 218.485i 0.711676i 0.934548 + 0.355838i \(0.115805\pi\)
−0.934548 + 0.355838i \(0.884195\pi\)
\(308\) 157.971 81.7023i 0.512892 0.265267i
\(309\) 189.271i 0.612529i
\(310\) 235.911 204.109i 0.761004 0.658416i
\(311\) 527.773i 1.69702i −0.529179 0.848510i \(-0.677500\pi\)
0.529179 0.848510i \(-0.322500\pi\)
\(312\) 21.7939 108.032i 0.0698522 0.346256i
\(313\) 405.291 1.29486 0.647429 0.762126i \(-0.275844\pi\)
0.647429 + 0.762126i \(0.275844\pi\)
\(314\) 92.2583 + 187.509i 0.293816 + 0.597162i
\(315\) −260.136 47.6517i −0.825828 0.151275i
\(316\) −31.4131 + 40.7853i −0.0994086 + 0.129068i
\(317\) 548.657 1.73078 0.865390 0.501098i \(-0.167071\pi\)
0.865390 + 0.501098i \(0.167071\pi\)
\(318\) −53.3127 108.354i −0.167650 0.340737i
\(319\) −88.8180 −0.278426
\(320\) −45.3265 + 316.774i −0.141645 + 0.989917i
\(321\) 108.096i 0.336747i
\(322\) 20.6429 0.414311i 0.0641084 0.00128668i
\(323\) −65.2766 −0.202095
\(324\) 107.639 139.753i 0.332218 0.431337i
\(325\) 140.421 + 249.859i 0.432065 + 0.768798i
\(326\) −197.408 + 97.1287i −0.605545 + 0.297941i
\(327\) −46.2620 −0.141474
\(328\) 476.381 + 96.1032i 1.45238 + 0.292998i
\(329\) 161.995 346.635i 0.492386 1.05360i
\(330\) 49.9379 + 57.7188i 0.151327 + 0.174905i
\(331\) 77.0081i 0.232653i −0.993211 0.116326i \(-0.962888\pi\)
0.993211 0.116326i \(-0.0371119\pi\)
\(332\) 444.588 + 342.424i 1.33912 + 1.03140i
\(333\) −82.1682 −0.246751
\(334\) 206.120 101.415i 0.617125 0.303638i
\(335\) −133.218 508.954i −0.397665 1.51927i
\(336\) −23.9611 + 132.431i −0.0713127 + 0.394139i
\(337\) 532.210i 1.57926i −0.613585 0.789629i \(-0.710273\pi\)
0.613585 0.789629i \(-0.289727\pi\)
\(338\) −67.4094 + 33.1668i −0.199436 + 0.0981267i
\(339\) 176.519 0.520704
\(340\) 329.159 + 139.284i 0.968114 + 0.409658i
\(341\) 198.144 0.581068
\(342\) −49.5299 + 24.3698i −0.144824 + 0.0712566i
\(343\) −331.536 + 87.9357i −0.966578 + 0.256372i
\(344\) 55.3260 274.250i 0.160831 0.797238i
\(345\) 2.24368 + 8.57189i 0.00650341 + 0.0248460i
\(346\) 71.8451 + 146.020i 0.207645 + 0.422024i
\(347\) 538.276 1.55123 0.775614 0.631207i \(-0.217440\pi\)
0.775614 + 0.631207i \(0.217440\pi\)
\(348\) 41.0113 53.2472i 0.117849 0.153009i
\(349\) −534.502 −1.53153 −0.765763 0.643123i \(-0.777638\pi\)
−0.765763 + 0.643123i \(0.777638\pi\)
\(350\) −177.564 301.614i −0.507325 0.861755i
\(351\) −228.077 −0.649793
\(352\) −153.420 + 133.323i −0.435853 + 0.378758i
\(353\) 547.043 1.54970 0.774849 0.632147i \(-0.217826\pi\)
0.774849 + 0.632147i \(0.217826\pi\)
\(354\) −51.8124 105.305i −0.146363 0.297472i
\(355\) −82.6667 315.825i −0.232864 0.889649i
\(356\) 80.8074 + 62.2383i 0.226987 + 0.174827i
\(357\) 136.179 + 63.6415i 0.381455 + 0.178267i
\(358\) −175.744 357.187i −0.490904 0.997730i
\(359\) −522.975 −1.45676 −0.728378 0.685175i \(-0.759726\pi\)
−0.728378 + 0.685175i \(0.759726\pi\)
\(360\) 301.755 17.2008i 0.838208 0.0477799i
\(361\) −347.658 −0.963041
\(362\) −487.215 + 239.720i −1.34590 + 0.662210i
\(363\) 96.9170i 0.266989i
\(364\) −285.130 + 147.469i −0.783324 + 0.405134i
\(365\) 123.422 + 471.531i 0.338143 + 1.29187i
\(366\) 14.1373 + 28.7330i 0.0386264 + 0.0785055i
\(367\) −12.4454 −0.0339113 −0.0169556 0.999856i \(-0.505397\pi\)
−0.0169556 + 0.999856i \(0.505397\pi\)
\(368\) −22.8146 + 6.02473i −0.0619961 + 0.0163715i
\(369\) 459.014i 1.24394i
\(370\) −71.1505 82.2365i −0.192299 0.222261i
\(371\) −148.922 + 318.661i −0.401407 + 0.858926i
\(372\) −91.4922 + 118.789i −0.245947 + 0.319326i
\(373\) 94.6474 0.253746 0.126873 0.991919i \(-0.459506\pi\)
0.126873 + 0.991919i \(0.459506\pi\)
\(374\) 100.224 + 203.699i 0.267979 + 0.544650i
\(375\) 108.039 104.347i 0.288104 0.278258i
\(376\) −86.4730 + 428.645i −0.229981 + 1.14001i
\(377\) 160.312 0.425232
\(378\) 278.461 5.58882i 0.736670 0.0147852i
\(379\) 585.226i 1.54413i 0.635543 + 0.772066i \(0.280776\pi\)
−0.635543 + 0.772066i \(0.719224\pi\)
\(380\) −67.2786 28.4690i −0.177049 0.0749184i
\(381\) −194.735 −0.511115
\(382\) −273.260 + 134.450i −0.715341 + 0.351963i
\(383\) −206.190 −0.538356 −0.269178 0.963090i \(-0.586752\pi\)
−0.269178 + 0.963090i \(0.586752\pi\)
\(384\) −9.08714 153.538i −0.0236644 0.399839i
\(385\) 40.0564 218.672i 0.104043 0.567979i
\(386\) −157.943 321.010i −0.409180 0.831631i
\(387\) −264.251 −0.682820
\(388\) −286.521 + 372.005i −0.738456 + 0.958777i
\(389\) 377.902i 0.971470i −0.874106 0.485735i \(-0.838552\pi\)
0.874106 0.485735i \(-0.161448\pi\)
\(390\) −90.1357 104.180i −0.231117 0.267128i
\(391\) 26.3556i 0.0674057i
\(392\) 344.504 187.033i 0.878836 0.477124i
\(393\) 20.4942i 0.0521481i
\(394\) −487.758 + 239.987i −1.23797 + 0.609105i
\(395\) 16.2947 + 62.2532i 0.0412523 + 0.157603i
\(396\) 152.094 + 117.144i 0.384077 + 0.295818i
\(397\) 262.453i 0.661090i −0.943790 0.330545i \(-0.892767\pi\)
0.943790 0.330545i \(-0.107233\pi\)
\(398\) −35.0412 71.2189i −0.0880432 0.178942i
\(399\) −27.8345 13.0080i −0.0697605 0.0326016i
\(400\) 278.509 + 287.111i 0.696271 + 0.717779i
\(401\) −148.618 −0.370618 −0.185309 0.982680i \(-0.559329\pi\)
−0.185309 + 0.982680i \(0.559329\pi\)
\(402\) 111.635 + 226.891i 0.277700 + 0.564407i
\(403\) −357.641 −0.887446
\(404\) −203.168 + 263.784i −0.502892 + 0.652932i
\(405\) −55.8345 213.314i −0.137863 0.526701i
\(406\) −195.726 + 3.92830i −0.482085 + 0.00967562i
\(407\) 69.0712i 0.169708i
\(408\) −168.398 33.9719i −0.412740 0.0832644i
\(409\) 453.526i 1.10887i 0.832228 + 0.554433i \(0.187065\pi\)
−0.832228 + 0.554433i \(0.812935\pi\)
\(410\) 459.395 397.466i 1.12048 0.969429i
\(411\) −147.739 −0.359462
\(412\) 384.458 499.162i 0.933150 1.21156i
\(413\) −144.731 + 309.694i −0.350438 + 0.749864i
\(414\) 9.83937 + 19.9979i 0.0237666 + 0.0483040i
\(415\) 678.602 177.623i 1.63519 0.428007i
\(416\) 276.916 240.641i 0.665664 0.578465i
\(417\) 280.511i 0.672689i
\(418\) −20.4854 41.6352i −0.0490081 0.0996058i
\(419\) −2.02019 −0.00482145 −0.00241072 0.999997i \(-0.500767\pi\)
−0.00241072 + 0.999997i \(0.500767\pi\)
\(420\) 112.600 + 124.985i 0.268095 + 0.297584i
\(421\) 357.993i 0.850340i −0.905114 0.425170i \(-0.860214\pi\)
0.905114 0.425170i \(-0.139786\pi\)
\(422\) 367.235 + 746.381i 0.870226 + 1.76868i
\(423\) 413.018 0.976401
\(424\) 79.4946 394.053i 0.187487 0.929370i
\(425\) 389.476 218.886i 0.916414 0.515025i
\(426\) 69.2740 + 140.795i 0.162615 + 0.330504i
\(427\) 39.4905 84.5014i 0.0924837 0.197896i
\(428\) 219.570 285.079i 0.513013 0.666073i
\(429\) 87.5015i 0.203966i
\(430\) −228.819 264.471i −0.532137 0.615049i
\(431\) −446.016 −1.03484 −0.517420 0.855732i \(-0.673107\pi\)
−0.517420 + 0.855732i \(0.673107\pi\)
\(432\) −307.756 + 81.2702i −0.712397 + 0.188125i
\(433\) −315.080 −0.727667 −0.363833 0.931464i \(-0.618532\pi\)
−0.363833 + 0.931464i \(0.618532\pi\)
\(434\) 436.646 8.76365i 1.00610 0.0201927i
\(435\) −21.2735 81.2746i −0.0489046 0.186838i
\(436\) −122.006 93.9698i −0.279830 0.215527i
\(437\) 5.38698i 0.0123272i
\(438\) −103.427 210.208i −0.236134 0.479927i
\(439\) 526.489i 1.19929i 0.800265 + 0.599646i \(0.204692\pi\)
−0.800265 + 0.599646i \(0.795308\pi\)
\(440\) 14.4591 + 253.657i 0.0328616 + 0.576494i
\(441\) −237.513 284.029i −0.538578 0.644057i
\(442\) −180.900 367.668i −0.409276 0.831827i
\(443\) −504.255 −1.13827 −0.569136 0.822243i \(-0.692722\pi\)
−0.569136 + 0.822243i \(0.692722\pi\)
\(444\) 41.4088 + 31.8933i 0.0932631 + 0.0718318i
\(445\) 123.341 32.2844i 0.277172 0.0725492i
\(446\) 144.259 70.9784i 0.323451 0.159144i
\(447\) −256.209 −0.573175
\(448\) −332.192 + 300.586i −0.741501 + 0.670952i
\(449\) 363.198 0.808905 0.404452 0.914559i \(-0.367462\pi\)
0.404452 + 0.914559i \(0.367462\pi\)
\(450\) 213.806 311.487i 0.475125 0.692194i
\(451\) 385.850 0.855544
\(452\) 465.530 + 358.554i 1.02993 + 0.793261i
\(453\) 105.563i 0.233030i
\(454\) 102.303 + 207.924i 0.225337 + 0.457983i
\(455\) −72.2999 + 394.693i −0.158901 + 0.867457i
\(456\) 34.4198 + 6.94370i 0.0754819 + 0.0152274i
\(457\) 760.978i 1.66516i 0.553904 + 0.832580i \(0.313137\pi\)
−0.553904 + 0.832580i \(0.686863\pi\)
\(458\) −661.846 + 325.642i −1.44508 + 0.711009i
\(459\) 355.523i 0.774559i
\(460\) −11.4945 + 27.1640i −0.0249879 + 0.0590521i
\(461\) −430.994 −0.934912 −0.467456 0.884016i \(-0.654829\pi\)
−0.467456 + 0.884016i \(0.654829\pi\)
\(462\) 2.14414 + 106.831i 0.00464100 + 0.231236i
\(463\) 84.2589i 0.181985i 0.995852 + 0.0909923i \(0.0290039\pi\)
−0.995852 + 0.0909923i \(0.970996\pi\)
\(464\) 216.317 57.1237i 0.466201 0.123111i
\(465\) 47.4590 + 181.316i 0.102062 + 0.389926i
\(466\) 263.872 + 536.303i 0.566250 + 1.15086i
\(467\) 729.350i 1.56178i −0.624670 0.780889i \(-0.714766\pi\)
0.624670 0.780889i \(-0.285234\pi\)
\(468\) −274.523 211.440i −0.586588 0.451794i
\(469\) 311.839 667.269i 0.664901 1.42275i
\(470\) 357.637 + 413.361i 0.760931 + 0.879492i
\(471\) −125.555 −0.266570
\(472\) 77.2575 382.964i 0.163681 0.811364i
\(473\) 222.132i 0.469623i
\(474\) −13.6548 27.7525i −0.0288076 0.0585495i
\(475\) −79.6072 + 44.7393i −0.167594 + 0.0941879i
\(476\) 229.872 + 444.455i 0.482924 + 0.933729i
\(477\) −379.687 −0.795990
\(478\) 94.1354 46.3166i 0.196936 0.0968966i
\(479\) 878.089i 1.83317i −0.399840 0.916585i \(-0.630934\pi\)
0.399840 0.916585i \(-0.369066\pi\)
\(480\) −158.746 108.457i −0.330722 0.225952i
\(481\) 124.670i 0.259190i
\(482\) −343.830 698.812i −0.713340 1.44982i
\(483\) −5.25204 + 11.2383i −0.0108738 + 0.0232676i
\(484\) 196.863 255.598i 0.406741 0.528094i
\(485\) 148.625 + 567.815i 0.306443 + 1.17075i
\(486\) 204.879 + 416.403i 0.421562 + 0.856796i
\(487\) 220.513i 0.452799i 0.974035 + 0.226399i \(0.0726954\pi\)
−0.974035 + 0.226399i \(0.927305\pi\)
\(488\) −21.0801 + 104.493i −0.0431969 + 0.214126i
\(489\) 132.183i 0.270313i
\(490\) 78.5999 483.655i 0.160408 0.987051i
\(491\) 143.245i 0.291741i −0.989304 0.145871i \(-0.953402\pi\)
0.989304 0.145871i \(-0.0465983\pi\)
\(492\) −178.165 + 231.321i −0.362124 + 0.470165i
\(493\) 249.892i 0.506880i
\(494\) 36.9752 + 75.1496i 0.0748486 + 0.152125i
\(495\) 232.151 60.7652i 0.468992 0.122758i
\(496\) −482.582 + 127.437i −0.972947 + 0.256930i
\(497\) 193.508 414.066i 0.389352 0.833131i
\(498\) −302.521 + 148.847i −0.607471 + 0.298889i
\(499\) 302.198i 0.605607i 0.953053 + 0.302804i \(0.0979227\pi\)
−0.953053 + 0.302804i \(0.902077\pi\)
\(500\) 496.884 55.7371i 0.993767 0.111474i
\(501\) 138.016i 0.275482i
\(502\) 38.6828 19.0328i 0.0770574 0.0379139i
\(503\) −635.540 −1.26350 −0.631750 0.775172i \(-0.717663\pi\)
−0.631750 + 0.775172i \(0.717663\pi\)
\(504\) 340.349 + 251.421i 0.675295 + 0.498851i
\(505\) 105.388 + 402.631i 0.208689 + 0.797289i
\(506\) −16.8104 + 8.27105i −0.0332220 + 0.0163459i
\(507\) 45.1369i 0.0890274i
\(508\) −513.571 395.555i −1.01097 0.778652i
\(509\) −616.524 −1.21125 −0.605623 0.795752i \(-0.707076\pi\)
−0.605623 + 0.795752i \(0.707076\pi\)
\(510\) −162.393 + 140.502i −0.318418 + 0.275494i
\(511\) −288.909 + 618.205i −0.565380 + 1.20979i
\(512\) 287.909 423.382i 0.562323 0.826918i
\(513\) 72.6672i 0.141652i
\(514\) −516.218 + 253.990i −1.00432 + 0.494145i
\(515\) −199.427 761.903i −0.387236 1.47942i
\(516\) 133.170 + 102.568i 0.258081 + 0.198776i
\(517\) 347.186i 0.671539i
\(518\) −3.05493 152.211i −0.00589754 0.293843i
\(519\) −97.7742 −0.188390
\(520\) −26.0980 457.840i −0.0501884 0.880461i
\(521\) 754.179i 1.44756i 0.690030 + 0.723780i \(0.257597\pi\)
−0.690030 + 0.723780i \(0.742403\pi\)
\(522\) −93.2923 189.610i −0.178721 0.363238i
\(523\) 245.714i 0.469816i 0.972018 + 0.234908i \(0.0754789\pi\)
−0.972018 + 0.234908i \(0.924521\pi\)
\(524\) 41.6289 54.0491i 0.0794445 0.103147i
\(525\) 209.694 15.7215i 0.399418 0.0299457i
\(526\) −196.885 400.156i −0.374306 0.760752i
\(527\) 557.484i 1.05784i
\(528\) −31.1792 118.070i −0.0590515 0.223617i
\(529\) 526.825 0.995888
\(530\) −328.776 380.003i −0.620332 0.716986i
\(531\) −369.002 −0.694919
\(532\) −46.9848 90.8447i −0.0883172 0.170761i
\(533\) −696.442 −1.30665
\(534\) −54.9856 + 27.0540i −0.102969 + 0.0506630i
\(535\) −113.896 435.134i −0.212889 0.813335i
\(536\) −166.460 + 825.137i −0.310559 + 1.53943i
\(537\) 239.170 0.445382
\(538\) 849.211 417.830i 1.57846 0.776635i
\(539\) 238.757 199.655i 0.442963 0.370417i
\(540\) −155.054 + 366.426i −0.287136 + 0.678568i
\(541\) 347.839i 0.642955i 0.946917 + 0.321478i \(0.104180\pi\)
−0.946917 + 0.321478i \(0.895820\pi\)
\(542\) −255.920 520.139i −0.472176 0.959667i
\(543\) 326.236i 0.600803i
\(544\) −375.107 431.652i −0.689535 0.793478i
\(545\) −186.226 + 48.7442i −0.341698 + 0.0894389i
\(546\) −3.87008 192.825i −0.00708805 0.353160i
\(547\) 88.7131 0.162181 0.0810906 0.996707i \(-0.474160\pi\)
0.0810906 + 0.996707i \(0.474160\pi\)
\(548\) −389.630 300.095i −0.711003 0.547619i
\(549\) 100.684 0.183395
\(550\) 261.838 + 179.727i 0.476070 + 0.326776i
\(551\) 51.0768i 0.0926983i
\(552\) 2.80354 13.8971i 0.00507888 0.0251759i
\(553\) −38.1429 + 81.6177i −0.0689744 + 0.147591i
\(554\) 136.508 67.1648i 0.246404 0.121236i
\(555\) 63.2049 16.5438i 0.113883 0.0298086i
\(556\) 569.789 739.788i 1.02480 1.33055i
\(557\) −244.783 −0.439467 −0.219733 0.975560i \(-0.570519\pi\)
−0.219733 + 0.975560i \(0.570519\pi\)
\(558\) 208.126 + 423.002i 0.372985 + 0.758068i
\(559\) 400.937i 0.717240i
\(560\) 43.0821 + 558.340i 0.0769324 + 0.997036i
\(561\) −136.396 −0.243129
\(562\) 68.9236 33.9118i 0.122640 0.0603414i
\(563\) 330.152i 0.586416i −0.956049 0.293208i \(-0.905277\pi\)
0.956049 0.293208i \(-0.0947228\pi\)
\(564\) −208.141 160.312i −0.369045 0.284240i
\(565\) 710.568 185.990i 1.25764 0.329186i
\(566\) −32.6678 66.3951i −0.0577169 0.117306i
\(567\) 130.698 279.667i 0.230509 0.493240i
\(568\) −103.295 + 512.029i −0.181857 + 0.901460i
\(569\) −65.2889 −0.114743 −0.0573716 0.998353i \(-0.518272\pi\)
−0.0573716 + 0.998353i \(0.518272\pi\)
\(570\) 33.1925 28.7179i 0.0582324 0.0503823i
\(571\) 408.808i 0.715950i −0.933731 0.357975i \(-0.883467\pi\)
0.933731 0.357975i \(-0.116533\pi\)
\(572\) 177.738 230.766i 0.310730 0.403438i
\(573\) 182.973i 0.319325i
\(574\) 850.291 17.0657i 1.48134 0.0297311i
\(575\) 18.0636 + 32.1417i 0.0314150 + 0.0558985i
\(576\) −445.769 187.485i −0.773905 0.325495i
\(577\) −848.550 −1.47062 −0.735312 0.677729i \(-0.762964\pi\)
−0.735312 + 0.677729i \(0.762964\pi\)
\(578\) −54.4895 + 26.8100i −0.0942725 + 0.0463841i
\(579\) 214.946 0.371236
\(580\) 108.985 257.556i 0.187905 0.444062i
\(581\) 889.688 + 415.783i 1.53130 + 0.715633i
\(582\) −124.546 253.132i −0.213997 0.434934i
\(583\) 319.168i 0.547457i
\(584\) 154.220 764.465i 0.264075 1.30902i
\(585\) −419.022 + 109.678i −0.716277 + 0.187484i
\(586\) −392.034 796.783i −0.669000 1.35970i
\(587\) 224.450i 0.382369i −0.981554 0.191184i \(-0.938767\pi\)
0.981554 0.191184i \(-0.0612328\pi\)
\(588\) 9.45001 + 235.327i 0.0160714 + 0.400216i
\(589\) 113.947i 0.193459i
\(590\) −319.524 369.309i −0.541565 0.625947i
\(591\) 326.600i 0.552622i
\(592\) 44.4234 + 168.224i 0.0750396 + 0.284161i
\(593\) 278.865 0.470261 0.235130 0.971964i \(-0.424448\pi\)
0.235130 + 0.971964i \(0.424448\pi\)
\(594\) −226.762 + 111.572i −0.381754 + 0.187831i
\(595\) 615.240 + 112.700i 1.03402 + 0.189411i
\(596\) −675.697 520.426i −1.13372 0.873197i
\(597\) 47.6877 0.0798789
\(598\) 30.3419 14.9289i 0.0507390 0.0249646i
\(599\) 434.423 0.725247 0.362623 0.931936i \(-0.381881\pi\)
0.362623 + 0.931936i \(0.381881\pi\)
\(600\) −228.651 + 73.9865i −0.381085 + 0.123311i
\(601\) 324.120i 0.539301i 0.962958 + 0.269651i \(0.0869082\pi\)
−0.962958 + 0.269651i \(0.913092\pi\)
\(602\) −9.82459 489.507i −0.0163199 0.813135i
\(603\) 795.055 1.31850
\(604\) 214.425 278.399i 0.355008 0.460926i
\(605\) −102.117 390.135i −0.168788 0.644851i
\(606\) −88.3142 179.493i −0.145733 0.296193i
\(607\) 674.884 1.11184 0.555918 0.831237i \(-0.312367\pi\)
0.555918 + 0.831237i \(0.312367\pi\)
\(608\) 76.6703 + 88.2277i 0.126102 + 0.145111i
\(609\) 49.7973 106.556i 0.0817690 0.174968i
\(610\) 87.1835 + 100.768i 0.142924 + 0.165193i
\(611\) 626.654i 1.02562i
\(612\) −329.588 + 427.922i −0.538542 + 0.699218i
\(613\) 1087.67 1.77434 0.887172 0.461440i \(-0.152667\pi\)
0.887172 + 0.461440i \(0.152667\pi\)
\(614\) −192.912 392.081i −0.314189 0.638568i
\(615\) 92.4180 + 353.080i 0.150273 + 0.574113i
\(616\) −211.346 + 286.099i −0.343095 + 0.464447i
\(617\) 124.521i 0.201817i −0.994896 0.100909i \(-0.967825\pi\)
0.994896 0.100909i \(-0.0321750\pi\)
\(618\) 167.118 + 339.656i 0.270417 + 0.549605i
\(619\) 1059.42 1.71150 0.855752 0.517387i \(-0.173095\pi\)
0.855752 + 0.517387i \(0.173095\pi\)
\(620\) −243.135 + 574.582i −0.392153 + 0.926745i
\(621\) −29.3396 −0.0472458
\(622\) 465.999 + 947.113i 0.749195 + 1.52269i
\(623\) 161.708 + 75.5719i 0.259563 + 0.121303i
\(624\) 56.2770 + 213.111i 0.0901874 + 0.341524i
\(625\) 324.960 533.878i 0.519937 0.854205i
\(626\) −727.312 + 357.853i −1.16184 + 0.571650i
\(627\) 27.8787 0.0444636
\(628\) −331.123 255.033i −0.527266 0.406104i
\(629\) 194.334 0.308956
\(630\) 508.900 144.175i 0.807777 0.228849i
\(631\) 893.784 1.41646 0.708228 0.705983i \(-0.249495\pi\)
0.708228 + 0.705983i \(0.249495\pi\)
\(632\) 20.3607 100.927i 0.0322163 0.159695i
\(633\) −499.772 −0.789529
\(634\) −984.591 + 484.439i −1.55298 + 0.764100i
\(635\) −783.895 + 205.183i −1.23448 + 0.323123i
\(636\) 191.344 + 147.374i 0.300855 + 0.231721i
\(637\) −430.945 + 360.368i −0.676523 + 0.565727i
\(638\) 159.388 78.4222i 0.249824 0.122919i
\(639\) 493.362 0.772084
\(640\) −198.356 608.486i −0.309931 0.950759i
\(641\) −395.495 −0.616997 −0.308499 0.951225i \(-0.599827\pi\)
−0.308499 + 0.951225i \(0.599827\pi\)
\(642\) 95.4436 + 193.983i 0.148666 + 0.302154i
\(643\) 733.874i 1.14133i 0.821183 + 0.570664i \(0.193314\pi\)
−0.821183 + 0.570664i \(0.806686\pi\)
\(644\) −36.6788 + 18.9702i −0.0569547 + 0.0294569i
\(645\) 203.266 53.2045i 0.315141 0.0824875i
\(646\) 117.142 57.6362i 0.181334 0.0892202i
\(647\) 196.080 0.303060 0.151530 0.988453i \(-0.451580\pi\)
0.151530 + 0.988453i \(0.451580\pi\)
\(648\) −69.7669 + 345.833i −0.107665 + 0.533693i
\(649\) 310.186i 0.477944i
\(650\) −472.606 324.399i −0.727087 0.499075i
\(651\) −111.093 + 237.715i −0.170650 + 0.365154i
\(652\) 268.497 348.604i 0.411805 0.534668i
\(653\) −183.968 −0.281728 −0.140864 0.990029i \(-0.544988\pi\)
−0.140864 + 0.990029i \(0.544988\pi\)
\(654\) 83.0193 40.8472i 0.126941 0.0624575i
\(655\) −21.5938 82.4985i −0.0329677 0.125952i
\(656\) −939.742 + 248.161i −1.43253 + 0.378295i
\(657\) −736.595 −1.12115
\(658\) 15.3556 + 765.086i 0.0233367 + 1.16275i
\(659\) 846.874i 1.28509i 0.766248 + 0.642544i \(0.222121\pi\)
−0.766248 + 0.642544i \(0.777879\pi\)
\(660\) −140.579 59.4861i −0.212998 0.0901304i
\(661\) 498.387 0.753990 0.376995 0.926215i \(-0.376957\pi\)
0.376995 + 0.926215i \(0.376957\pi\)
\(662\) 67.9946 + 138.195i 0.102711 + 0.208753i
\(663\) 246.188 0.371324
\(664\) −1100.18 221.945i −1.65689 0.334255i
\(665\) −125.752 23.0353i −0.189101 0.0346396i
\(666\) 147.455 72.5507i 0.221403 0.108935i
\(667\) 20.6224 0.0309182
\(668\) −280.346 + 363.988i −0.419680 + 0.544893i
\(669\) 96.5948i 0.144387i
\(670\) 688.448 + 795.716i 1.02753 + 1.18764i
\(671\) 84.6357i 0.126134i
\(672\) −73.9310 258.809i −0.110016 0.385133i
\(673\) 26.2761i 0.0390432i 0.999809 + 0.0195216i \(0.00621431\pi\)
−0.999809 + 0.0195216i \(0.993786\pi\)
\(674\) 469.917 + 955.075i 0.697206 + 1.41702i
\(675\) 243.668 + 433.573i 0.360990 + 0.642330i
\(676\) 91.6844 119.039i 0.135628 0.176093i
\(677\) 273.868i 0.404532i 0.979331 + 0.202266i \(0.0648305\pi\)
−0.979331 + 0.202266i \(0.935169\pi\)
\(678\) −316.771 + 155.858i −0.467214 + 0.229879i
\(679\) −347.903 + 744.439i −0.512376 + 1.09638i
\(680\) −713.672 + 40.6810i −1.04952 + 0.0598250i
\(681\) −139.225 −0.204442
\(682\) −355.578 + 174.952i −0.521376 + 0.256528i
\(683\) −163.569 −0.239486 −0.119743 0.992805i \(-0.538207\pi\)
−0.119743 + 0.992805i \(0.538207\pi\)
\(684\) 67.3663 87.4653i 0.0984888 0.127873i
\(685\) −594.716 + 155.666i −0.868199 + 0.227250i
\(686\) 517.314 450.536i 0.754102 0.656758i
\(687\) 443.168i 0.645077i
\(688\) 142.865 + 541.004i 0.207652 + 0.786343i
\(689\) 576.083i 0.836114i
\(690\) −11.5950 13.4016i −0.0168043 0.0194226i
\(691\) −217.130 −0.314226 −0.157113 0.987581i \(-0.550219\pi\)
−0.157113 + 0.987581i \(0.550219\pi\)
\(692\) −257.858 198.604i −0.372628 0.287000i
\(693\) 304.364 + 142.240i 0.439198 + 0.205253i
\(694\) −965.961 + 475.273i −1.39187 + 0.684832i
\(695\) −295.562 1129.18i −0.425269 1.62473i
\(696\) −26.5819 + 131.766i −0.0381923 + 0.189319i
\(697\) 1085.60i 1.55753i
\(698\) 959.189 471.941i 1.37420 0.676133i
\(699\) −359.105 −0.513741
\(700\) 584.957 + 384.480i 0.835654 + 0.549257i
\(701\) 187.844i 0.267966i 0.990984 + 0.133983i \(0.0427767\pi\)
−0.990984 + 0.133983i \(0.957223\pi\)
\(702\) 409.295 201.382i 0.583041 0.286869i
\(703\) −39.7209 −0.0565020
\(704\) 157.602 374.717i 0.223866 0.532268i
\(705\) −317.699 + 83.1571i −0.450637 + 0.117953i
\(706\) −981.694 + 483.014i −1.39050 + 0.684156i
\(707\) −246.694 + 527.873i −0.348931 + 0.746638i
\(708\) 185.959 + 143.227i 0.262654 + 0.202298i
\(709\) 1273.19i 1.79575i −0.440252 0.897874i \(-0.645111\pi\)
0.440252 0.897874i \(-0.354889\pi\)
\(710\) 427.209 + 493.772i 0.601702 + 0.695454i
\(711\) −97.2480 −0.136776
\(712\) −199.966 40.3403i −0.280851 0.0566578i
\(713\) −46.0065 −0.0645253
\(714\) −300.572 + 6.03260i −0.420970 + 0.00844902i
\(715\) −92.1964 352.233i −0.128946 0.492634i
\(716\) 630.760 + 485.815i 0.880950 + 0.678513i
\(717\) 63.0324i 0.0879113i
\(718\) 938.503 461.763i 1.30711 0.643124i
\(719\) 1161.36i 1.61524i 0.589704 + 0.807620i \(0.299245\pi\)
−0.589704 + 0.807620i \(0.700755\pi\)
\(720\) −526.325 + 297.303i −0.731007 + 0.412921i
\(721\) 466.821 998.900i 0.647464 1.38544i
\(722\) 623.888 306.966i 0.864110 0.425160i
\(723\) 467.920 0.647192
\(724\) 662.667 860.376i 0.915286 1.18837i
\(725\) −171.271 304.752i −0.236236 0.420348i
\(726\) 85.5732 + 173.922i 0.117869 + 0.239562i
\(727\) 952.100 1.30963 0.654815 0.755790i \(-0.272747\pi\)
0.654815 + 0.755790i \(0.272747\pi\)
\(728\) 381.470 516.396i 0.523998 0.709336i
\(729\) 118.080 0.161975
\(730\) −637.827 737.207i −0.873735 1.00987i
\(731\) 624.973 0.854957
\(732\) −50.7399 39.0802i −0.0693168 0.0533882i
\(733\) 67.7576i 0.0924387i 0.998931 + 0.0462194i \(0.0147173\pi\)
−0.998931 + 0.0462194i \(0.985283\pi\)
\(734\) 22.3339 10.9887i 0.0304277 0.0149710i
\(735\) 239.885 + 170.658i 0.326374 + 0.232188i
\(736\) 35.6222 30.9559i 0.0483998 0.0420596i
\(737\) 668.329i 0.906823i
\(738\) 405.288 + 823.721i 0.549171 + 1.11615i
\(739\) 866.575i 1.17263i 0.810082 + 0.586316i \(0.199422\pi\)
−0.810082 + 0.586316i \(0.800578\pi\)
\(740\) 200.294 + 84.7545i 0.270667 + 0.114533i
\(741\) −50.3197 −0.0679078
\(742\) −14.1164 703.344i −0.0190248 0.947902i
\(743\) 977.257i 1.31529i 0.753330 + 0.657643i \(0.228446\pi\)
−0.753330 + 0.657643i \(0.771554\pi\)
\(744\) 59.3015 293.956i 0.0797063 0.395102i
\(745\) −1031.36 + 269.956i −1.38437 + 0.362357i
\(746\) −169.849 + 83.5693i −0.227680 + 0.112023i
\(747\) 1060.07i 1.41910i
\(748\) −359.714 277.054i −0.480901 0.370393i
\(749\) 266.609 570.487i 0.355953 0.761665i
\(750\) −101.748 + 282.648i −0.135663 + 0.376864i
\(751\) 310.507 0.413459 0.206729 0.978398i \(-0.433718\pi\)
0.206729 + 0.978398i \(0.433718\pi\)
\(752\) −223.294 845.574i −0.296933 1.12443i
\(753\) 25.9018i 0.0343981i
\(754\) −287.688 + 141.548i −0.381549 + 0.187730i
\(755\) −111.227 424.938i −0.147320 0.562832i
\(756\) −494.777 + 255.898i −0.654466 + 0.338489i
\(757\) −309.239 −0.408506 −0.204253 0.978918i \(-0.565477\pi\)
−0.204253 + 0.978918i \(0.565477\pi\)
\(758\) −516.727 1050.21i −0.681698 1.38551i
\(759\) 11.2561i 0.0148302i
\(760\) 145.871 8.31502i 0.191936 0.0109408i
\(761\) 83.9096i 0.110262i −0.998479 0.0551312i \(-0.982442\pi\)
0.998479 0.0551312i \(-0.0175577\pi\)
\(762\) 349.460 171.942i 0.458609 0.225645i
\(763\) −244.153 114.101i −0.319991 0.149543i
\(764\) 371.665 482.553i 0.486473 0.631614i
\(765\) 170.964 + 653.164i 0.223483 + 0.853809i
\(766\) 370.018 182.057i 0.483052 0.237672i
\(767\) 559.871i 0.729949i
\(768\) 151.874 + 267.508i 0.197753 + 0.348317i
\(769\) 676.111i 0.879208i 0.898192 + 0.439604i \(0.144881\pi\)
−0.898192 + 0.439604i \(0.855119\pi\)
\(770\) 121.194 + 427.785i 0.157395 + 0.555565i
\(771\) 345.657i 0.448322i
\(772\) 566.873 + 436.609i 0.734292 + 0.565556i
\(773\) 105.163i 0.136046i 0.997684 + 0.0680229i \(0.0216691\pi\)
−0.997684 + 0.0680229i \(0.978331\pi\)
\(774\) 474.211 233.322i 0.612676 0.301449i
\(775\) 382.088 + 679.872i 0.493017 + 0.877254i
\(776\) 185.711 920.565i 0.239318 1.18630i
\(777\) 82.8654 + 38.7259i 0.106648 + 0.0498403i
\(778\)