Properties

Label 280.3.c.g.69.1
Level $280$
Weight $3$
Character 280.69
Analytic conductor $7.629$
Analytic rank $0$
Dimension $80$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 280.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.62944740209\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 69.1
Character \(\chi\) \(=\) 280.69
Dual form 280.3.c.g.69.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.99206 - 0.178090i) q^{2} -5.14158i q^{3} +(3.93657 + 0.709530i) q^{4} +(-3.67215 - 3.39343i) q^{5} +(-0.915664 + 10.2423i) q^{6} +(3.38765 + 6.12567i) q^{7} +(-7.71550 - 2.11449i) q^{8} -17.4359 q^{9} +O(q^{10})\) \(q+(-1.99206 - 0.178090i) q^{2} -5.14158i q^{3} +(3.93657 + 0.709530i) q^{4} +(-3.67215 - 3.39343i) q^{5} +(-0.915664 + 10.2423i) q^{6} +(3.38765 + 6.12567i) q^{7} +(-7.71550 - 2.11449i) q^{8} -17.4359 q^{9} +(6.71078 + 7.41387i) q^{10} +18.5106i q^{11} +(3.64811 - 20.2402i) q^{12} +12.0353i q^{13} +(-5.65747 - 12.8060i) q^{14} +(-17.4476 + 18.8806i) q^{15} +(14.9931 + 5.58623i) q^{16} -19.5965 q^{17} +(34.7332 + 3.10515i) q^{18} -6.87089 q^{19} +(-12.0479 - 15.9640i) q^{20} +(31.4956 - 17.4179i) q^{21} +(3.29655 - 36.8741i) q^{22} -20.3728i q^{23} +(-10.8718 + 39.6699i) q^{24} +(1.96931 + 24.9223i) q^{25} +(2.14337 - 23.9750i) q^{26} +43.3737i q^{27} +(8.98937 + 26.5178i) q^{28} +2.31875i q^{29} +(38.1190 - 34.5040i) q^{30} -6.49424i q^{31} +(-28.8723 - 13.7982i) q^{32} +95.1736 q^{33} +(39.0374 + 3.48995i) q^{34} +(8.34706 - 33.9901i) q^{35} +(-68.6375 - 12.3713i) q^{36} +30.2885 q^{37} +(13.6872 + 1.22364i) q^{38} +61.8806 q^{39} +(21.1571 + 33.9467i) q^{40} +48.2859i q^{41} +(-65.8430 + 29.0883i) q^{42} -70.0518 q^{43} +(-13.1338 + 72.8681i) q^{44} +(64.0270 + 59.1673i) q^{45} +(-3.62819 + 40.5837i) q^{46} -68.9298 q^{47} +(28.7220 - 77.0884i) q^{48} +(-26.0476 + 41.5033i) q^{49} +(0.515444 - 49.9973i) q^{50} +100.757i q^{51} +(-8.53942 + 47.3778i) q^{52} +14.6534 q^{53} +(7.72442 - 86.4028i) q^{54} +(62.8143 - 67.9735i) q^{55} +(-13.1848 - 54.4257i) q^{56} +35.3272i q^{57} +(0.412947 - 4.61909i) q^{58} -23.3458 q^{59} +(-82.0800 + 61.9453i) q^{60} +65.4599 q^{61} +(-1.15656 + 12.9369i) q^{62} +(-59.0666 - 106.806i) q^{63} +(55.0579 + 32.6286i) q^{64} +(40.8410 - 44.1954i) q^{65} +(-189.591 - 16.9495i) q^{66} -38.4464 q^{67} +(-77.1431 - 13.9043i) q^{68} -104.748 q^{69} +(-22.6811 + 66.2236i) q^{70} +66.3125 q^{71} +(134.526 + 36.8679i) q^{72} +49.3159 q^{73} +(-60.3364 - 5.39408i) q^{74} +(128.140 - 10.1254i) q^{75} +(-27.0477 - 4.87510i) q^{76} +(-113.390 + 62.7074i) q^{77} +(-123.269 - 11.0203i) q^{78} -44.8588 q^{79} +(-36.1005 - 71.3915i) q^{80} +66.0865 q^{81} +(8.59924 - 96.1882i) q^{82} +30.7499i q^{83} +(136.343 - 46.2196i) q^{84} +(71.9613 + 66.4994i) q^{85} +(139.547 + 12.4755i) q^{86} +11.9221 q^{87} +(39.1403 - 142.818i) q^{88} -135.358i q^{89} +(-117.008 - 129.267i) q^{90} +(-73.7244 + 40.7715i) q^{91} +(14.4551 - 80.1988i) q^{92} -33.3907 q^{93} +(137.312 + 12.2757i) q^{94} +(25.2309 + 23.3158i) q^{95} +(-70.9446 + 148.449i) q^{96} -36.8568 q^{97} +(59.2796 - 78.0380i) q^{98} -322.748i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80q + 12q^{4} - 224q^{9} + O(q^{10}) \) \( 80q + 12q^{4} - 224q^{9} + 92q^{14} - 72q^{15} - 172q^{16} - 104q^{25} - 68q^{30} - 564q^{36} - 112q^{39} - 40q^{44} - 224q^{46} + 192q^{49} + 332q^{50} - 356q^{56} + 124q^{60} + 396q^{64} + 472q^{65} + 352q^{70} + 800q^{71} + 672q^{74} + 480q^{79} - 896q^{81} + 408q^{84} + 528q^{86} + 1176q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/280\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(141\) \(241\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.99206 0.178090i −0.996028 0.0890450i
\(3\) 5.14158i 1.71386i −0.515432 0.856930i \(-0.672369\pi\)
0.515432 0.856930i \(-0.327631\pi\)
\(4\) 3.93657 + 0.709530i 0.984142 + 0.177383i
\(5\) −3.67215 3.39343i −0.734429 0.678685i
\(6\) −0.915664 + 10.2423i −0.152611 + 1.70705i
\(7\) 3.38765 + 6.12567i 0.483950 + 0.875096i
\(8\) −7.71550 2.11449i −0.964438 0.264311i
\(9\) −17.4359 −1.93732
\(10\) 6.71078 + 7.41387i 0.671078 + 0.741387i
\(11\) 18.5106i 1.68278i 0.540429 + 0.841389i \(0.318262\pi\)
−0.540429 + 0.841389i \(0.681738\pi\)
\(12\) 3.64811 20.2402i 0.304009 1.68668i
\(13\) 12.0353i 0.925794i 0.886412 + 0.462897i \(0.153190\pi\)
−0.886412 + 0.462897i \(0.846810\pi\)
\(14\) −5.65747 12.8060i −0.404105 0.914713i
\(15\) −17.4476 + 18.8806i −1.16317 + 1.25871i
\(16\) 14.9931 + 5.58623i 0.937071 + 0.349139i
\(17\) −19.5965 −1.15274 −0.576369 0.817190i \(-0.695531\pi\)
−0.576369 + 0.817190i \(0.695531\pi\)
\(18\) 34.7332 + 3.10515i 1.92962 + 0.172508i
\(19\) −6.87089 −0.361626 −0.180813 0.983518i \(-0.557873\pi\)
−0.180813 + 0.983518i \(0.557873\pi\)
\(20\) −12.0479 15.9640i −0.602396 0.798198i
\(21\) 31.4956 17.4179i 1.49979 0.829423i
\(22\) 3.29655 36.8741i 0.149843 1.67609i
\(23\) 20.3728i 0.885773i −0.896578 0.442886i \(-0.853954\pi\)
0.896578 0.442886i \(-0.146046\pi\)
\(24\) −10.8718 + 39.6699i −0.452992 + 1.65291i
\(25\) 1.96931 + 24.9223i 0.0787723 + 0.996893i
\(26\) 2.14337 23.9750i 0.0824373 0.922116i
\(27\) 43.3737i 1.60643i
\(28\) 8.98937 + 26.5178i 0.321049 + 0.947063i
\(29\) 2.31875i 0.0799570i 0.999201 + 0.0399785i \(0.0127289\pi\)
−0.999201 + 0.0399785i \(0.987271\pi\)
\(30\) 38.1190 34.5040i 1.27063 1.15013i
\(31\) 6.49424i 0.209492i −0.994499 0.104746i \(-0.966597\pi\)
0.994499 0.104746i \(-0.0334029\pi\)
\(32\) −28.8723 13.7982i −0.902259 0.431194i
\(33\) 95.1736 2.88405
\(34\) 39.0374 + 3.48995i 1.14816 + 0.102645i
\(35\) 8.34706 33.9901i 0.238487 0.971146i
\(36\) −68.6375 12.3713i −1.90660 0.343646i
\(37\) 30.2885 0.818609 0.409305 0.912398i \(-0.365771\pi\)
0.409305 + 0.912398i \(0.365771\pi\)
\(38\) 13.6872 + 1.22364i 0.360189 + 0.0322009i
\(39\) 61.8806 1.58668
\(40\) 21.1571 + 33.9467i 0.528927 + 0.848667i
\(41\) 48.2859i 1.17771i 0.808240 + 0.588853i \(0.200420\pi\)
−0.808240 + 0.588853i \(0.799580\pi\)
\(42\) −65.8430 + 29.0883i −1.56769 + 0.692580i
\(43\) −70.0518 −1.62911 −0.814556 0.580085i \(-0.803019\pi\)
−0.814556 + 0.580085i \(0.803019\pi\)
\(44\) −13.1338 + 72.8681i −0.298496 + 1.65609i
\(45\) 64.0270 + 59.1673i 1.42282 + 1.31483i
\(46\) −3.62819 + 40.5837i −0.0788736 + 0.882254i
\(47\) −68.9298 −1.46659 −0.733296 0.679909i \(-0.762019\pi\)
−0.733296 + 0.679909i \(0.762019\pi\)
\(48\) 28.7220 77.0884i 0.598376 1.60601i
\(49\) −26.0476 + 41.5033i −0.531584 + 0.847005i
\(50\) 0.515444 49.9973i 0.0103089 0.999947i
\(51\) 100.757i 1.97563i
\(52\) −8.53942 + 47.3778i −0.164220 + 0.911112i
\(53\) 14.6534 0.276480 0.138240 0.990399i \(-0.455856\pi\)
0.138240 + 0.990399i \(0.455856\pi\)
\(54\) 7.72442 86.4028i 0.143045 1.60005i
\(55\) 62.8143 67.9735i 1.14208 1.23588i
\(56\) −13.1848 54.4257i −0.235443 0.971888i
\(57\) 35.3272i 0.619776i
\(58\) 0.412947 4.61909i 0.00711977 0.0796394i
\(59\) −23.3458 −0.395691 −0.197845 0.980233i \(-0.563394\pi\)
−0.197845 + 0.980233i \(0.563394\pi\)
\(60\) −82.0800 + 61.9453i −1.36800 + 1.03242i
\(61\) 65.4599 1.07311 0.536557 0.843864i \(-0.319725\pi\)
0.536557 + 0.843864i \(0.319725\pi\)
\(62\) −1.15656 + 12.9369i −0.0186542 + 0.208659i
\(63\) −59.0666 106.806i −0.937566 1.69534i
\(64\) 55.0579 + 32.6286i 0.860280 + 0.509823i
\(65\) 40.8410 44.1954i 0.628323 0.679930i
\(66\) −189.591 16.9495i −2.87259 0.256810i
\(67\) −38.4464 −0.573826 −0.286913 0.957957i \(-0.592629\pi\)
−0.286913 + 0.957957i \(0.592629\pi\)
\(68\) −77.1431 13.9043i −1.13446 0.204475i
\(69\) −104.748 −1.51809
\(70\) −22.6811 + 66.2236i −0.324016 + 0.946052i
\(71\) 66.3125 0.933979 0.466989 0.884263i \(-0.345339\pi\)
0.466989 + 0.884263i \(0.345339\pi\)
\(72\) 134.526 + 36.8679i 1.86842 + 0.512054i
\(73\) 49.3159 0.675560 0.337780 0.941225i \(-0.390324\pi\)
0.337780 + 0.941225i \(0.390324\pi\)
\(74\) −60.3364 5.39408i −0.815357 0.0728930i
\(75\) 128.140 10.1254i 1.70853 0.135005i
\(76\) −27.0477 4.87510i −0.355891 0.0641461i
\(77\) −113.390 + 62.7074i −1.47259 + 0.814381i
\(78\) −123.269 11.0203i −1.58038 0.141286i
\(79\) −44.8588 −0.567833 −0.283917 0.958849i \(-0.591634\pi\)
−0.283917 + 0.958849i \(0.591634\pi\)
\(80\) −36.1005 71.3915i −0.451256 0.892394i
\(81\) 66.0865 0.815883
\(82\) 8.59924 96.1882i 0.104869 1.17303i
\(83\) 30.7499i 0.370480i 0.982693 + 0.185240i \(0.0593063\pi\)
−0.982693 + 0.185240i \(0.940694\pi\)
\(84\) 136.343 46.2196i 1.62313 0.550233i
\(85\) 71.9613 + 66.4994i 0.846604 + 0.782346i
\(86\) 139.547 + 12.4755i 1.62264 + 0.145064i
\(87\) 11.9221 0.137035
\(88\) 39.1403 142.818i 0.444777 1.62294i
\(89\) 135.358i 1.52088i −0.649408 0.760440i \(-0.724983\pi\)
0.649408 0.760440i \(-0.275017\pi\)
\(90\) −117.008 129.267i −1.30009 1.43630i
\(91\) −73.7244 + 40.7715i −0.810158 + 0.448038i
\(92\) 14.4551 80.1988i 0.157121 0.871726i
\(93\) −33.3907 −0.359039
\(94\) 137.312 + 12.2757i 1.46077 + 0.130593i
\(95\) 25.2309 + 23.3158i 0.265588 + 0.245430i
\(96\) −70.9446 + 148.449i −0.739006 + 1.54635i
\(97\) −36.8568 −0.379967 −0.189983 0.981787i \(-0.560843\pi\)
−0.189983 + 0.981787i \(0.560843\pi\)
\(98\) 59.2796 78.0380i 0.604894 0.796306i
\(99\) 322.748i 3.26008i
\(100\) −9.93082 + 99.5057i −0.0993082 + 0.995057i
\(101\) −117.202 −1.16042 −0.580208 0.814469i \(-0.697029\pi\)
−0.580208 + 0.814469i \(0.697029\pi\)
\(102\) 17.9438 200.714i 0.175920 1.96778i
\(103\) −133.746 −1.29850 −0.649252 0.760573i \(-0.724918\pi\)
−0.649252 + 0.760573i \(0.724918\pi\)
\(104\) 25.4485 92.8585i 0.244697 0.892870i
\(105\) −174.763 42.9171i −1.66441 0.408734i
\(106\) −29.1904 2.60963i −0.275381 0.0246191i
\(107\) 74.3641 0.694991 0.347496 0.937682i \(-0.387032\pi\)
0.347496 + 0.937682i \(0.387032\pi\)
\(108\) −30.7749 + 170.743i −0.284953 + 1.58096i
\(109\) 28.9108i 0.265236i −0.991167 0.132618i \(-0.957662\pi\)
0.991167 0.132618i \(-0.0423384\pi\)
\(110\) −137.235 + 124.220i −1.24759 + 1.12928i
\(111\) 155.731i 1.40298i
\(112\) 16.5721 + 110.767i 0.147966 + 0.988993i
\(113\) 142.601i 1.26195i 0.775801 + 0.630977i \(0.217346\pi\)
−0.775801 + 0.630977i \(0.782654\pi\)
\(114\) 6.29142 70.3738i 0.0551879 0.617314i
\(115\) −69.1335 + 74.8118i −0.601161 + 0.650537i
\(116\) −1.64523 + 9.12793i −0.0141830 + 0.0786891i
\(117\) 209.846i 1.79356i
\(118\) 46.5060 + 4.15765i 0.394119 + 0.0352343i
\(119\) −66.3862 120.042i −0.557867 1.00876i
\(120\) 174.540 108.781i 1.45450 0.906507i
\(121\) −221.641 −1.83174
\(122\) −130.400 11.6578i −1.06885 0.0955554i
\(123\) 248.266 2.01842
\(124\) 4.60786 25.5650i 0.0371601 0.206169i
\(125\) 77.3405 98.2011i 0.618724 0.785609i
\(126\) 98.6429 + 223.283i 0.782880 + 1.77209i
\(127\) 164.684i 1.29673i 0.761331 + 0.648363i \(0.224546\pi\)
−0.761331 + 0.648363i \(0.775454\pi\)
\(128\) −103.868 74.8033i −0.811465 0.584401i
\(129\) 360.177i 2.79207i
\(130\) −89.2282 + 80.7664i −0.686371 + 0.621280i
\(131\) −0.684303 −0.00522369 −0.00261184 0.999997i \(-0.500831\pi\)
−0.00261184 + 0.999997i \(0.500831\pi\)
\(132\) 374.657 + 67.5285i 2.83831 + 0.511580i
\(133\) −23.2762 42.0888i −0.175009 0.316457i
\(134\) 76.5873 + 6.84691i 0.571547 + 0.0510963i
\(135\) 147.185 159.274i 1.09026 1.17981i
\(136\) 151.197 + 41.4366i 1.11174 + 0.304681i
\(137\) 158.086i 1.15392i 0.816774 + 0.576958i \(0.195760\pi\)
−0.816774 + 0.576958i \(0.804240\pi\)
\(138\) 208.664 + 18.6546i 1.51206 + 0.135178i
\(139\) 13.1028 0.0942645 0.0471322 0.998889i \(-0.484992\pi\)
0.0471322 + 0.998889i \(0.484992\pi\)
\(140\) 56.9758 127.882i 0.406970 0.913442i
\(141\) 354.408i 2.51354i
\(142\) −132.098 11.8096i −0.930269 0.0831661i
\(143\) −222.781 −1.55791
\(144\) −261.418 97.4007i −1.81540 0.676394i
\(145\) 7.86852 8.51480i 0.0542657 0.0587228i
\(146\) −98.2400 8.78267i −0.672877 0.0601553i
\(147\) 213.392 + 133.926i 1.45165 + 0.911061i
\(148\) 119.233 + 21.4906i 0.805628 + 0.145207i
\(149\) 16.7007i 0.112086i −0.998428 0.0560428i \(-0.982152\pi\)
0.998428 0.0560428i \(-0.0178483\pi\)
\(150\) −257.065 2.65020i −1.71377 0.0176680i
\(151\) 108.405 0.717914 0.358957 0.933354i \(-0.383132\pi\)
0.358957 + 0.933354i \(0.383132\pi\)
\(152\) 53.0123 + 14.5284i 0.348765 + 0.0955815i
\(153\) 341.682 2.23322
\(154\) 237.046 104.723i 1.53926 0.680019i
\(155\) −22.0377 + 23.8478i −0.142179 + 0.153857i
\(156\) 243.597 + 43.9061i 1.56152 + 0.281450i
\(157\) 60.9427i 0.388170i 0.980985 + 0.194085i \(0.0621738\pi\)
−0.980985 + 0.194085i \(0.937826\pi\)
\(158\) 89.3613 + 7.98891i 0.565578 + 0.0505627i
\(159\) 75.3418i 0.473847i
\(160\) 59.2001 + 148.645i 0.370001 + 0.929031i
\(161\) 124.797 69.0159i 0.775136 0.428670i
\(162\) −131.648 11.7694i −0.812642 0.0726503i
\(163\) −237.235 −1.45543 −0.727713 0.685881i \(-0.759417\pi\)
−0.727713 + 0.685881i \(0.759417\pi\)
\(164\) −34.2603 + 190.081i −0.208904 + 1.15903i
\(165\) −349.491 322.965i −2.11813 1.95736i
\(166\) 5.47624 61.2554i 0.0329894 0.369009i
\(167\) 109.805 0.657518 0.328759 0.944414i \(-0.393370\pi\)
0.328759 + 0.944414i \(0.393370\pi\)
\(168\) −279.834 + 67.7907i −1.66568 + 0.403516i
\(169\) 24.1512 0.142906
\(170\) −131.508 145.286i −0.773577 0.854624i
\(171\) 119.800 0.700584
\(172\) −275.764 49.7039i −1.60328 0.288976i
\(173\) 25.0358i 0.144715i 0.997379 + 0.0723577i \(0.0230523\pi\)
−0.997379 + 0.0723577i \(0.976948\pi\)
\(174\) −23.7494 2.12320i −0.136491 0.0122023i
\(175\) −145.995 + 96.4915i −0.834254 + 0.551380i
\(176\) −103.404 + 277.531i −0.587524 + 1.57688i
\(177\) 120.034i 0.678159i
\(178\) −24.1060 + 269.641i −0.135427 + 1.51484i
\(179\) 185.824i 1.03812i 0.854737 + 0.519062i \(0.173719\pi\)
−0.854737 + 0.519062i \(0.826281\pi\)
\(180\) 210.066 + 278.345i 1.16703 + 1.54636i
\(181\) −112.689 −0.622590 −0.311295 0.950313i \(-0.600763\pi\)
−0.311295 + 0.950313i \(0.600763\pi\)
\(182\) 154.124 68.0894i 0.846835 0.374118i
\(183\) 336.568i 1.83917i
\(184\) −43.0780 + 157.186i −0.234119 + 0.854273i
\(185\) −111.224 102.782i −0.601210 0.555578i
\(186\) 66.5160 + 5.94654i 0.357613 + 0.0319706i
\(187\) 362.743i 1.93980i
\(188\) −271.347 48.9078i −1.44334 0.260148i
\(189\) −265.693 + 146.935i −1.40578 + 0.777433i
\(190\) −46.1090 50.9398i −0.242679 0.268104i
\(191\) −293.237 −1.53527 −0.767636 0.640886i \(-0.778567\pi\)
−0.767636 + 0.640886i \(0.778567\pi\)
\(192\) 167.763 283.085i 0.873765 1.47440i
\(193\) 98.3546i 0.509609i 0.966993 + 0.254805i \(0.0820111\pi\)
−0.966993 + 0.254805i \(0.917989\pi\)
\(194\) 73.4207 + 6.56382i 0.378457 + 0.0338341i
\(195\) −227.234 209.987i −1.16530 1.07686i
\(196\) −131.986 + 144.899i −0.673398 + 0.739280i
\(197\) 286.507 1.45435 0.727175 0.686452i \(-0.240833\pi\)
0.727175 + 0.686452i \(0.240833\pi\)
\(198\) −57.4781 + 642.931i −0.290294 + 3.24713i
\(199\) 102.976i 0.517467i 0.965949 + 0.258734i \(0.0833052\pi\)
−0.965949 + 0.258734i \(0.916695\pi\)
\(200\) 37.5037 196.452i 0.187519 0.982261i
\(201\) 197.675i 0.983458i
\(202\) 233.473 + 20.8725i 1.15581 + 0.103329i
\(203\) −14.2039 + 7.85513i −0.0699700 + 0.0386952i
\(204\) −71.4902 + 396.637i −0.350442 + 1.94430i
\(205\) 163.855 177.313i 0.799291 0.864941i
\(206\) 266.429 + 23.8188i 1.29335 + 0.115625i
\(207\) 355.217i 1.71602i
\(208\) −67.2320 + 180.447i −0.323231 + 0.867534i
\(209\) 127.184i 0.608536i
\(210\) 340.494 + 116.617i 1.62140 + 0.555318i
\(211\) 171.846i 0.814437i −0.913331 0.407218i \(-0.866499\pi\)
0.913331 0.407218i \(-0.133501\pi\)
\(212\) 57.6842 + 10.3970i 0.272095 + 0.0490427i
\(213\) 340.951i 1.60071i
\(214\) −148.137 13.2435i −0.692230 0.0618855i
\(215\) 257.240 + 237.716i 1.19647 + 1.10565i
\(216\) 91.7131 334.650i 0.424597 1.54930i
\(217\) 39.7815 22.0002i 0.183325 0.101383i
\(218\) −5.14872 + 57.5918i −0.0236180 + 0.264183i
\(219\) 253.562i 1.15782i
\(220\) 295.502 223.014i 1.34319 1.01370i
\(221\) 235.850i 1.06720i
\(222\) −27.7341 + 310.225i −0.124929 + 1.39741i
\(223\) −7.43778 −0.0333533 −0.0166766 0.999861i \(-0.505309\pi\)
−0.0166766 + 0.999861i \(0.505309\pi\)
\(224\) −13.2861 223.606i −0.0593129 0.998239i
\(225\) −34.3366 434.542i −0.152607 1.93130i
\(226\) 25.3958 284.069i 0.112371 1.25694i
\(227\) 75.9403i 0.334539i 0.985911 + 0.167269i \(0.0534949\pi\)
−0.985911 + 0.167269i \(0.946505\pi\)
\(228\) −25.0657 + 139.068i −0.109937 + 0.609947i
\(229\) 219.553 0.958749 0.479374 0.877611i \(-0.340864\pi\)
0.479374 + 0.877611i \(0.340864\pi\)
\(230\) 151.041 136.717i 0.656700 0.594423i
\(231\) 322.415 + 583.002i 1.39574 + 2.52382i
\(232\) 4.90297 17.8903i 0.0211335 0.0771136i
\(233\) 352.875i 1.51448i −0.653134 0.757242i \(-0.726546\pi\)
0.653134 0.757242i \(-0.273454\pi\)
\(234\) −37.3715 + 418.025i −0.159707 + 1.78643i
\(235\) 253.120 + 233.908i 1.07711 + 0.995355i
\(236\) −91.9022 16.5645i −0.389416 0.0701886i
\(237\) 230.645i 0.973187i
\(238\) 110.867 + 250.953i 0.465827 + 1.05442i
\(239\) −23.9344 −0.100144 −0.0500721 0.998746i \(-0.515945\pi\)
−0.0500721 + 0.998746i \(0.515945\pi\)
\(240\) −367.065 + 185.614i −1.52944 + 0.773391i
\(241\) 31.4618i 0.130547i 0.997867 + 0.0652734i \(0.0207919\pi\)
−0.997867 + 0.0652734i \(0.979208\pi\)
\(242\) 441.521 + 39.4721i 1.82447 + 0.163108i
\(243\) 50.5737i 0.208122i
\(244\) 257.688 + 46.4458i 1.05610 + 0.190352i
\(245\) 236.489 64.0153i 0.965261 0.261287i
\(246\) −494.560 44.2137i −2.01040 0.179730i
\(247\) 82.6933i 0.334791i
\(248\) −13.7320 + 50.1063i −0.0553709 + 0.202041i
\(249\) 158.103 0.634952
\(250\) −171.555 + 181.848i −0.686220 + 0.727394i
\(251\) −429.837 −1.71250 −0.856249 0.516564i \(-0.827211\pi\)
−0.856249 + 0.516564i \(0.827211\pi\)
\(252\) −156.738 462.360i −0.621974 1.83476i
\(253\) 377.112 1.49056
\(254\) 29.3286 328.060i 0.115467 1.29158i
\(255\) 341.912 369.995i 1.34083 1.45096i
\(256\) 193.588 + 167.510i 0.756204 + 0.654336i
\(257\) −181.078 −0.704586 −0.352293 0.935890i \(-0.614598\pi\)
−0.352293 + 0.935890i \(0.614598\pi\)
\(258\) 64.1439 717.492i 0.248620 2.78098i
\(259\) 102.607 + 185.538i 0.396166 + 0.716361i
\(260\) 192.131 145.000i 0.738966 0.557694i
\(261\) 40.4295i 0.154902i
\(262\) 1.36317 + 0.121867i 0.00520294 + 0.000465143i
\(263\) 247.354i 0.940508i −0.882531 0.470254i \(-0.844162\pi\)
0.882531 0.470254i \(-0.155838\pi\)
\(264\) −734.312 201.243i −2.78148 0.762285i
\(265\) −53.8095 49.7253i −0.203055 0.187643i
\(266\) 38.8718 + 87.9884i 0.146135 + 0.330783i
\(267\) −695.956 −2.60658
\(268\) −151.347 27.2788i −0.564726 0.101787i
\(269\) 314.890 1.17059 0.585297 0.810819i \(-0.300978\pi\)
0.585297 + 0.810819i \(0.300978\pi\)
\(270\) −321.567 + 291.071i −1.19099 + 1.07804i
\(271\) 275.203i 1.01551i −0.861502 0.507754i \(-0.830476\pi\)
0.861502 0.507754i \(-0.169524\pi\)
\(272\) −293.813 109.471i −1.08020 0.402466i
\(273\) 209.630 + 379.060i 0.767875 + 1.38850i
\(274\) 28.1536 314.917i 0.102750 1.14933i
\(275\) −461.326 + 36.4530i −1.67755 + 0.132556i
\(276\) −412.349 74.3221i −1.49402 0.269283i
\(277\) 393.344 1.42001 0.710006 0.704195i \(-0.248692\pi\)
0.710006 + 0.704195i \(0.248692\pi\)
\(278\) −26.1014 2.33347i −0.0938900 0.00839378i
\(279\) 113.233i 0.405852i
\(280\) −136.273 + 244.601i −0.486690 + 0.873575i
\(281\) 165.416 0.588667 0.294334 0.955703i \(-0.404902\pi\)
0.294334 + 0.955703i \(0.404902\pi\)
\(282\) 63.1166 706.001i 0.223818 2.50355i
\(283\) 501.665i 1.77267i −0.463048 0.886333i \(-0.653244\pi\)
0.463048 0.886333i \(-0.346756\pi\)
\(284\) 261.044 + 47.0507i 0.919168 + 0.165672i
\(285\) 119.880 129.727i 0.420633 0.455181i
\(286\) 443.791 + 39.6750i 1.55172 + 0.138724i
\(287\) −295.784 + 163.576i −1.03060 + 0.569951i
\(288\) 503.413 + 240.584i 1.74796 + 0.835359i
\(289\) 95.0241 0.328803
\(290\) −17.1909 + 15.5606i −0.0592791 + 0.0536574i
\(291\) 189.502i 0.651210i
\(292\) 194.135 + 34.9911i 0.664847 + 0.119833i
\(293\) 551.653i 1.88277i 0.337327 + 0.941387i \(0.390477\pi\)
−0.337327 + 0.941387i \(0.609523\pi\)
\(294\) −401.239 304.791i −1.36476 1.03670i
\(295\) 85.7290 + 79.2221i 0.290607 + 0.268550i
\(296\) −233.691 64.0447i −0.789497 0.216367i
\(297\) −802.871 −2.70327
\(298\) −2.97423 + 33.2688i −0.00998065 + 0.111640i
\(299\) 245.193 0.820043
\(300\) 511.617 + 51.0601i 1.70539 + 0.170200i
\(301\) −237.311 429.114i −0.788409 1.42563i
\(302\) −215.949 19.3059i −0.715062 0.0639267i
\(303\) 602.604i 1.98879i
\(304\) −103.016 38.3823i −0.338869 0.126258i
\(305\) −240.378 222.134i −0.788126 0.728307i
\(306\) −680.650 60.8502i −2.22435 0.198857i
\(307\) 143.310i 0.466809i −0.972380 0.233405i \(-0.925013\pi\)
0.972380 0.233405i \(-0.0749867\pi\)
\(308\) −490.859 + 166.398i −1.59370 + 0.540255i
\(309\) 687.666i 2.22546i
\(310\) 48.1474 43.5814i 0.155314 0.140585i
\(311\) 204.664i 0.658085i −0.944315 0.329043i \(-0.893274\pi\)
0.944315 0.329043i \(-0.106726\pi\)
\(312\) −477.439 130.846i −1.53025 0.419377i
\(313\) 213.198 0.681143 0.340571 0.940219i \(-0.389379\pi\)
0.340571 + 0.940219i \(0.389379\pi\)
\(314\) 10.8533 121.401i 0.0345646 0.386628i
\(315\) −145.538 + 592.647i −0.462026 + 1.88142i
\(316\) −176.590 31.8287i −0.558829 0.100724i
\(317\) −169.509 −0.534729 −0.267364 0.963595i \(-0.586153\pi\)
−0.267364 + 0.963595i \(0.586153\pi\)
\(318\) −13.4176 + 150.085i −0.0421937 + 0.471965i
\(319\) −42.9214 −0.134550
\(320\) −91.4577 306.652i −0.285805 0.958288i
\(321\) 382.349i 1.19112i
\(322\) −260.893 + 115.258i −0.810228 + 0.357945i
\(323\) 134.646 0.416859
\(324\) 260.154 + 46.8904i 0.802945 + 0.144723i
\(325\) −299.948 + 23.7012i −0.922917 + 0.0729269i
\(326\) 472.584 + 42.2491i 1.44965 + 0.129598i
\(327\) −148.647 −0.454578
\(328\) 102.100 372.550i 0.311280 1.13582i
\(329\) −233.510 422.241i −0.709758 1.28341i
\(330\) 638.689 + 705.604i 1.93542 + 2.13819i
\(331\) 52.7511i 0.159369i 0.996820 + 0.0796845i \(0.0253913\pi\)
−0.996820 + 0.0796845i \(0.974609\pi\)
\(332\) −21.8180 + 121.049i −0.0657167 + 0.364605i
\(333\) −528.107 −1.58591
\(334\) −218.738 19.5552i −0.654906 0.0585486i
\(335\) 141.181 + 130.465i 0.421435 + 0.389447i
\(336\) 569.518 85.2070i 1.69500 0.253592i
\(337\) 103.564i 0.307312i −0.988124 0.153656i \(-0.950895\pi\)
0.988124 0.153656i \(-0.0491048\pi\)
\(338\) −48.1105 4.30108i −0.142339 0.0127251i
\(339\) 733.194 2.16281
\(340\) 236.097 + 312.838i 0.694404 + 0.920112i
\(341\) 120.212 0.352528
\(342\) −238.648 21.3351i −0.697801 0.0623835i
\(343\) −342.476 18.9605i −0.998471 0.0552786i
\(344\) 540.485 + 148.124i 1.57118 + 0.430592i
\(345\) 384.651 + 355.456i 1.11493 + 1.03031i
\(346\) 4.45862 49.8726i 0.0128862 0.144141i
\(347\) −336.770 −0.970518 −0.485259 0.874370i \(-0.661275\pi\)
−0.485259 + 0.874370i \(0.661275\pi\)
\(348\) 46.9320 + 8.45906i 0.134862 + 0.0243076i
\(349\) −294.617 −0.844175 −0.422088 0.906555i \(-0.638703\pi\)
−0.422088 + 0.906555i \(0.638703\pi\)
\(350\) 308.013 166.216i 0.880038 0.474903i
\(351\) −522.016 −1.48722
\(352\) 255.413 534.443i 0.725604 1.51830i
\(353\) −524.774 −1.48661 −0.743307 0.668951i \(-0.766744\pi\)
−0.743307 + 0.668951i \(0.766744\pi\)
\(354\) 21.3769 239.115i 0.0603867 0.675465i
\(355\) −243.509 225.027i −0.685941 0.633878i
\(356\) 96.0408 532.847i 0.269778 1.49676i
\(357\) −617.205 + 341.330i −1.72887 + 0.956107i
\(358\) 33.0934 370.172i 0.0924397 1.03400i
\(359\) 267.798 0.745954 0.372977 0.927840i \(-0.378337\pi\)
0.372977 + 0.927840i \(0.378337\pi\)
\(360\) −368.892 591.890i −1.02470 1.64414i
\(361\) −313.791 −0.869227
\(362\) 224.482 + 20.0688i 0.620117 + 0.0554385i
\(363\) 1139.59i 3.13936i
\(364\) −319.150 + 108.190i −0.876784 + 0.297225i
\(365\) −181.095 167.350i −0.496151 0.458493i
\(366\) −59.9393 + 670.461i −0.163769 + 1.83186i
\(367\) 358.839 0.977763 0.488882 0.872350i \(-0.337405\pi\)
0.488882 + 0.872350i \(0.337405\pi\)
\(368\) 113.807 305.452i 0.309258 0.830032i
\(369\) 841.907i 2.28159i
\(370\) 203.260 + 224.555i 0.549351 + 0.606906i
\(371\) 49.6407 + 89.7620i 0.133802 + 0.241946i
\(372\) −131.445 23.6917i −0.353346 0.0636873i
\(373\) 76.3933 0.204808 0.102404 0.994743i \(-0.467347\pi\)
0.102404 + 0.994743i \(0.467347\pi\)
\(374\) −64.6009 + 722.604i −0.172730 + 1.93210i
\(375\) −504.909 397.652i −1.34642 1.06041i
\(376\) 531.828 + 145.751i 1.41444 + 0.387636i
\(377\) −27.9069 −0.0740237
\(378\) 555.442 245.385i 1.46942 0.649167i
\(379\) 435.652i 1.14948i −0.818337 0.574739i \(-0.805104\pi\)
0.818337 0.574739i \(-0.194896\pi\)
\(380\) 82.7798 + 109.687i 0.217842 + 0.288649i
\(381\) 846.738 2.22241
\(382\) 584.144 + 52.2226i 1.52917 + 0.136708i
\(383\) 196.615 0.513356 0.256678 0.966497i \(-0.417372\pi\)
0.256678 + 0.966497i \(0.417372\pi\)
\(384\) −384.607 + 534.043i −1.00158 + 1.39074i
\(385\) 629.176 + 154.509i 1.63422 + 0.401321i
\(386\) 17.5160 195.928i 0.0453781 0.507585i
\(387\) 1221.41 3.15611
\(388\) −145.089 26.1510i −0.373941 0.0673994i
\(389\) 473.370i 1.21689i 0.793596 + 0.608445i \(0.208206\pi\)
−0.793596 + 0.608445i \(0.791794\pi\)
\(390\) 415.267 + 458.774i 1.06479 + 1.17634i
\(391\) 399.236i 1.02106i
\(392\) 288.729 265.141i 0.736553 0.676380i
\(393\) 3.51840i 0.00895267i
\(394\) −570.737 51.0240i −1.44857 0.129503i
\(395\) 164.728 + 152.225i 0.417033 + 0.385380i
\(396\) 228.999 1270.52i 0.578281 3.20838i
\(397\) 102.950i 0.259320i 0.991559 + 0.129660i \(0.0413886\pi\)
−0.991559 + 0.129660i \(0.958611\pi\)
\(398\) 18.3390 205.134i 0.0460779 0.515412i
\(399\) −216.403 + 119.676i −0.542363 + 0.299941i
\(400\) −109.696 + 384.665i −0.274239 + 0.961662i
\(401\) 274.940 0.685636 0.342818 0.939402i \(-0.388619\pi\)
0.342818 + 0.939402i \(0.388619\pi\)
\(402\) 35.2039 393.780i 0.0875720 0.979551i
\(403\) 78.1602 0.193946
\(404\) −461.374 83.1583i −1.14201 0.205837i
\(405\) −242.679 224.260i −0.599208 0.553728i
\(406\) 29.6939 13.1183i 0.0731377 0.0323110i
\(407\) 560.658i 1.37754i
\(408\) 213.050 777.392i 0.522181 1.90537i
\(409\) 319.228i 0.780508i 0.920707 + 0.390254i \(0.127613\pi\)
−0.920707 + 0.390254i \(0.872387\pi\)
\(410\) −357.985 + 324.036i −0.873135 + 0.790332i
\(411\) 812.814 1.97765
\(412\) −526.500 94.8968i −1.27791 0.230332i
\(413\) −79.0873 143.008i −0.191495 0.346267i
\(414\) 63.2606 707.612i 0.152803 1.70921i
\(415\) 104.347 112.918i 0.251440 0.272092i
\(416\) 166.066 347.487i 0.399196 0.835306i
\(417\) 67.3689i 0.161556i
\(418\) −22.6502 + 253.358i −0.0541871 + 0.606119i
\(419\) 509.481 1.21594 0.607972 0.793958i \(-0.291983\pi\)
0.607972 + 0.793958i \(0.291983\pi\)
\(420\) −657.515 292.946i −1.56551 0.697489i
\(421\) 635.328i 1.50909i −0.656247 0.754546i \(-0.727857\pi\)
0.656247 0.754546i \(-0.272143\pi\)
\(422\) −30.6041 + 342.327i −0.0725215 + 0.811201i
\(423\) 1201.85 2.84126
\(424\) −113.058 30.9845i −0.266647 0.0730765i
\(425\) −38.5916 488.391i −0.0908038 1.14916i
\(426\) −60.7200 + 679.194i −0.142535 + 1.59435i
\(427\) 221.756 + 400.986i 0.519334 + 0.939077i
\(428\) 292.739 + 52.7635i 0.683970 + 0.123279i
\(429\) 1145.44i 2.67003i
\(430\) −470.102 519.355i −1.09326 1.20780i
\(431\) −271.590 −0.630138 −0.315069 0.949069i \(-0.602028\pi\)
−0.315069 + 0.949069i \(0.602028\pi\)
\(432\) −242.295 + 650.307i −0.560869 + 1.50534i
\(433\) −679.871 −1.57014 −0.785071 0.619406i \(-0.787373\pi\)
−0.785071 + 0.619406i \(0.787373\pi\)
\(434\) −83.1650 + 36.7409i −0.191625 + 0.0846566i
\(435\) −43.7795 40.4566i −0.100643 0.0930038i
\(436\) 20.5131 113.809i 0.0470483 0.261030i
\(437\) 139.979i 0.320318i
\(438\) −45.1568 + 505.109i −0.103098 + 1.15322i
\(439\) 258.502i 0.588843i 0.955676 + 0.294421i \(0.0951269\pi\)
−0.955676 + 0.294421i \(0.904873\pi\)
\(440\) −628.372 + 391.630i −1.42812 + 0.890067i
\(441\) 454.163 723.645i 1.02985 1.64092i
\(442\) −42.0026 + 469.827i −0.0950285 + 1.06296i
\(443\) −139.976 −0.315974 −0.157987 0.987441i \(-0.550500\pi\)
−0.157987 + 0.987441i \(0.550500\pi\)
\(444\) 110.496 613.046i 0.248864 1.38073i
\(445\) −459.329 + 497.056i −1.03220 + 1.11698i
\(446\) 14.8165 + 1.32459i 0.0332208 + 0.00296994i
\(447\) −85.8682 −0.192099
\(448\) −13.3553 + 447.801i −0.0298109 + 0.999556i
\(449\) 246.858 0.549794 0.274897 0.961474i \(-0.411356\pi\)
0.274897 + 0.961474i \(0.411356\pi\)
\(450\) −8.98721 + 871.747i −0.0199716 + 1.93722i
\(451\) −893.800 −1.98182
\(452\) −101.180 + 561.358i −0.223849 + 1.24194i
\(453\) 557.373i 1.23040i
\(454\) 13.5242 151.277i 0.0297890 0.333210i
\(455\) 409.082 + 100.459i 0.899080 + 0.220790i
\(456\) 74.6989 272.567i 0.163813 0.597735i
\(457\) 445.711i 0.975297i 0.873040 + 0.487648i \(0.162145\pi\)
−0.873040 + 0.487648i \(0.837855\pi\)
\(458\) −437.363 39.1003i −0.954940 0.0853718i
\(459\) 849.974i 1.85179i
\(460\) −325.230 + 245.449i −0.707022 + 0.533586i
\(461\) 194.924 0.422828 0.211414 0.977397i \(-0.432193\pi\)
0.211414 + 0.977397i \(0.432193\pi\)
\(462\) −538.442 1218.79i −1.16546 2.63808i
\(463\) 279.703i 0.604109i −0.953291 0.302055i \(-0.902327\pi\)
0.953291 0.302055i \(-0.0976725\pi\)
\(464\) −12.9531 + 34.7654i −0.0279161 + 0.0749254i
\(465\) 122.615 + 113.309i 0.263689 + 0.243675i
\(466\) −62.8435 + 702.946i −0.134857 + 1.50847i
\(467\) 590.130i 1.26366i 0.775106 + 0.631831i \(0.217696\pi\)
−0.775106 + 0.631831i \(0.782304\pi\)
\(468\) 148.892 826.074i 0.318146 1.76511i
\(469\) −130.243 235.510i −0.277703 0.502153i
\(470\) −462.573 511.037i −0.984198 1.08731i
\(471\) 313.342 0.665270
\(472\) 180.124 + 49.3643i 0.381619 + 0.104585i
\(473\) 1296.70i 2.74143i
\(474\) 41.0756 459.458i 0.0866575 0.969321i
\(475\) −13.5309 171.238i −0.0284861 0.360502i
\(476\) −176.161 519.656i −0.370085 1.09171i
\(477\) −255.495 −0.535629
\(478\) 47.6787 + 4.26248i 0.0997463 + 0.00891733i
\(479\) 259.677i 0.542122i 0.962562 + 0.271061i \(0.0873746\pi\)
−0.962562 + 0.271061i \(0.912625\pi\)
\(480\) 764.271 304.382i 1.59223 0.634130i
\(481\) 364.532i 0.757863i
\(482\) 5.60303 62.6736i 0.0116245 0.130028i
\(483\) −354.851 641.653i −0.734681 1.32847i
\(484\) −872.505 157.261i −1.80270 0.324920i
\(485\) 135.343 + 125.071i 0.279059 + 0.257878i
\(486\) 9.00667 100.746i 0.0185323 0.207296i
\(487\) 743.395i 1.52648i −0.646116 0.763239i \(-0.723608\pi\)
0.646116 0.763239i \(-0.276392\pi\)
\(488\) −505.056 138.414i −1.03495 0.283636i
\(489\) 1219.76i 2.49440i
\(490\) −482.500 + 85.4057i −0.984693 + 0.174297i
\(491\) 489.837i 0.997631i 0.866708 + 0.498816i \(0.166232\pi\)
−0.866708 + 0.498816i \(0.833768\pi\)
\(492\) 977.316 + 176.152i 1.98641 + 0.358033i
\(493\) 45.4395i 0.0921694i
\(494\) −14.7268 + 164.730i −0.0298114 + 0.333461i
\(495\) −1095.22 + 1185.18i −2.21257 + 2.39430i
\(496\) 36.2783 97.3690i 0.0731417 0.196308i
\(497\) 224.644 + 406.208i 0.451999 + 0.817321i
\(498\) −314.950 28.1565i −0.632429 0.0565393i
\(499\) 443.911i 0.889602i −0.895630 0.444801i \(-0.853274\pi\)
0.895630 0.444801i \(-0.146726\pi\)
\(500\) 374.133 331.700i 0.748265 0.663400i
\(501\) 564.574i 1.12689i
\(502\) 856.259 + 76.5496i 1.70569 + 0.152489i
\(503\) 909.757 1.80866 0.904331 0.426833i \(-0.140371\pi\)
0.904331 + 0.426833i \(0.140371\pi\)
\(504\) 229.888 + 948.960i 0.456127 + 1.88286i
\(505\) 430.383 + 397.716i 0.852243 + 0.787557i
\(506\) −751.227 67.1598i −1.48464 0.132727i
\(507\) 124.175i 0.244921i
\(508\) −116.848 + 648.291i −0.230017 + 1.27616i
\(509\) −343.817 −0.675475 −0.337738 0.941240i \(-0.609662\pi\)
−0.337738 + 0.941240i \(0.609662\pi\)
\(510\) −747.000 + 676.159i −1.46471 + 1.32580i
\(511\) 167.065 + 302.093i 0.326938 + 0.591180i
\(512\) −355.806 368.165i −0.694934 0.719073i
\(513\) 298.016i 0.580927i
\(514\) 360.718 + 32.2483i 0.701787 + 0.0627398i
\(515\) 491.135 + 453.857i 0.953660 + 0.881276i
\(516\) −255.556 + 1417.86i −0.495264 + 2.74779i
\(517\) 1275.93i 2.46795i
\(518\) −171.356 387.874i −0.330804 0.748792i
\(519\) 128.723 0.248022
\(520\) −408.559 + 254.632i −0.785691 + 0.489677i
\(521\) 117.982i 0.226453i 0.993569 + 0.113227i \(0.0361186\pi\)
−0.993569 + 0.113227i \(0.963881\pi\)
\(522\) −7.20008 + 80.5377i −0.0137933 + 0.154287i
\(523\) 590.248i 1.12858i −0.825576 0.564290i \(-0.809150\pi\)
0.825576 0.564290i \(-0.190850\pi\)
\(524\) −2.69380 0.485534i −0.00514085 0.000926591i
\(525\) 496.119 + 750.643i 0.944988 + 1.42980i
\(526\) −44.0512 + 492.742i −0.0837476 + 0.936772i
\(527\) 127.265i 0.241489i
\(528\) 1426.95 + 531.661i 2.70256 + 1.00693i
\(529\) 113.950 0.215407
\(530\) 98.3359 + 108.638i 0.185539 + 0.204978i
\(531\) 407.053 0.766579
\(532\) −61.7650 182.200i −0.116100 0.342482i
\(533\) −581.136 −1.09031
\(534\) 1386.38 + 123.943i 2.59622 + 0.232103i
\(535\) −273.076 252.349i −0.510422 0.471680i
\(536\) 296.633 + 81.2943i 0.553420 + 0.151668i
\(537\) 955.430 1.77920
\(538\) −627.278 56.0787i −1.16594 0.104236i
\(539\) −768.249 482.156i −1.42532 0.894539i
\(540\) 692.415 522.562i 1.28225 0.967708i
\(541\) 31.3915i 0.0580249i −0.999579 0.0290125i \(-0.990764\pi\)
0.999579 0.0290125i \(-0.00923625\pi\)
\(542\) −49.0108 + 548.219i −0.0904259 + 1.01147i
\(543\) 579.399i 1.06703i
\(544\) 565.797 + 270.397i 1.04007 + 0.497053i
\(545\) −98.1066 + 106.165i −0.180012 + 0.194797i
\(546\) −350.087 792.441i −0.641186 1.45136i
\(547\) −189.695 −0.346791 −0.173396 0.984852i \(-0.555474\pi\)
−0.173396 + 0.984852i \(0.555474\pi\)
\(548\) −112.167 + 622.318i −0.204684 + 1.13562i
\(549\) −1141.35 −2.07896
\(550\) 925.479 + 9.54116i 1.68269 + 0.0173476i
\(551\) 15.9319i 0.0289145i
\(552\) 808.185 + 221.489i 1.46410 + 0.401248i
\(553\) −151.966 274.790i −0.274803 0.496908i
\(554\) −783.562 70.0505i −1.41437 0.126445i
\(555\) −528.462 + 571.867i −0.952183 + 1.03039i
\(556\) 51.5799 + 9.29681i 0.0927696 + 0.0167209i
\(557\) 764.805 1.37308 0.686539 0.727093i \(-0.259129\pi\)
0.686539 + 0.727093i \(0.259129\pi\)
\(558\) 20.1656 225.566i 0.0361391 0.404239i
\(559\) 843.095i 1.50822i
\(560\) 315.025 462.990i 0.562545 0.826767i
\(561\) −1865.07 −3.32455
\(562\) −329.517 29.4589i −0.586329 0.0524179i
\(563\) 340.073i 0.604037i −0.953302 0.302018i \(-0.902340\pi\)
0.953302 0.302018i \(-0.0976604\pi\)
\(564\) −251.463 + 1395.15i −0.445857 + 2.47368i
\(565\) 483.906 523.651i 0.856470 0.926816i
\(566\) −89.3414 + 999.343i −0.157847 + 1.76562i
\(567\) 223.878 + 404.824i 0.394847 + 0.713976i
\(568\) −511.634 140.217i −0.900764 0.246861i
\(569\) 86.0796 0.151282 0.0756411 0.997135i \(-0.475900\pi\)
0.0756411 + 0.997135i \(0.475900\pi\)
\(570\) −261.911 + 237.073i −0.459493 + 0.415918i
\(571\) 140.396i 0.245878i 0.992414 + 0.122939i \(0.0392319\pi\)
−0.992414 + 0.122939i \(0.960768\pi\)
\(572\) −876.991 158.070i −1.53320 0.276345i
\(573\) 1507.70i 2.63124i
\(574\) 618.348 273.176i 1.07726 0.475917i
\(575\) 507.737 40.1203i 0.883020 0.0697744i
\(576\) −959.982 568.909i −1.66664 0.987688i
\(577\) 905.252 1.56889 0.784447 0.620195i \(-0.212947\pi\)
0.784447 + 0.620195i \(0.212947\pi\)
\(578\) −189.293 16.9228i −0.327497 0.0292783i
\(579\) 505.698 0.873399
\(580\) 37.0165 27.9361i 0.0638215 0.0481658i
\(581\) −188.363 + 104.170i −0.324206 + 0.179294i
\(582\) 33.7484 377.498i 0.0579870 0.648623i
\(583\) 271.243i 0.465254i
\(584\) −380.497 104.278i −0.651536 0.178558i
\(585\) −712.097 + 770.586i −1.21726 + 1.31724i
\(586\) 98.2439 1098.92i 0.167652 1.87530i
\(587\) 263.910i 0.449592i −0.974406 0.224796i \(-0.927828\pi\)
0.974406 0.224796i \(-0.0721715\pi\)
\(588\) 745.009 + 678.617i 1.26702 + 1.15411i
\(589\) 44.6212i 0.0757575i
\(590\) −156.668 173.082i −0.265539 0.293360i
\(591\) 1473.10i 2.49255i
\(592\) 454.120 + 169.199i 0.767095 + 0.285809i
\(593\) −373.359 −0.629611 −0.314805 0.949156i \(-0.601939\pi\)
−0.314805 + 0.949156i \(0.601939\pi\)
\(594\) 1599.36 + 142.983i 2.69253 + 0.240713i
\(595\) −163.573 + 666.088i −0.274913 + 1.11948i
\(596\) 11.8497 65.7436i 0.0198820 0.110308i
\(597\) 529.459 0.886866
\(598\) −488.438 43.6664i −0.816785 0.0730207i
\(599\) −148.536 −0.247974 −0.123987 0.992284i \(-0.539568\pi\)
−0.123987 + 0.992284i \(0.539568\pi\)
\(600\) −1010.08 192.828i −1.68346 0.321381i
\(601\) 179.246i 0.298246i 0.988819 + 0.149123i \(0.0476451\pi\)
−0.988819 + 0.149123i \(0.952355\pi\)
\(602\) 396.316 + 897.082i 0.658332 + 1.49017i
\(603\) 670.345 1.11168
\(604\) 426.744 + 76.9166i 0.706529 + 0.127345i
\(605\) 813.898 + 752.123i 1.34529 + 1.24318i
\(606\) 107.318 1200.42i 0.177092 1.98089i
\(607\) −597.716 −0.984705 −0.492353 0.870396i \(-0.663863\pi\)
−0.492353 + 0.870396i \(0.663863\pi\)
\(608\) 198.378 + 94.8059i 0.326280 + 0.155931i
\(609\) 40.3878 + 73.0306i 0.0663182 + 0.119919i
\(610\) 439.287 + 485.311i 0.720143 + 0.795592i
\(611\) 829.593i 1.35776i
\(612\) 1345.06 + 242.434i 2.19780 + 0.396134i
\(613\) 505.433 0.824523 0.412261 0.911066i \(-0.364739\pi\)
0.412261 + 0.911066i \(0.364739\pi\)
\(614\) −25.5222 + 285.482i −0.0415670 + 0.464955i
\(615\) −911.669 842.473i −1.48239 1.36987i
\(616\) 1007.45 244.058i 1.63547 0.396198i
\(617\) 579.639i 0.939448i 0.882813 + 0.469724i \(0.155647\pi\)
−0.882813 + 0.469724i \(0.844353\pi\)
\(618\) 122.466 1369.87i 0.198166 2.21662i
\(619\) −638.836 −1.03205 −0.516023 0.856575i \(-0.672588\pi\)
−0.516023 + 0.856575i \(0.672588\pi\)
\(620\) −103.674 + 78.2420i −0.167216 + 0.126197i
\(621\) 883.642 1.42293
\(622\) −36.4487 + 407.703i −0.0585992 + 0.655471i
\(623\) 829.161 458.547i 1.33092 0.736031i
\(624\) 927.784 + 345.679i 1.48683 + 0.553973i
\(625\) −617.244 + 98.1594i −0.987590 + 0.157055i
\(626\) −424.702 37.9684i −0.678437 0.0606524i
\(627\) −653.927 −1.04295
\(628\) −43.2407 + 239.905i −0.0688546 + 0.382015i
\(629\) −593.550 −0.943641
\(630\) 395.464 1154.67i 0.627721 1.83280i
\(631\) −427.036 −0.676761 −0.338381 0.941009i \(-0.609879\pi\)
−0.338381 + 0.941009i \(0.609879\pi\)
\(632\) 346.108 + 94.8534i 0.547640 + 0.150085i
\(633\) −883.561 −1.39583
\(634\) 337.671 + 30.1879i 0.532605 + 0.0476149i
\(635\) 558.844 604.745i 0.880069 0.952354i
\(636\) 53.4572 296.588i 0.0840523 0.466333i
\(637\) −499.505 313.491i −0.784152 0.492137i
\(638\) 85.5019 + 7.64388i 0.134016 + 0.0119810i
\(639\) −1156.22 −1.80941
\(640\) 127.577 + 627.156i 0.199339 + 0.979931i
\(641\) 934.945 1.45857 0.729286 0.684209i \(-0.239852\pi\)
0.729286 + 0.684209i \(0.239852\pi\)
\(642\) −68.0925 + 761.660i −0.106063 + 1.18639i
\(643\) 386.015i 0.600334i 0.953887 + 0.300167i \(0.0970425\pi\)
−0.953887 + 0.300167i \(0.902958\pi\)
\(644\) 540.240 183.139i 0.838882 0.284377i
\(645\) 1222.23 1322.62i 1.89494 2.05058i
\(646\) −268.221 23.9790i −0.415203 0.0371192i
\(647\) 130.602 0.201858 0.100929 0.994894i \(-0.467819\pi\)
0.100929 + 0.994894i \(0.467819\pi\)
\(648\) −509.891 139.739i −0.786868 0.215647i
\(649\) 432.143i 0.665860i
\(650\) 601.734 + 6.20353i 0.925744 + 0.00954390i
\(651\) −113.116 204.540i −0.173757 0.314194i
\(652\) −933.890 168.325i −1.43235 0.258167i
\(653\) −291.551 −0.446479 −0.223240 0.974764i \(-0.571663\pi\)
−0.223240 + 0.974764i \(0.571663\pi\)
\(654\) 296.113 + 26.4726i 0.452772 + 0.0404779i
\(655\) 2.51286 + 2.32213i 0.00383643 + 0.00354524i
\(656\) −269.736 + 723.957i −0.411183 + 1.10359i
\(657\) −859.865 −1.30878
\(658\) 389.969 + 882.714i 0.592657 + 1.34151i
\(659\) 1166.00i 1.76934i 0.466217 + 0.884670i \(0.345617\pi\)
−0.466217 + 0.884670i \(0.654383\pi\)
\(660\) −1146.64 1519.35i −1.73734 2.30204i
\(661\) −640.576 −0.969101 −0.484551 0.874763i \(-0.661017\pi\)
−0.484551 + 0.874763i \(0.661017\pi\)
\(662\) 9.39445 105.083i 0.0141910 0.158736i
\(663\) −1212.64 −1.82903
\(664\) 65.0202 237.251i 0.0979219 0.357305i
\(665\) −57.3517 + 233.542i −0.0862431 + 0.351191i
\(666\) 1052.02 + 94.0505i 1.57961 + 0.141217i
\(667\) 47.2394 0.0708238
\(668\) 432.257 + 77.9103i 0.647091 + 0.116632i
\(669\) 38.2420i 0.0571629i
\(670\) −258.005 285.036i −0.385082 0.425427i
\(671\) 1211.70i 1.80581i
\(672\) −1149.69 + 68.3116i −1.71084 + 0.101654i
\(673\) 188.966i 0.280782i −0.990096 0.140391i \(-0.955164\pi\)
0.990096 0.140391i \(-0.0448360\pi\)
\(674\) −18.4437 + 206.305i −0.0273646 + 0.306091i
\(675\) −1080.97 + 85.4161i −1.60144 + 0.126542i
\(676\) 95.0727 + 17.1360i 0.140640 + 0.0253491i
\(677\) 330.026i 0.487483i −0.969840 0.243741i \(-0.921625\pi\)
0.969840 0.243741i \(-0.0783748\pi\)
\(678\) −1460.56 130.575i −2.15422 0.192588i
\(679\) −124.858 225.772i −0.183885 0.332507i
\(680\) −414.606 665.237i −0.609714 0.978290i
\(681\) 390.453 0.573353
\(682\) −239.469 21.4086i −0.351128 0.0313908i
\(683\) −728.224 −1.06621 −0.533107 0.846048i \(-0.678976\pi\)
−0.533107 + 0.846048i \(0.678976\pi\)
\(684\) 471.600 + 85.0016i 0.689474 + 0.124271i
\(685\) 536.455 580.516i 0.783145 0.847469i
\(686\) 678.854 + 98.7619i 0.989582 + 0.143968i
\(687\) 1128.85i 1.64316i
\(688\) −1050.30 391.325i −1.52659 0.568787i
\(689\) 176.359i 0.255963i
\(690\) −702.943 776.590i −1.01876 1.12549i
\(691\) −1206.78 −1.74643 −0.873216 0.487334i \(-0.837970\pi\)
−0.873216 + 0.487334i \(0.837970\pi\)
\(692\) −17.7636 + 98.5550i −0.0256700 + 0.142421i
\(693\) 1977.05 1093.36i 2.85288 1.57772i
\(694\) 670.864 + 59.9753i 0.966663 + 0.0864198i
\(695\) −48.1153 44.4633i −0.0692306 0.0639759i
\(696\) −91.9847 25.2090i −0.132162 0.0362199i
\(697\) 946.237i 1.35758i
\(698\) 586.894 + 52.4684i 0.840822 + 0.0751696i
\(699\) −1814.33 −2.59561
\(700\) −643.181 + 276.258i −0.918830 + 0.394654i
\(701\) 390.880i 0.557603i −0.960349 0.278801i \(-0.910063\pi\)
0.960349 0.278801i \(-0.0899371\pi\)
\(702\) 1039.88 + 92.9658i 1.48132 + 0.132430i
\(703\) −208.109 −0.296030
\(704\) −603.975 + 1019.15i −0.857919 + 1.44766i
\(705\) 1202.66 1301.44i 1.70590 1.84601i
\(706\) 1045.38 + 93.4571i 1.48071 + 0.132375i
\(707\) −397.039 717.940i −0.561583 1.01547i
\(708\) −85.1678 + 472.522i −0.120294 + 0.667405i
\(709\) 790.112i 1.11440i −0.830377 0.557202i \(-0.811875\pi\)
0.830377 0.557202i \(-0.188125\pi\)
\(710\) 445.009 + 491.632i 0.626773 + 0.692439i
\(711\) 782.153 1.10007
\(712\) −286.213 + 1044.36i −0.401985 + 1.46679i
\(713\) −132.306 −0.185562
\(714\) 1290.29 570.031i 1.80713 0.798362i
\(715\) 818.083 + 755.989i 1.14417 + 1.05733i
\(716\) −131.848 + 731.509i −0.184145 + 1.02166i
\(717\) 123.061i 0.171633i
\(718\) −533.468 47.6921i −0.742991 0.0664235i
\(719\) 1349.86i 1.87742i 0.344710 + 0.938709i \(0.387977\pi\)
−0.344710 + 0.938709i \(0.612023\pi\)
\(720\) 629.444 + 1244.77i 0.874227 + 1.72885i
\(721\) −453.085 819.283i −0.628412 1.13632i
\(722\) 625.089 + 55.8830i 0.865774 + 0.0774003i
\(723\) 161.763 0.223739
\(724\) −443.607 79.9561i −0.612717 0.110437i
\(725\) −57.7887 + 4.56634i −0.0797086 + 0.00629840i
\(726\) 202.949 2270.12i 0.279544 3.12688i
\(727\) −543.377 −0.747423 −0.373712 0.927545i \(-0.621915\pi\)
−0.373712 + 0.927545i \(0.621915\pi\)
\(728\) 655.031 158.683i 0.899768 0.217971i
\(729\) 854.808 1.17258
\(730\) 330.948 + 365.622i 0.453354 + 0.500851i
\(731\) 1372.77 1.87794
\(732\) 238.805 1324.92i 0.326236 1.81000i
\(733\) 772.693i 1.05415i 0.849818 + 0.527076i \(0.176712\pi\)
−0.849818 + 0.527076i \(0.823288\pi\)
\(734\) −714.827 63.9056i −0.973879 0.0870649i
\(735\) −329.140 1215.93i −0.447809 1.65432i
\(736\) −281.108 + 588.209i −0.381940 + 0.799197i
\(737\) 711.664i 0.965623i
\(738\) −149.935 + 1677.12i −0.203164 + 2.27253i
\(739\) 1333.98i 1.80511i −0.430570 0.902557i \(-0.641687\pi\)
0.430570 0.902557i \(-0.358313\pi\)
\(740\) −364.914 483.525i −0.493127 0.653412i
\(741\) −425.174 −0.573784
\(742\) −82.9013 187.651i −0.111727 0.252899i
\(743\) 1224.39i 1.64790i 0.566666 + 0.823948i \(0.308233\pi\)
−0.566666 + 0.823948i \(0.691767\pi\)
\(744\) 257.626 + 70.6041i 0.346271 + 0.0948980i
\(745\) −56.6727 + 61.3276i −0.0760708 + 0.0823189i
\(746\) −152.180 13.6049i −0.203994 0.0182371i
\(747\) 536.150i 0.717738i
\(748\) 257.377 1427.96i 0.344087 1.90904i
\(749\) 251.920 + 455.530i 0.336341 + 0.608184i
\(750\) 934.988 + 882.065i 1.24665 + 1.17609i
\(751\) 1436.98 1.91342 0.956711 0.291039i \(-0.0940010\pi\)
0.956711 + 0.291039i \(0.0940010\pi\)
\(752\) −1033.47 385.058i −1.37430 0.512045i
\(753\) 2210.04i 2.93498i
\(754\) 55.5922 + 4.96995i 0.0737296 + 0.00659144i
\(755\) −398.079 367.865i −0.527257 0.487238i
\(756\) −1150.17 + 389.902i −1.52139 + 0.515744i
\(757\) −966.377 −1.27659 −0.638294 0.769792i \(-0.720360\pi\)
−0.638294 + 0.769792i \(0.720360\pi\)
\(758\) −77.5853 + 867.843i −0.102355 + 1.14491i
\(759\) 1938.95i 2.55461i
\(760\) −145.368 233.244i −0.191274 0.306900i
\(761\) 892.095i 1.17227i 0.810215 + 0.586133i \(0.199351\pi\)
−0.810215 + 0.586133i \(0.800649\pi\)
\(762\) −1686.75 150.795i −2.21358 0.197894i
\(763\) 177.098 97.9396i 0.232107 0.128361i
\(764\) −1154.35 208.060i −1.51093 0.272330i
\(765\) −1254.71 1159.47i −1.64014 1.51565i
\(766\) −391.669 35.0152i −0.511317 0.0457118i
\(767\) 280.974i 0.366328i
\(768\) 861.267 995.349i 1.12144 1.29603i
\(769\) 586.031i 0.762069i 0.924561 + 0.381035i \(0.124432\pi\)
−0.924561 + 0.381035i \(0.875568\pi\)
\(770\) −1225.84 419.840i −1.59200 0.545247i
\(771\) 931.030i 1.20756i
\(772\) −69.7855 + 387.179i −0.0903958 + 0.501528i
\(773\) 1458.07i 1.88625i −0.332434 0.943127i \(-0.607870\pi\)
0.332434 0.943127i \(-0.392130\pi\)
\(774\) −2433.12 217.521i −3.14357 0.281035i
\(775\) 161.851 12.7892i 0.208841 0.0165021i
\(776\) 284.368 + 77.9331i 0.366454 + 0.100429i
\(777\) 953.956 527.562i 1.22774 0.678973i
\(778\) 84.3025 942.980i 0.108358 1.21206i