Properties

Label 280.2.q.c
Level $280$
Weight $2$
Character orbit 280.q
Analytic conductor $2.236$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 280.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.23581125660\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \zeta_{6} + 2) q^{3} + \zeta_{6} q^{5} + ( - 2 \zeta_{6} + 3) q^{7} - \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + ( - 2 \zeta_{6} + 2) q^{3} + \zeta_{6} q^{5} + ( - 2 \zeta_{6} + 3) q^{7} - \zeta_{6} q^{9} + ( - \zeta_{6} + 1) q^{11} - 3 q^{13} + 2 q^{15} + ( - 2 \zeta_{6} + 2) q^{17} + 5 \zeta_{6} q^{19} + ( - 6 \zeta_{6} + 2) q^{21} - 7 \zeta_{6} q^{23} + (\zeta_{6} - 1) q^{25} + 4 q^{27} - 6 q^{29} + (4 \zeta_{6} - 4) q^{31} - 2 \zeta_{6} q^{33} + (\zeta_{6} + 2) q^{35} + 5 \zeta_{6} q^{37} + (6 \zeta_{6} - 6) q^{39} - 5 q^{41} + 6 q^{43} + ( - \zeta_{6} + 1) q^{45} + 9 \zeta_{6} q^{47} + ( - 8 \zeta_{6} + 5) q^{49} - 4 \zeta_{6} q^{51} + (11 \zeta_{6} - 11) q^{53} + q^{55} + 10 q^{57} + (8 \zeta_{6} - 8) q^{59} + 12 \zeta_{6} q^{61} + ( - \zeta_{6} - 2) q^{63} - 3 \zeta_{6} q^{65} + ( - 4 \zeta_{6} + 4) q^{67} - 14 q^{69} - 4 q^{71} + (12 \zeta_{6} - 12) q^{73} + 2 \zeta_{6} q^{75} + ( - 3 \zeta_{6} + 1) q^{77} - 14 \zeta_{6} q^{79} + ( - 11 \zeta_{6} + 11) q^{81} - 4 q^{83} + 2 q^{85} + (12 \zeta_{6} - 12) q^{87} - 6 \zeta_{6} q^{89} + (6 \zeta_{6} - 9) q^{91} + 8 \zeta_{6} q^{93} + (5 \zeta_{6} - 5) q^{95} + 6 q^{97} - q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + q^{5} + 4 q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} + q^{5} + 4 q^{7} - q^{9} + q^{11} - 6 q^{13} + 4 q^{15} + 2 q^{17} + 5 q^{19} - 2 q^{21} - 7 q^{23} - q^{25} + 8 q^{27} - 12 q^{29} - 4 q^{31} - 2 q^{33} + 5 q^{35} + 5 q^{37} - 6 q^{39} - 10 q^{41} + 12 q^{43} + q^{45} + 9 q^{47} + 2 q^{49} - 4 q^{51} - 11 q^{53} + 2 q^{55} + 20 q^{57} - 8 q^{59} + 12 q^{61} - 5 q^{63} - 3 q^{65} + 4 q^{67} - 28 q^{69} - 8 q^{71} - 12 q^{73} + 2 q^{75} - q^{77} - 14 q^{79} + 11 q^{81} - 8 q^{83} + 4 q^{85} - 12 q^{87} - 6 q^{89} - 12 q^{91} + 8 q^{93} - 5 q^{95} + 12 q^{97} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/280\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(141\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
81.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.00000 1.73205i 0 0.500000 + 0.866025i 0 2.00000 1.73205i 0 −0.500000 0.866025i 0
121.1 0 1.00000 + 1.73205i 0 0.500000 0.866025i 0 2.00000 + 1.73205i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 280.2.q.c 2
3.b odd 2 1 2520.2.bi.e 2
4.b odd 2 1 560.2.q.c 2
5.b even 2 1 1400.2.q.a 2
5.c odd 4 2 1400.2.bh.e 4
7.b odd 2 1 1960.2.q.c 2
7.c even 3 1 inner 280.2.q.c 2
7.c even 3 1 1960.2.a.a 1
7.d odd 6 1 1960.2.a.m 1
7.d odd 6 1 1960.2.q.c 2
21.h odd 6 1 2520.2.bi.e 2
28.f even 6 1 3920.2.a.i 1
28.g odd 6 1 560.2.q.c 2
28.g odd 6 1 3920.2.a.bf 1
35.i odd 6 1 9800.2.a.g 1
35.j even 6 1 1400.2.q.a 2
35.j even 6 1 9800.2.a.bi 1
35.l odd 12 2 1400.2.bh.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.q.c 2 1.a even 1 1 trivial
280.2.q.c 2 7.c even 3 1 inner
560.2.q.c 2 4.b odd 2 1
560.2.q.c 2 28.g odd 6 1
1400.2.q.a 2 5.b even 2 1
1400.2.q.a 2 35.j even 6 1
1400.2.bh.e 4 5.c odd 4 2
1400.2.bh.e 4 35.l odd 12 2
1960.2.a.a 1 7.c even 3 1
1960.2.a.m 1 7.d odd 6 1
1960.2.q.c 2 7.b odd 2 1
1960.2.q.c 2 7.d odd 6 1
2520.2.bi.e 2 3.b odd 2 1
2520.2.bi.e 2 21.h odd 6 1
3920.2.a.i 1 28.f even 6 1
3920.2.a.bf 1 28.g odd 6 1
9800.2.a.g 1 35.i odd 6 1
9800.2.a.bi 1 35.j even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 2T_{3} + 4 \) acting on \(S_{2}^{\mathrm{new}}(280, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} - 4T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$13$ \( (T + 3)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$19$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$23$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$29$ \( (T + 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$37$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$41$ \( (T + 5)^{2} \) Copy content Toggle raw display
$43$ \( (T - 6)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$53$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$59$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$61$ \( T^{2} - 12T + 144 \) Copy content Toggle raw display
$67$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$71$ \( (T + 4)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$79$ \( T^{2} + 14T + 196 \) Copy content Toggle raw display
$83$ \( (T + 4)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$97$ \( (T - 6)^{2} \) Copy content Toggle raw display
show more
show less