Properties

 Label 280.2.q.c Level $280$ Weight $2$ Character orbit 280.q Analytic conductor $2.236$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$280 = 2^{3} \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 280.q (of order $$3$$, degree $$2$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$2.23581125660$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( - 2 \zeta_{6} + 2) q^{3} + \zeta_{6} q^{5} + ( - 2 \zeta_{6} + 3) q^{7} - \zeta_{6} q^{9} +O(q^{10})$$ q + (-2*z + 2) * q^3 + z * q^5 + (-2*z + 3) * q^7 - z * q^9 $$q + ( - 2 \zeta_{6} + 2) q^{3} + \zeta_{6} q^{5} + ( - 2 \zeta_{6} + 3) q^{7} - \zeta_{6} q^{9} + ( - \zeta_{6} + 1) q^{11} - 3 q^{13} + 2 q^{15} + ( - 2 \zeta_{6} + 2) q^{17} + 5 \zeta_{6} q^{19} + ( - 6 \zeta_{6} + 2) q^{21} - 7 \zeta_{6} q^{23} + (\zeta_{6} - 1) q^{25} + 4 q^{27} - 6 q^{29} + (4 \zeta_{6} - 4) q^{31} - 2 \zeta_{6} q^{33} + (\zeta_{6} + 2) q^{35} + 5 \zeta_{6} q^{37} + (6 \zeta_{6} - 6) q^{39} - 5 q^{41} + 6 q^{43} + ( - \zeta_{6} + 1) q^{45} + 9 \zeta_{6} q^{47} + ( - 8 \zeta_{6} + 5) q^{49} - 4 \zeta_{6} q^{51} + (11 \zeta_{6} - 11) q^{53} + q^{55} + 10 q^{57} + (8 \zeta_{6} - 8) q^{59} + 12 \zeta_{6} q^{61} + ( - \zeta_{6} - 2) q^{63} - 3 \zeta_{6} q^{65} + ( - 4 \zeta_{6} + 4) q^{67} - 14 q^{69} - 4 q^{71} + (12 \zeta_{6} - 12) q^{73} + 2 \zeta_{6} q^{75} + ( - 3 \zeta_{6} + 1) q^{77} - 14 \zeta_{6} q^{79} + ( - 11 \zeta_{6} + 11) q^{81} - 4 q^{83} + 2 q^{85} + (12 \zeta_{6} - 12) q^{87} - 6 \zeta_{6} q^{89} + (6 \zeta_{6} - 9) q^{91} + 8 \zeta_{6} q^{93} + (5 \zeta_{6} - 5) q^{95} + 6 q^{97} - q^{99} +O(q^{100})$$ q + (-2*z + 2) * q^3 + z * q^5 + (-2*z + 3) * q^7 - z * q^9 + (-z + 1) * q^11 - 3 * q^13 + 2 * q^15 + (-2*z + 2) * q^17 + 5*z * q^19 + (-6*z + 2) * q^21 - 7*z * q^23 + (z - 1) * q^25 + 4 * q^27 - 6 * q^29 + (4*z - 4) * q^31 - 2*z * q^33 + (z + 2) * q^35 + 5*z * q^37 + (6*z - 6) * q^39 - 5 * q^41 + 6 * q^43 + (-z + 1) * q^45 + 9*z * q^47 + (-8*z + 5) * q^49 - 4*z * q^51 + (11*z - 11) * q^53 + q^55 + 10 * q^57 + (8*z - 8) * q^59 + 12*z * q^61 + (-z - 2) * q^63 - 3*z * q^65 + (-4*z + 4) * q^67 - 14 * q^69 - 4 * q^71 + (12*z - 12) * q^73 + 2*z * q^75 + (-3*z + 1) * q^77 - 14*z * q^79 + (-11*z + 11) * q^81 - 4 * q^83 + 2 * q^85 + (12*z - 12) * q^87 - 6*z * q^89 + (6*z - 9) * q^91 + 8*z * q^93 + (5*z - 5) * q^95 + 6 * q^97 - q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{3} + q^{5} + 4 q^{7} - q^{9}+O(q^{10})$$ 2 * q + 2 * q^3 + q^5 + 4 * q^7 - q^9 $$2 q + 2 q^{3} + q^{5} + 4 q^{7} - q^{9} + q^{11} - 6 q^{13} + 4 q^{15} + 2 q^{17} + 5 q^{19} - 2 q^{21} - 7 q^{23} - q^{25} + 8 q^{27} - 12 q^{29} - 4 q^{31} - 2 q^{33} + 5 q^{35} + 5 q^{37} - 6 q^{39} - 10 q^{41} + 12 q^{43} + q^{45} + 9 q^{47} + 2 q^{49} - 4 q^{51} - 11 q^{53} + 2 q^{55} + 20 q^{57} - 8 q^{59} + 12 q^{61} - 5 q^{63} - 3 q^{65} + 4 q^{67} - 28 q^{69} - 8 q^{71} - 12 q^{73} + 2 q^{75} - q^{77} - 14 q^{79} + 11 q^{81} - 8 q^{83} + 4 q^{85} - 12 q^{87} - 6 q^{89} - 12 q^{91} + 8 q^{93} - 5 q^{95} + 12 q^{97} - 2 q^{99}+O(q^{100})$$ 2 * q + 2 * q^3 + q^5 + 4 * q^7 - q^9 + q^11 - 6 * q^13 + 4 * q^15 + 2 * q^17 + 5 * q^19 - 2 * q^21 - 7 * q^23 - q^25 + 8 * q^27 - 12 * q^29 - 4 * q^31 - 2 * q^33 + 5 * q^35 + 5 * q^37 - 6 * q^39 - 10 * q^41 + 12 * q^43 + q^45 + 9 * q^47 + 2 * q^49 - 4 * q^51 - 11 * q^53 + 2 * q^55 + 20 * q^57 - 8 * q^59 + 12 * q^61 - 5 * q^63 - 3 * q^65 + 4 * q^67 - 28 * q^69 - 8 * q^71 - 12 * q^73 + 2 * q^75 - q^77 - 14 * q^79 + 11 * q^81 - 8 * q^83 + 4 * q^85 - 12 * q^87 - 6 * q^89 - 12 * q^91 + 8 * q^93 - 5 * q^95 + 12 * q^97 - 2 * q^99

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/280\mathbb{Z}\right)^\times$$.

 $$n$$ $$57$$ $$71$$ $$141$$ $$241$$ $$\chi(n)$$ $$1$$ $$1$$ $$1$$ $$-\zeta_{6}$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
81.1
 0.5 + 0.866025i 0.5 − 0.866025i
0 1.00000 1.73205i 0 0.500000 + 0.866025i 0 2.00000 1.73205i 0 −0.500000 0.866025i 0
121.1 0 1.00000 + 1.73205i 0 0.500000 0.866025i 0 2.00000 + 1.73205i 0 −0.500000 + 0.866025i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 280.2.q.c 2
3.b odd 2 1 2520.2.bi.e 2
4.b odd 2 1 560.2.q.c 2
5.b even 2 1 1400.2.q.a 2
5.c odd 4 2 1400.2.bh.e 4
7.b odd 2 1 1960.2.q.c 2
7.c even 3 1 inner 280.2.q.c 2
7.c even 3 1 1960.2.a.a 1
7.d odd 6 1 1960.2.a.m 1
7.d odd 6 1 1960.2.q.c 2
21.h odd 6 1 2520.2.bi.e 2
28.f even 6 1 3920.2.a.i 1
28.g odd 6 1 560.2.q.c 2
28.g odd 6 1 3920.2.a.bf 1
35.i odd 6 1 9800.2.a.g 1
35.j even 6 1 1400.2.q.a 2
35.j even 6 1 9800.2.a.bi 1
35.l odd 12 2 1400.2.bh.e 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.q.c 2 1.a even 1 1 trivial
280.2.q.c 2 7.c even 3 1 inner
560.2.q.c 2 4.b odd 2 1
560.2.q.c 2 28.g odd 6 1
1400.2.q.a 2 5.b even 2 1
1400.2.q.a 2 35.j even 6 1
1400.2.bh.e 4 5.c odd 4 2
1400.2.bh.e 4 35.l odd 12 2
1960.2.a.a 1 7.c even 3 1
1960.2.a.m 1 7.d odd 6 1
1960.2.q.c 2 7.b odd 2 1
1960.2.q.c 2 7.d odd 6 1
2520.2.bi.e 2 3.b odd 2 1
2520.2.bi.e 2 21.h odd 6 1
3920.2.a.i 1 28.f even 6 1
3920.2.a.bf 1 28.g odd 6 1
9800.2.a.g 1 35.i odd 6 1
9800.2.a.bi 1 35.j even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{3}^{2} - 2T_{3} + 4$$ acting on $$S_{2}^{\mathrm{new}}(280, [\chi])$$.

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} - 2T + 4$$
$5$ $$T^{2} - T + 1$$
$7$ $$T^{2} - 4T + 7$$
$11$ $$T^{2} - T + 1$$
$13$ $$(T + 3)^{2}$$
$17$ $$T^{2} - 2T + 4$$
$19$ $$T^{2} - 5T + 25$$
$23$ $$T^{2} + 7T + 49$$
$29$ $$(T + 6)^{2}$$
$31$ $$T^{2} + 4T + 16$$
$37$ $$T^{2} - 5T + 25$$
$41$ $$(T + 5)^{2}$$
$43$ $$(T - 6)^{2}$$
$47$ $$T^{2} - 9T + 81$$
$53$ $$T^{2} + 11T + 121$$
$59$ $$T^{2} + 8T + 64$$
$61$ $$T^{2} - 12T + 144$$
$67$ $$T^{2} - 4T + 16$$
$71$ $$(T + 4)^{2}$$
$73$ $$T^{2} + 12T + 144$$
$79$ $$T^{2} + 14T + 196$$
$83$ $$(T + 4)^{2}$$
$89$ $$T^{2} + 6T + 36$$
$97$ $$(T - 6)^{2}$$