Properties

Label 280.2.bo.a.33.8
Level $280$
Weight $2$
Character 280.33
Analytic conductor $2.236$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 280.bo (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.23581125660\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 33.8
Character \(\chi\) \(=\) 280.33
Dual form 280.2.bo.a.17.8

$q$-expansion

\(f(q)\) \(=\) \(q+(0.280752 + 0.0752271i) q^{3} +(2.21121 + 0.332503i) q^{5} +(1.13104 + 2.39181i) q^{7} +(-2.52491 - 1.45776i) q^{9} +O(q^{10})\) \(q+(0.280752 + 0.0752271i) q^{3} +(2.21121 + 0.332503i) q^{5} +(1.13104 + 2.39181i) q^{7} +(-2.52491 - 1.45776i) q^{9} +(1.58294 + 2.74174i) q^{11} +(1.12753 - 1.12753i) q^{13} +(0.595787 + 0.259694i) q^{15} +(0.781030 - 2.91484i) q^{17} +(-1.03536 + 1.79330i) q^{19} +(0.137613 + 0.756589i) q^{21} +(2.21537 - 0.593606i) q^{23} +(4.77888 + 1.47047i) q^{25} +(-1.21578 - 1.21578i) q^{27} +1.39922i q^{29} +(0.467508 - 0.269916i) q^{31} +(0.238160 + 0.888827i) q^{33} +(1.70568 + 5.66486i) q^{35} +(-1.72976 - 6.45554i) q^{37} +(0.401375 - 0.231734i) q^{39} +1.82954i q^{41} +(-6.50139 - 6.50139i) q^{43} +(-5.09840 - 4.06295i) q^{45} +(-12.4272 + 3.32985i) q^{47} +(-4.44149 + 5.41047i) q^{49} +(0.438550 - 0.759592i) q^{51} +(2.89567 - 10.8068i) q^{53} +(2.58858 + 6.58888i) q^{55} +(-0.425584 + 0.425584i) q^{57} +(2.55946 + 4.43312i) q^{59} +(-12.2942 - 7.09808i) q^{61} +(0.630899 - 7.68790i) q^{63} +(2.86810 - 2.11829i) q^{65} +(-3.08572 - 0.826816i) q^{67} +0.666623 q^{69} +7.61378 q^{71} +(3.08810 + 0.827453i) q^{73} +(1.23106 + 0.772338i) q^{75} +(-4.76733 + 6.88711i) q^{77} +(-14.7577 - 8.52036i) q^{79} +(4.12341 + 7.14195i) q^{81} +(4.62071 - 4.62071i) q^{83} +(2.69621 - 6.18563i) q^{85} +(-0.105259 + 0.392834i) q^{87} +(-8.86012 + 15.3462i) q^{89} +(3.97210 + 1.42155i) q^{91} +(0.151559 - 0.0406100i) q^{93} +(-2.88567 + 3.62109i) q^{95} +(3.71983 + 3.71983i) q^{97} -9.23019i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q - 4q^{7} + O(q^{10}) \) \( 48q - 4q^{7} + 4q^{11} + 8q^{15} - 4q^{21} - 4q^{23} - 8q^{25} - 36q^{33} + 24q^{35} + 8q^{37} - 16q^{43} + 48q^{45} + 24q^{51} + 16q^{53} - 96q^{57} - 36q^{61} - 68q^{63} + 12q^{65} - 16q^{67} - 64q^{71} - 48q^{73} - 48q^{75} + 4q^{77} - 40q^{85} - 12q^{87} - 80q^{91} + 24q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/280\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(141\) \(241\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.280752 + 0.0752271i 0.162092 + 0.0434324i 0.338952 0.940804i \(-0.389927\pi\)
−0.176860 + 0.984236i \(0.556594\pi\)
\(4\) 0 0
\(5\) 2.21121 + 0.332503i 0.988882 + 0.148700i
\(6\) 0 0
\(7\) 1.13104 + 2.39181i 0.427494 + 0.904018i
\(8\) 0 0
\(9\) −2.52491 1.45776i −0.841638 0.485920i
\(10\) 0 0
\(11\) 1.58294 + 2.74174i 0.477275 + 0.826664i 0.999661 0.0260448i \(-0.00829127\pi\)
−0.522386 + 0.852709i \(0.674958\pi\)
\(12\) 0 0
\(13\) 1.12753 1.12753i 0.312719 0.312719i −0.533243 0.845962i \(-0.679027\pi\)
0.845962 + 0.533243i \(0.179027\pi\)
\(14\) 0 0
\(15\) 0.595787 + 0.259694i 0.153831 + 0.0670526i
\(16\) 0 0
\(17\) 0.781030 2.91484i 0.189427 0.706953i −0.804212 0.594343i \(-0.797412\pi\)
0.993639 0.112610i \(-0.0359211\pi\)
\(18\) 0 0
\(19\) −1.03536 + 1.79330i −0.237528 + 0.411411i −0.960004 0.279985i \(-0.909670\pi\)
0.722476 + 0.691396i \(0.243004\pi\)
\(20\) 0 0
\(21\) 0.137613 + 0.756589i 0.0300296 + 0.165101i
\(22\) 0 0
\(23\) 2.21537 0.593606i 0.461936 0.123775i −0.0203430 0.999793i \(-0.506476\pi\)
0.482279 + 0.876018i \(0.339809\pi\)
\(24\) 0 0
\(25\) 4.77888 + 1.47047i 0.955777 + 0.294093i
\(26\) 0 0
\(27\) −1.21578 1.21578i −0.233978 0.233978i
\(28\) 0 0
\(29\) 1.39922i 0.259829i 0.991525 + 0.129914i \(0.0414703\pi\)
−0.991525 + 0.129914i \(0.958530\pi\)
\(30\) 0 0
\(31\) 0.467508 0.269916i 0.0839669 0.0484783i −0.457429 0.889246i \(-0.651229\pi\)
0.541396 + 0.840768i \(0.317896\pi\)
\(32\) 0 0
\(33\) 0.238160 + 0.888827i 0.0414584 + 0.154725i
\(34\) 0 0
\(35\) 1.70568 + 5.66486i 0.288313 + 0.957536i
\(36\) 0 0
\(37\) −1.72976 6.45554i −0.284370 1.06128i −0.949298 0.314376i \(-0.898205\pi\)
0.664928 0.746907i \(-0.268462\pi\)
\(38\) 0 0
\(39\) 0.401375 0.231734i 0.0642714 0.0371071i
\(40\) 0 0
\(41\) 1.82954i 0.285726i 0.989742 + 0.142863i \(0.0456308\pi\)
−0.989742 + 0.142863i \(0.954369\pi\)
\(42\) 0 0
\(43\) −6.50139 6.50139i −0.991453 0.991453i 0.00851097 0.999964i \(-0.497291\pi\)
−0.999964 + 0.00851097i \(0.997291\pi\)
\(44\) 0 0
\(45\) −5.09840 4.06295i −0.760025 0.605669i
\(46\) 0 0
\(47\) −12.4272 + 3.32985i −1.81269 + 0.485709i −0.995838 0.0911405i \(-0.970949\pi\)
−0.816851 + 0.576849i \(0.804282\pi\)
\(48\) 0 0
\(49\) −4.44149 + 5.41047i −0.634499 + 0.772924i
\(50\) 0 0
\(51\) 0.438550 0.759592i 0.0614093 0.106364i
\(52\) 0 0
\(53\) 2.89567 10.8068i 0.397751 1.48443i −0.419292 0.907852i \(-0.637721\pi\)
0.817043 0.576577i \(-0.195612\pi\)
\(54\) 0 0
\(55\) 2.58858 + 6.58888i 0.349044 + 0.888445i
\(56\) 0 0
\(57\) −0.425584 + 0.425584i −0.0563699 + 0.0563699i
\(58\) 0 0
\(59\) 2.55946 + 4.43312i 0.333214 + 0.577143i 0.983140 0.182854i \(-0.0585336\pi\)
−0.649926 + 0.759997i \(0.725200\pi\)
\(60\) 0 0
\(61\) −12.2942 7.09808i −1.57412 0.908816i −0.995656 0.0931040i \(-0.970321\pi\)
−0.578459 0.815712i \(-0.696346\pi\)
\(62\) 0 0
\(63\) 0.630899 7.68790i 0.0794858 0.968584i
\(64\) 0 0
\(65\) 2.86810 2.11829i 0.355744 0.262741i
\(66\) 0 0
\(67\) −3.08572 0.826816i −0.376981 0.101012i 0.0653530 0.997862i \(-0.479183\pi\)
−0.442334 + 0.896851i \(0.645849\pi\)
\(68\) 0 0
\(69\) 0.666623 0.0802520
\(70\) 0 0
\(71\) 7.61378 0.903590 0.451795 0.892122i \(-0.350784\pi\)
0.451795 + 0.892122i \(0.350784\pi\)
\(72\) 0 0
\(73\) 3.08810 + 0.827453i 0.361435 + 0.0968461i 0.434966 0.900447i \(-0.356760\pi\)
−0.0735316 + 0.997293i \(0.523427\pi\)
\(74\) 0 0
\(75\) 1.23106 + 0.772338i 0.142151 + 0.0891819i
\(76\) 0 0
\(77\) −4.76733 + 6.88711i −0.543288 + 0.784859i
\(78\) 0 0
\(79\) −14.7577 8.52036i −1.66037 0.958616i −0.972537 0.232748i \(-0.925228\pi\)
−0.687834 0.725868i \(-0.741438\pi\)
\(80\) 0 0
\(81\) 4.12341 + 7.14195i 0.458156 + 0.793550i
\(82\) 0 0
\(83\) 4.62071 4.62071i 0.507189 0.507189i −0.406474 0.913662i \(-0.633242\pi\)
0.913662 + 0.406474i \(0.133242\pi\)
\(84\) 0 0
\(85\) 2.69621 6.18563i 0.292445 0.670925i
\(86\) 0 0
\(87\) −0.105259 + 0.392834i −0.0112850 + 0.0421162i
\(88\) 0 0
\(89\) −8.86012 + 15.3462i −0.939171 + 1.62669i −0.172148 + 0.985071i \(0.555071\pi\)
−0.767023 + 0.641620i \(0.778263\pi\)
\(90\) 0 0
\(91\) 3.97210 + 1.42155i 0.416389 + 0.149019i
\(92\) 0 0
\(93\) 0.151559 0.0406100i 0.0157159 0.00421106i
\(94\) 0 0
\(95\) −2.88567 + 3.62109i −0.296064 + 0.371516i
\(96\) 0 0
\(97\) 3.71983 + 3.71983i 0.377692 + 0.377692i 0.870269 0.492577i \(-0.163945\pi\)
−0.492577 + 0.870269i \(0.663945\pi\)
\(98\) 0 0
\(99\) 9.23019i 0.927669i
\(100\) 0 0
\(101\) −10.9262 + 6.30826i −1.08720 + 0.627696i −0.932830 0.360317i \(-0.882668\pi\)
−0.154371 + 0.988013i \(0.549335\pi\)
\(102\) 0 0
\(103\) −1.51328 5.64765i −0.149108 0.556479i −0.999538 0.0303910i \(-0.990325\pi\)
0.850430 0.526088i \(-0.176342\pi\)
\(104\) 0 0
\(105\) 0.0527224 + 1.71873i 0.00514518 + 0.167731i
\(106\) 0 0
\(107\) −1.64561 6.14150i −0.159087 0.593721i −0.998721 0.0505679i \(-0.983897\pi\)
0.839633 0.543153i \(-0.182770\pi\)
\(108\) 0 0
\(109\) 9.97396 5.75847i 0.955333 0.551562i 0.0605992 0.998162i \(-0.480699\pi\)
0.894733 + 0.446601i \(0.147366\pi\)
\(110\) 0 0
\(111\) 1.94253i 0.184376i
\(112\) 0 0
\(113\) 11.7681 + 11.7681i 1.10705 + 1.10705i 0.993536 + 0.113517i \(0.0362117\pi\)
0.113517 + 0.993536i \(0.463788\pi\)
\(114\) 0 0
\(115\) 5.09601 0.575970i 0.475206 0.0537095i
\(116\) 0 0
\(117\) −4.49057 + 1.20324i −0.415153 + 0.111240i
\(118\) 0 0
\(119\) 7.85512 1.42873i 0.720078 0.130972i
\(120\) 0 0
\(121\) 0.488591 0.846264i 0.0444173 0.0769331i
\(122\) 0 0
\(123\) −0.137631 + 0.513646i −0.0124098 + 0.0463139i
\(124\) 0 0
\(125\) 10.0782 + 4.84050i 0.901419 + 0.432948i
\(126\) 0 0
\(127\) 8.63098 8.63098i 0.765876 0.765876i −0.211502 0.977378i \(-0.567835\pi\)
0.977378 + 0.211502i \(0.0678354\pi\)
\(128\) 0 0
\(129\) −1.33619 2.31436i −0.117645 0.203768i
\(130\) 0 0
\(131\) 9.14667 + 5.28083i 0.799148 + 0.461389i 0.843173 0.537642i \(-0.180685\pi\)
−0.0440249 + 0.999030i \(0.514018\pi\)
\(132\) 0 0
\(133\) −5.46026 0.448090i −0.473464 0.0388543i
\(134\) 0 0
\(135\) −2.28410 3.09260i −0.196584 0.266169i
\(136\) 0 0
\(137\) 8.82003 + 2.36332i 0.753546 + 0.201912i 0.615090 0.788457i \(-0.289119\pi\)
0.138456 + 0.990369i \(0.455786\pi\)
\(138\) 0 0
\(139\) −12.2197 −1.03646 −0.518229 0.855242i \(-0.673408\pi\)
−0.518229 + 0.855242i \(0.673408\pi\)
\(140\) 0 0
\(141\) −3.73944 −0.314918
\(142\) 0 0
\(143\) 4.87618 + 1.30657i 0.407767 + 0.109261i
\(144\) 0 0
\(145\) −0.465245 + 3.09397i −0.0386365 + 0.256940i
\(146\) 0 0
\(147\) −1.65397 + 1.18488i −0.136417 + 0.0977270i
\(148\) 0 0
\(149\) 8.41513 + 4.85848i 0.689394 + 0.398022i 0.803385 0.595460i \(-0.203030\pi\)
−0.113991 + 0.993482i \(0.536363\pi\)
\(150\) 0 0
\(151\) 9.68938 + 16.7825i 0.788510 + 1.36574i 0.926880 + 0.375359i \(0.122481\pi\)
−0.138369 + 0.990381i \(0.544186\pi\)
\(152\) 0 0
\(153\) −6.22117 + 6.22117i −0.502952 + 0.502952i
\(154\) 0 0
\(155\) 1.12350 0.441392i 0.0902421 0.0354535i
\(156\) 0 0
\(157\) 4.70161 17.5466i 0.375229 1.40037i −0.477781 0.878479i \(-0.658559\pi\)
0.853010 0.521895i \(-0.174775\pi\)
\(158\) 0 0
\(159\) 1.62593 2.81619i 0.128945 0.223339i
\(160\) 0 0
\(161\) 3.92546 + 4.62734i 0.309370 + 0.364685i
\(162\) 0 0
\(163\) −12.8407 + 3.44064i −1.00576 + 0.269492i −0.723856 0.689951i \(-0.757632\pi\)
−0.281902 + 0.959443i \(0.590965\pi\)
\(164\) 0 0
\(165\) 0.231085 + 2.04457i 0.0179899 + 0.159170i
\(166\) 0 0
\(167\) 7.01514 + 7.01514i 0.542848 + 0.542848i 0.924363 0.381515i \(-0.124597\pi\)
−0.381515 + 0.924363i \(0.624597\pi\)
\(168\) 0 0
\(169\) 10.4574i 0.804413i
\(170\) 0 0
\(171\) 5.22839 3.01861i 0.399825 0.230839i
\(172\) 0 0
\(173\) 3.38896 + 12.6478i 0.257658 + 0.961592i 0.966593 + 0.256318i \(0.0825093\pi\)
−0.708935 + 0.705274i \(0.750824\pi\)
\(174\) 0 0
\(175\) 1.88804 + 13.0933i 0.142722 + 0.989763i
\(176\) 0 0
\(177\) 0.385082 + 1.43715i 0.0289445 + 0.108023i
\(178\) 0 0
\(179\) 9.39353 5.42335i 0.702105 0.405361i −0.106026 0.994363i \(-0.533813\pi\)
0.808131 + 0.589003i \(0.200479\pi\)
\(180\) 0 0
\(181\) 14.0160i 1.04180i −0.853617 0.520901i \(-0.825596\pi\)
0.853617 0.520901i \(-0.174404\pi\)
\(182\) 0 0
\(183\) −2.91766 2.91766i −0.215679 0.215679i
\(184\) 0 0
\(185\) −1.67836 14.8497i −0.123396 1.09177i
\(186\) 0 0
\(187\) 9.22805 2.47265i 0.674822 0.180818i
\(188\) 0 0
\(189\) 1.53282 4.28302i 0.111496 0.311544i
\(190\) 0 0
\(191\) 10.5152 18.2128i 0.760852 1.31784i −0.181559 0.983380i \(-0.558114\pi\)
0.942412 0.334455i \(-0.108552\pi\)
\(192\) 0 0
\(193\) 3.50376 13.0762i 0.252206 0.941246i −0.717417 0.696644i \(-0.754676\pi\)
0.969623 0.244602i \(-0.0786575\pi\)
\(194\) 0 0
\(195\) 0.964576 0.378954i 0.0690747 0.0271374i
\(196\) 0 0
\(197\) −8.95252 + 8.95252i −0.637840 + 0.637840i −0.950022 0.312182i \(-0.898940\pi\)
0.312182 + 0.950022i \(0.398940\pi\)
\(198\) 0 0
\(199\) 6.80780 + 11.7915i 0.482592 + 0.835875i 0.999800 0.0199852i \(-0.00636192\pi\)
−0.517208 + 0.855860i \(0.673029\pi\)
\(200\) 0 0
\(201\) −0.804122 0.464260i −0.0567184 0.0327464i
\(202\) 0 0
\(203\) −3.34667 + 1.58258i −0.234890 + 0.111075i
\(204\) 0 0
\(205\) −0.608327 + 4.04549i −0.0424874 + 0.282549i
\(206\) 0 0
\(207\) −6.45895 1.73067i −0.448928 0.120290i
\(208\) 0 0
\(209\) −6.55566 −0.453465
\(210\) 0 0
\(211\) −19.2166 −1.32293 −0.661464 0.749977i \(-0.730064\pi\)
−0.661464 + 0.749977i \(0.730064\pi\)
\(212\) 0 0
\(213\) 2.13758 + 0.572763i 0.146465 + 0.0392451i
\(214\) 0 0
\(215\) −12.2142 16.5377i −0.833001 1.12786i
\(216\) 0 0
\(217\) 1.17436 + 0.812903i 0.0797206 + 0.0551834i
\(218\) 0 0
\(219\) 0.804741 + 0.464618i 0.0543794 + 0.0313960i
\(220\) 0 0
\(221\) −2.40593 4.16719i −0.161840 0.280315i
\(222\) 0 0
\(223\) −12.2014 + 12.2014i −0.817068 + 0.817068i −0.985682 0.168614i \(-0.946071\pi\)
0.168614 + 0.985682i \(0.446071\pi\)
\(224\) 0 0
\(225\) −9.92268 10.6793i −0.661512 0.711951i
\(226\) 0 0
\(227\) −4.58309 + 17.1043i −0.304191 + 1.13525i 0.629449 + 0.777042i \(0.283281\pi\)
−0.933640 + 0.358213i \(0.883386\pi\)
\(228\) 0 0
\(229\) 3.44116 5.96026i 0.227398 0.393865i −0.729638 0.683833i \(-0.760311\pi\)
0.957036 + 0.289968i \(0.0936448\pi\)
\(230\) 0 0
\(231\) −1.85653 + 1.57493i −0.122151 + 0.103623i
\(232\) 0 0
\(233\) −0.997989 + 0.267410i −0.0653804 + 0.0175186i −0.291361 0.956613i \(-0.594108\pi\)
0.225981 + 0.974132i \(0.427441\pi\)
\(234\) 0 0
\(235\) −28.5862 + 3.23092i −1.86476 + 0.210762i
\(236\) 0 0
\(237\) −3.50229 3.50229i −0.227498 0.227498i
\(238\) 0 0
\(239\) 2.59385i 0.167782i −0.996475 0.0838910i \(-0.973265\pi\)
0.996475 0.0838910i \(-0.0267348\pi\)
\(240\) 0 0
\(241\) −18.8567 + 10.8869i −1.21467 + 0.701288i −0.963772 0.266727i \(-0.914058\pi\)
−0.250894 + 0.968015i \(0.580724\pi\)
\(242\) 0 0
\(243\) 1.95541 + 7.29768i 0.125439 + 0.468146i
\(244\) 0 0
\(245\) −11.6201 + 10.4869i −0.742378 + 0.669981i
\(246\) 0 0
\(247\) 0.854592 + 3.18938i 0.0543764 + 0.202936i
\(248\) 0 0
\(249\) 1.64487 0.949668i 0.104240 0.0601828i
\(250\) 0 0
\(251\) 27.3745i 1.72787i −0.503607 0.863933i \(-0.667994\pi\)
0.503607 0.863933i \(-0.332006\pi\)
\(252\) 0 0
\(253\) 5.13431 + 5.13431i 0.322791 + 0.322791i
\(254\) 0 0
\(255\) 1.22229 1.53380i 0.0765430 0.0960500i
\(256\) 0 0
\(257\) 16.6938 4.47308i 1.04133 0.279023i 0.302665 0.953097i \(-0.402124\pi\)
0.738664 + 0.674074i \(0.235457\pi\)
\(258\) 0 0
\(259\) 13.4840 11.4387i 0.837854 0.710768i
\(260\) 0 0
\(261\) 2.03973 3.53291i 0.126256 0.218682i
\(262\) 0 0
\(263\) −0.213266 + 0.795918i −0.0131505 + 0.0490784i −0.972189 0.234196i \(-0.924754\pi\)
0.959039 + 0.283275i \(0.0914208\pi\)
\(264\) 0 0
\(265\) 9.99623 22.9333i 0.614064 1.40878i
\(266\) 0 0
\(267\) −3.64194 + 3.64194i −0.222883 + 0.222883i
\(268\) 0 0
\(269\) −4.11282 7.12362i −0.250763 0.434335i 0.712973 0.701192i \(-0.247348\pi\)
−0.963736 + 0.266857i \(0.914015\pi\)
\(270\) 0 0
\(271\) −12.4591 7.19325i −0.756834 0.436959i 0.0713236 0.997453i \(-0.477278\pi\)
−0.828158 + 0.560495i \(0.810611\pi\)
\(272\) 0 0
\(273\) 1.00823 + 0.697911i 0.0610211 + 0.0422395i
\(274\) 0 0
\(275\) 3.53306 + 15.4301i 0.213052 + 0.930470i
\(276\) 0 0
\(277\) −0.770139 0.206358i −0.0462732 0.0123989i 0.235608 0.971848i \(-0.424292\pi\)
−0.281881 + 0.959449i \(0.590958\pi\)
\(278\) 0 0
\(279\) −1.57389 −0.0942263
\(280\) 0 0
\(281\) 0.874556 0.0521716 0.0260858 0.999660i \(-0.491696\pi\)
0.0260858 + 0.999660i \(0.491696\pi\)
\(282\) 0 0
\(283\) 15.7926 + 4.23160i 0.938770 + 0.251543i 0.695590 0.718439i \(-0.255143\pi\)
0.243180 + 0.969981i \(0.421810\pi\)
\(284\) 0 0
\(285\) −1.08256 + 0.799546i −0.0641254 + 0.0473610i
\(286\) 0 0
\(287\) −4.37591 + 2.06928i −0.258302 + 0.122146i
\(288\) 0 0
\(289\) 6.83614 + 3.94685i 0.402126 + 0.232167i
\(290\) 0 0
\(291\) 0.764516 + 1.32418i 0.0448167 + 0.0776248i
\(292\) 0 0
\(293\) −14.3739 + 14.3739i −0.839732 + 0.839732i −0.988823 0.149092i \(-0.952365\pi\)
0.149092 + 0.988823i \(0.452365\pi\)
\(294\) 0 0
\(295\) 4.18548 + 10.6536i 0.243688 + 0.620275i
\(296\) 0 0
\(297\) 1.40884 5.25787i 0.0817493 0.305093i
\(298\) 0 0
\(299\) 1.82858 3.16719i 0.105749 0.183163i
\(300\) 0 0
\(301\) 8.19674 22.9034i 0.472452 1.32013i
\(302\) 0 0
\(303\) −3.54211 + 0.949105i −0.203489 + 0.0545247i
\(304\) 0 0
\(305\) −24.8250 19.7832i −1.42147 1.13278i
\(306\) 0 0
\(307\) 19.5084 + 19.5084i 1.11340 + 1.11340i 0.992687 + 0.120716i \(0.0385190\pi\)
0.120716 + 0.992687i \(0.461481\pi\)
\(308\) 0 0
\(309\) 1.69943i 0.0966770i
\(310\) 0 0
\(311\) −23.3033 + 13.4542i −1.32141 + 0.762916i −0.983953 0.178425i \(-0.942900\pi\)
−0.337456 + 0.941341i \(0.609566\pi\)
\(312\) 0 0
\(313\) −2.28226 8.51752i −0.129001 0.481439i 0.870949 0.491373i \(-0.163505\pi\)
−0.999951 + 0.00993361i \(0.996838\pi\)
\(314\) 0 0
\(315\) 3.95130 16.7898i 0.222630 0.945996i
\(316\) 0 0
\(317\) 1.51023 + 5.63627i 0.0848232 + 0.316564i 0.995281 0.0970383i \(-0.0309369\pi\)
−0.910457 + 0.413603i \(0.864270\pi\)
\(318\) 0 0
\(319\) −3.83629 + 2.21489i −0.214791 + 0.124010i
\(320\) 0 0
\(321\) 1.84803i 0.103147i
\(322\) 0 0
\(323\) 4.41853 + 4.41853i 0.245854 + 0.245854i
\(324\) 0 0
\(325\) 7.04630 3.73032i 0.390858 0.206921i
\(326\) 0 0
\(327\) 3.23340 0.866387i 0.178807 0.0479113i
\(328\) 0 0
\(329\) −22.0200 25.9572i −1.21400 1.43107i
\(330\) 0 0
\(331\) −12.2485 + 21.2150i −0.673237 + 1.16608i 0.303744 + 0.952754i \(0.401763\pi\)
−0.976981 + 0.213327i \(0.931570\pi\)
\(332\) 0 0
\(333\) −5.04314 + 18.8212i −0.276362 + 1.03140i
\(334\) 0 0
\(335\) −6.54825 2.85427i −0.357769 0.155946i
\(336\) 0 0
\(337\) 5.54436 5.54436i 0.302021 0.302021i −0.539783 0.841804i \(-0.681494\pi\)
0.841804 + 0.539783i \(0.181494\pi\)
\(338\) 0 0
\(339\) 2.41864 + 4.18921i 0.131362 + 0.227526i
\(340\) 0 0
\(341\) 1.48008 + 0.854522i 0.0801506 + 0.0462749i
\(342\) 0 0
\(343\) −17.9643 4.50373i −0.969982 0.243178i
\(344\) 0 0
\(345\) 1.47404 + 0.221654i 0.0793598 + 0.0119335i
\(346\) 0 0
\(347\) −26.1167 6.99795i −1.40202 0.375670i −0.522949 0.852364i \(-0.675168\pi\)
−0.879069 + 0.476695i \(0.841835\pi\)
\(348\) 0 0
\(349\) 13.8090 0.739179 0.369590 0.929195i \(-0.379498\pi\)
0.369590 + 0.929195i \(0.379498\pi\)
\(350\) 0 0
\(351\) −2.74165 −0.146339
\(352\) 0 0
\(353\) −6.51881 1.74671i −0.346961 0.0929680i 0.0811298 0.996704i \(-0.474147\pi\)
−0.428091 + 0.903736i \(0.640814\pi\)
\(354\) 0 0
\(355\) 16.8357 + 2.53161i 0.893544 + 0.134364i
\(356\) 0 0
\(357\) 2.31282 + 0.189799i 0.122407 + 0.0100452i
\(358\) 0 0
\(359\) 20.6255 + 11.9082i 1.08857 + 0.628488i 0.933196 0.359367i \(-0.117007\pi\)
0.155377 + 0.987855i \(0.450341\pi\)
\(360\) 0 0
\(361\) 7.35606 + 12.7411i 0.387161 + 0.670582i
\(362\) 0 0
\(363\) 0.200835 0.200835i 0.0105411 0.0105411i
\(364\) 0 0
\(365\) 6.55330 + 2.85647i 0.343015 + 0.149515i
\(366\) 0 0
\(367\) 3.69329 13.7835i 0.192788 0.719494i −0.800040 0.599946i \(-0.795189\pi\)
0.992828 0.119548i \(-0.0381447\pi\)
\(368\) 0 0
\(369\) 2.66703 4.61943i 0.138840 0.240478i
\(370\) 0 0
\(371\) 29.1229 5.29705i 1.51199 0.275009i
\(372\) 0 0
\(373\) −6.79696 + 1.82124i −0.351933 + 0.0943002i −0.430455 0.902612i \(-0.641647\pi\)
0.0785216 + 0.996912i \(0.474980\pi\)
\(374\) 0 0
\(375\) 2.46532 + 2.11713i 0.127309 + 0.109328i
\(376\) 0 0
\(377\) 1.57766 + 1.57766i 0.0812535 + 0.0812535i
\(378\) 0 0
\(379\) 12.7830i 0.656616i 0.944571 + 0.328308i \(0.106478\pi\)
−0.944571 + 0.328308i \(0.893522\pi\)
\(380\) 0 0
\(381\) 3.07245 1.77388i 0.157406 0.0908785i
\(382\) 0 0
\(383\) 5.14216 + 19.1908i 0.262752 + 0.980603i 0.963612 + 0.267305i \(0.0861330\pi\)
−0.700860 + 0.713299i \(0.747200\pi\)
\(384\) 0 0
\(385\) −12.8315 + 13.6437i −0.653956 + 0.695346i
\(386\) 0 0
\(387\) 6.93799 + 25.8929i 0.352678 + 1.31621i
\(388\) 0 0
\(389\) 20.2010 11.6631i 1.02423 0.591342i 0.108906 0.994052i \(-0.465265\pi\)
0.915327 + 0.402710i \(0.131932\pi\)
\(390\) 0 0
\(391\) 6.92107i 0.350013i
\(392\) 0 0
\(393\) 2.17068 + 2.17068i 0.109496 + 0.109496i
\(394\) 0 0
\(395\) −29.7993 23.7473i −1.49937 1.19486i
\(396\) 0 0
\(397\) 24.9302 6.68004i 1.25121 0.335261i 0.428408 0.903585i \(-0.359075\pi\)
0.822805 + 0.568324i \(0.192408\pi\)
\(398\) 0 0
\(399\) −1.49927 0.536562i −0.0750572 0.0268617i
\(400\) 0 0
\(401\) 3.12717 5.41642i 0.156163 0.270483i −0.777319 0.629107i \(-0.783421\pi\)
0.933482 + 0.358624i \(0.116754\pi\)
\(402\) 0 0
\(403\) 0.222790 0.831464i 0.0110980 0.0414182i
\(404\) 0 0
\(405\) 6.74299 + 17.1634i 0.335062 + 0.852855i
\(406\) 0 0
\(407\) 14.9613 14.9613i 0.741603 0.741603i
\(408\) 0 0
\(409\) 15.7822 + 27.3355i 0.780379 + 1.35166i 0.931721 + 0.363174i \(0.118307\pi\)
−0.151342 + 0.988481i \(0.548360\pi\)
\(410\) 0 0
\(411\) 2.29845 + 1.32701i 0.113374 + 0.0654567i
\(412\) 0 0
\(413\) −7.70831 + 11.1358i −0.379301 + 0.547956i
\(414\) 0 0
\(415\) 11.7537 8.68095i 0.576969 0.426131i
\(416\) 0 0
\(417\) −3.43069 0.919250i −0.168001 0.0450159i
\(418\) 0 0
\(419\) −10.8473 −0.529923 −0.264962 0.964259i \(-0.585359\pi\)
−0.264962 + 0.964259i \(0.585359\pi\)
\(420\) 0 0
\(421\) 15.3927 0.750194 0.375097 0.926986i \(-0.377609\pi\)
0.375097 + 0.926986i \(0.377609\pi\)
\(422\) 0 0
\(423\) 36.2317 + 9.70824i 1.76164 + 0.472031i
\(424\) 0 0
\(425\) 8.01863 12.7812i 0.388961 0.619980i
\(426\) 0 0
\(427\) 3.07195 37.4337i 0.148662 1.81154i
\(428\) 0 0
\(429\) 1.27071 + 0.733643i 0.0613503 + 0.0354206i
\(430\) 0 0
\(431\) 5.16396 + 8.94425i 0.248739 + 0.430829i 0.963176 0.268871i \(-0.0866504\pi\)
−0.714437 + 0.699700i \(0.753317\pi\)
\(432\) 0 0
\(433\) −5.83240 + 5.83240i −0.280287 + 0.280287i −0.833224 0.552936i \(-0.813507\pi\)
0.552936 + 0.833224i \(0.313507\pi\)
\(434\) 0 0
\(435\) −0.363369 + 0.833638i −0.0174222 + 0.0399699i
\(436\) 0 0
\(437\) −1.22919 + 4.58741i −0.0588002 + 0.219445i
\(438\) 0 0
\(439\) 3.26217 5.65024i 0.155695 0.269671i −0.777617 0.628738i \(-0.783572\pi\)
0.933312 + 0.359067i \(0.116905\pi\)
\(440\) 0 0
\(441\) 19.1015 7.18634i 0.909597 0.342207i
\(442\) 0 0
\(443\) −5.19032 + 1.39074i −0.246600 + 0.0660762i −0.380002 0.924986i \(-0.624077\pi\)
0.133402 + 0.991062i \(0.457410\pi\)
\(444\) 0 0
\(445\) −24.6942 + 30.9876i −1.17062 + 1.46895i
\(446\) 0 0
\(447\) 1.99707 + 1.99707i 0.0944582 + 0.0944582i
\(448\) 0 0
\(449\) 9.24051i 0.436087i −0.975939 0.218043i \(-0.930033\pi\)
0.975939 0.218043i \(-0.0699674\pi\)
\(450\) 0 0
\(451\) −5.01611 + 2.89605i −0.236199 + 0.136370i
\(452\) 0 0
\(453\) 1.45781 + 5.44061i 0.0684938 + 0.255622i
\(454\) 0 0
\(455\) 8.31048 + 4.46407i 0.389601 + 0.209279i
\(456\) 0 0
\(457\) 6.35049 + 23.7003i 0.297063 + 1.10865i 0.939565 + 0.342371i \(0.111230\pi\)
−0.642502 + 0.766284i \(0.722103\pi\)
\(458\) 0 0
\(459\) −4.49338 + 2.59425i −0.209733 + 0.121089i
\(460\) 0 0
\(461\) 11.2955i 0.526084i 0.964784 + 0.263042i \(0.0847258\pi\)
−0.964784 + 0.263042i \(0.915274\pi\)
\(462\) 0 0
\(463\) −8.69735 8.69735i −0.404200 0.404200i 0.475510 0.879710i \(-0.342263\pi\)
−0.879710 + 0.475510i \(0.842263\pi\)
\(464\) 0 0
\(465\) 0.348630 0.0394035i 0.0161673 0.00182729i
\(466\) 0 0
\(467\) 29.5319 7.91305i 1.36657 0.366172i 0.500347 0.865825i \(-0.333206\pi\)
0.866226 + 0.499653i \(0.166539\pi\)
\(468\) 0 0
\(469\) −1.51249 8.31561i −0.0698404 0.383979i
\(470\) 0 0
\(471\) 2.63997 4.57256i 0.121643 0.210692i
\(472\) 0 0
\(473\) 7.53377 28.1164i 0.346403 1.29279i
\(474\) 0 0
\(475\) −7.58485 + 7.04749i −0.348017 + 0.323361i
\(476\) 0 0
\(477\) −23.0650 + 23.0650i −1.05608 + 1.05608i
\(478\) 0 0
\(479\) −6.71144 11.6246i −0.306653 0.531139i 0.670975 0.741480i \(-0.265876\pi\)
−0.977628 + 0.210341i \(0.932543\pi\)
\(480\) 0 0
\(481\) −9.22912 5.32844i −0.420812 0.242956i
\(482\) 0 0
\(483\) 0.753978 + 1.59443i 0.0343072 + 0.0725493i
\(484\) 0 0
\(485\) 6.98847 + 9.46218i 0.317330 + 0.429655i
\(486\) 0 0
\(487\) −3.62535 0.971410i −0.164280 0.0440188i 0.175741 0.984436i \(-0.443768\pi\)
−0.340022 + 0.940418i \(0.610434\pi\)
\(488\) 0 0
\(489\) −3.86387 −0.174730
\(490\) 0 0
\(491\) −11.4041 −0.514658 −0.257329 0.966324i \(-0.582842\pi\)
−0.257329 + 0.966324i \(0.582842\pi\)
\(492\) 0 0
\(493\) 4.07851 + 1.09283i 0.183687 + 0.0492187i
\(494\) 0 0
\(495\) 3.06907 20.4099i 0.137944 0.917356i
\(496\) 0 0
\(497\) 8.61151 + 18.2107i 0.386279 + 0.816862i
\(498\) 0 0
\(499\) 4.12649 + 2.38243i 0.184727 + 0.106652i 0.589512 0.807760i \(-0.299320\pi\)
−0.404785 + 0.914412i \(0.632654\pi\)
\(500\) 0 0
\(501\) 1.44178 + 2.49724i 0.0644141 + 0.111568i
\(502\) 0 0
\(503\) −3.82918 + 3.82918i −0.170735 + 0.170735i −0.787302 0.616567i \(-0.788523\pi\)
0.616567 + 0.787302i \(0.288523\pi\)
\(504\) 0 0
\(505\) −26.2577 + 10.3159i −1.16845 + 0.459051i
\(506\) 0 0
\(507\) −0.786678 + 2.93592i −0.0349376 + 0.130389i
\(508\) 0 0
\(509\) 6.57904 11.3952i 0.291611 0.505085i −0.682580 0.730811i \(-0.739142\pi\)
0.974191 + 0.225726i \(0.0724755\pi\)
\(510\) 0 0
\(511\) 1.51366 + 8.32202i 0.0669603 + 0.368145i
\(512\) 0 0
\(513\) 3.43903 0.921487i 0.151837 0.0406846i
\(514\) 0 0
\(515\) −1.46832 12.9913i −0.0647020 0.572465i
\(516\) 0 0
\(517\) −28.8011 28.8011i −1.26667 1.26667i
\(518\) 0 0
\(519\) 3.80582i 0.167057i
\(520\) 0 0
\(521\) −12.2934 + 7.09760i −0.538584 + 0.310951i −0.744505 0.667617i \(-0.767314\pi\)
0.205921 + 0.978569i \(0.433981\pi\)
\(522\) 0 0
\(523\) 3.68575 + 13.7554i 0.161167 + 0.601482i 0.998498 + 0.0547863i \(0.0174478\pi\)
−0.837332 + 0.546695i \(0.815886\pi\)
\(524\) 0 0
\(525\) −0.454903 + 3.81800i −0.0198536 + 0.166631i
\(526\) 0 0
\(527\) −0.421624 1.57352i −0.0183662 0.0685438i
\(528\) 0 0
\(529\) −15.3631 + 8.86989i −0.667961 + 0.385647i
\(530\) 0 0
\(531\) 14.9243i 0.647661i
\(532\) 0 0
\(533\) 2.06285 + 2.06285i 0.0893520 + 0.0893520i
\(534\) 0 0
\(535\) −1.59672 14.1273i −0.0690322 0.610777i
\(536\) 0 0
\(537\) 3.04523 0.815967i 0.131411 0.0352116i
\(538\) 0 0
\(539\) −21.8647 3.61294i −0.941779 0.155620i
\(540\) 0 0
\(541\) −5.35421 + 9.27376i −0.230195 + 0.398710i −0.957865 0.287217i \(-0.907270\pi\)
0.727670 + 0.685927i \(0.240603\pi\)
\(542\) 0 0
\(543\) 1.05438 3.93502i 0.0452480 0.168868i
\(544\) 0 0
\(545\) 23.9692 9.41681i 1.02673 0.403372i
\(546\) 0 0
\(547\) 7.38586 7.38586i 0.315797 0.315797i −0.531354 0.847150i \(-0.678316\pi\)
0.847150 + 0.531354i \(0.178316\pi\)
\(548\) 0 0
\(549\) 20.6946 + 35.8441i 0.883223 + 1.52979i
\(550\) 0 0
\(551\) −2.50922 1.44870i −0.106896 0.0617166i
\(552\) 0 0
\(553\) 3.68750 44.9345i 0.156808 1.91081i
\(554\) 0 0
\(555\) 0.645896 4.29533i 0.0274168 0.182327i
\(556\) 0 0
\(557\) −32.5503 8.72182i −1.37920 0.369556i −0.508370 0.861139i \(-0.669752\pi\)
−0.870831 + 0.491583i \(0.836418\pi\)
\(558\) 0 0
\(559\) −14.6610 −0.620093
\(560\) 0 0
\(561\) 2.77680 0.117237
\(562\) 0 0
\(563\) −14.6864 3.93520i −0.618957 0.165849i −0.0643032 0.997930i \(-0.520482\pi\)
−0.554653 + 0.832081i \(0.687149\pi\)
\(564\) 0 0
\(565\) 22.1089 + 29.9347i 0.930127 + 1.25936i
\(566\) 0 0
\(567\) −12.4184 + 17.9402i −0.521525 + 0.753419i
\(568\) 0 0
\(569\) −28.8138 16.6356i −1.20794 0.697403i −0.245629 0.969364i \(-0.578994\pi\)
−0.962308 + 0.271961i \(0.912328\pi\)
\(570\) 0 0
\(571\) −9.67235 16.7530i −0.404775 0.701091i 0.589520 0.807754i \(-0.299317\pi\)
−0.994295 + 0.106663i \(0.965984\pi\)
\(572\) 0 0
\(573\) 4.32226 4.32226i 0.180565 0.180565i
\(574\) 0 0
\(575\) 11.4599 + 0.420851i 0.477909 + 0.0175507i
\(576\) 0 0
\(577\) 1.19999 4.47841i 0.0499561 0.186439i −0.936439 0.350830i \(-0.885899\pi\)
0.986395 + 0.164392i \(0.0525661\pi\)
\(578\) 0 0
\(579\) 1.96737 3.40759i 0.0817612 0.141615i
\(580\) 0 0
\(581\) 16.2781 + 5.82563i 0.675328 + 0.241688i
\(582\) 0 0
\(583\) 34.2131 9.16737i 1.41696 0.379674i
\(584\) 0 0
\(585\) −10.3297 + 1.16749i −0.427079 + 0.0482700i
\(586\) 0 0
\(587\) −11.9958 11.9958i −0.495119 0.495119i 0.414796 0.909915i \(-0.363853\pi\)
−0.909915 + 0.414796i \(0.863853\pi\)
\(588\) 0 0
\(589\) 1.11784i 0.0460598i
\(590\) 0 0
\(591\) −3.18690 + 1.83996i −0.131092 + 0.0756859i
\(592\) 0 0
\(593\) −7.09071 26.4629i −0.291180 1.08670i −0.944204 0.329362i \(-0.893166\pi\)
0.653023 0.757338i \(-0.273500\pi\)
\(594\) 0 0
\(595\) 17.8444 0.547379i 0.731547 0.0224403i
\(596\) 0 0
\(597\) 1.02426 + 3.82260i 0.0419203 + 0.156449i
\(598\) 0 0
\(599\) 13.8703 8.00801i 0.566725 0.327199i −0.189116 0.981955i \(-0.560562\pi\)
0.755840 + 0.654756i \(0.227229\pi\)
\(600\) 0 0
\(601\) 0.757785i 0.0309107i 0.999881 + 0.0154553i \(0.00491978\pi\)
−0.999881 + 0.0154553i \(0.995080\pi\)
\(602\) 0 0
\(603\) 6.58588 + 6.58588i 0.268198 + 0.268198i
\(604\) 0 0
\(605\) 1.36176 1.70881i 0.0553635 0.0694729i
\(606\) 0 0
\(607\) −33.2529 + 8.91009i −1.34969 + 0.361649i −0.860022 0.510257i \(-0.829550\pi\)
−0.489672 + 0.871907i \(0.662884\pi\)
\(608\) 0 0
\(609\) −1.05864 + 0.192551i −0.0428981 + 0.00780255i
\(610\) 0 0
\(611\) −10.2575 + 17.7664i −0.414972 + 0.718753i
\(612\) 0 0
\(613\) 0.805086 3.00462i 0.0325171 0.121355i −0.947760 0.318986i \(-0.896658\pi\)
0.980277 + 0.197630i \(0.0633245\pi\)
\(614\) 0 0
\(615\) −0.475120 + 1.09002i −0.0191587 + 0.0439537i
\(616\) 0 0
\(617\) −20.2993 + 20.2993i −0.817221 + 0.817221i −0.985704 0.168484i \(-0.946113\pi\)
0.168484 + 0.985704i \(0.446113\pi\)
\(618\) 0 0
\(619\) 5.85033 + 10.1331i 0.235145 + 0.407282i 0.959315 0.282339i \(-0.0911103\pi\)
−0.724170 + 0.689621i \(0.757777\pi\)
\(620\) 0 0
\(621\) −3.41510 1.97171i −0.137043 0.0791220i
\(622\) 0 0
\(623\) −46.7263 3.83454i −1.87205 0.153628i
\(624\) 0 0
\(625\) 20.6755 + 14.0544i 0.827018 + 0.562175i
\(626\) 0 0
\(627\) −1.84051 0.493164i −0.0735030 0.0196951i
\(628\) 0 0
\(629\) −20.1679 −0.804145
\(630\) 0 0
\(631\) −48.6183 −1.93546 −0.967731 0.251985i \(-0.918917\pi\)
−0.967731 + 0.251985i \(0.918917\pi\)
\(632\) 0 0
\(633\) −5.39510 1.44561i −0.214436 0.0574579i
\(634\) 0 0
\(635\) 21.9547 16.2151i 0.871247 0.643476i
\(636\) 0 0
\(637\) 1.09255 + 11.1083i 0.0432883 + 0.440128i
\(638\) 0 0
\(639\) −19.2241 11.0991i −0.760496 0.439072i
\(640\) 0 0
\(641\) 6.57455 + 11.3874i 0.259679 + 0.449777i 0.966156 0.257959i \(-0.0830499\pi\)
−0.706477 + 0.707736i \(0.749717\pi\)
\(642\) 0 0
\(643\) 13.2857 13.2857i 0.523935 0.523935i −0.394822 0.918758i \(-0.629194\pi\)
0.918758 + 0.394822i \(0.129194\pi\)
\(644\) 0 0
\(645\) −2.18507 5.56181i −0.0860372 0.218996i
\(646\) 0 0
\(647\) 8.66879 32.3524i 0.340805 1.27190i −0.556631 0.830760i \(-0.687906\pi\)
0.897437 0.441143i \(-0.145427\pi\)
\(648\) 0 0
\(649\) −8.10296 + 14.0347i −0.318069 + 0.550912i
\(650\) 0 0
\(651\) 0.268550 + 0.316567i 0.0105253 + 0.0124072i
\(652\) 0 0
\(653\) −0.471665 + 0.126382i −0.0184577 + 0.00494572i −0.268036 0.963409i \(-0.586375\pi\)
0.249578 + 0.968355i \(0.419708\pi\)
\(654\) 0 0
\(655\) 18.4693 + 14.7183i 0.721655 + 0.575092i
\(656\) 0 0
\(657\) −6.59095 6.59095i −0.257138 0.257138i
\(658\) 0 0
\(659\) 42.0886i 1.63954i 0.572693 + 0.819770i \(0.305899\pi\)
−0.572693 + 0.819770i \(0.694101\pi\)
\(660\) 0 0
\(661\) −13.0631 + 7.54198i −0.508095 + 0.293349i −0.732050 0.681251i \(-0.761436\pi\)
0.223955 + 0.974599i \(0.428103\pi\)
\(662\) 0 0
\(663\) −0.361982 1.35094i −0.0140582 0.0524660i
\(664\) 0 0
\(665\) −11.9248 2.80637i −0.462423 0.108826i
\(666\) 0 0
\(667\) 0.830586 + 3.09979i 0.0321604 + 0.120024i
\(668\) 0 0
\(669\) −4.34345 + 2.50769i −0.167927 + 0.0969530i
\(670\) 0 0
\(671\) 44.9434i 1.73502i
\(672\) 0 0
\(673\) −24.5243 24.5243i −0.945344 0.945344i 0.0532383 0.998582i \(-0.483046\pi\)
−0.998582 + 0.0532383i \(0.983046\pi\)
\(674\) 0 0
\(675\) −4.02232 7.59786i −0.154819 0.292442i
\(676\) 0 0
\(677\) −19.2914 + 5.16911i −0.741428 + 0.198665i −0.609712 0.792623i \(-0.708715\pi\)
−0.131715 + 0.991288i \(0.542048\pi\)
\(678\) 0 0
\(679\) −4.68984 + 13.1044i −0.179979 + 0.502901i
\(680\) 0 0
\(681\) −2.57342 + 4.45730i −0.0986137 + 0.170804i
\(682\) 0 0
\(683\) 10.7678 40.1858i 0.412017 1.53767i −0.378720 0.925511i \(-0.623636\pi\)
0.790736 0.612157i \(-0.209698\pi\)
\(684\) 0 0
\(685\) 18.7171 + 8.15848i 0.715144 + 0.311720i
\(686\) 0 0
\(687\) 1.41448 1.41448i 0.0539659 0.0539659i
\(688\) 0 0
\(689\) −8.92000 15.4499i −0.339825 0.588594i
\(690\) 0 0
\(691\) 2.73858 + 1.58112i 0.104181 + 0.0601487i 0.551185 0.834383i \(-0.314176\pi\)
−0.447004 + 0.894532i \(0.647509\pi\)
\(692\) 0 0
\(693\) 22.0769 10.4397i 0.838630 0.396573i
\(694\) 0 0
\(695\) −27.0202 4.06307i −1.02493 0.154121i
\(696\) 0 0
\(697\) 5.33282 + 1.42892i 0.201995 + 0.0541243i
\(698\) 0 0
\(699\) −0.300304 −0.0113585
\(700\) 0 0
\(701\) 29.5372 1.11560 0.557802 0.829974i \(-0.311645\pi\)
0.557802 + 0.829974i \(0.311645\pi\)
\(702\) 0 0
\(703\) 13.3676 + 3.58184i 0.504169 + 0.135092i
\(704\) 0 0
\(705\) −8.26868 1.24338i −0.311417 0.0468282i
\(706\) 0 0
\(707\) −27.4462 18.9985i −1.03222 0.714514i
\(708\) 0 0
\(709\) 3.64864 + 2.10654i 0.137028 + 0.0791129i 0.566947 0.823755i \(-0.308125\pi\)
−0.429919 + 0.902867i \(0.641458\pi\)
\(710\) 0 0
\(711\) 24.8413 + 43.0264i 0.931621 + 1.61361i
\(712\) 0 0
\(713\) 0.875478 0.875478i 0.0327869 0.0327869i
\(714\) 0 0
\(715\) 10.3478 + 4.51044i 0.386986 + 0.168681i
\(716\) 0 0
\(717\) 0.195128 0.728227i 0.00728718 0.0271961i
\(718\) 0 0
\(719\) −7.68285 + 13.3071i −0.286522 + 0.496271i −0.972977 0.230902i \(-0.925832\pi\)
0.686455 + 0.727172i \(0.259166\pi\)
\(720\) 0 0
\(721\) 11.7965 10.0072i 0.439325 0.372688i
\(722\) 0 0
\(723\) −6.11303 + 1.63798i −0.227346 + 0.0609172i
\(724\) 0 0
\(725\) −2.05751 + 6.68672i −0.0764140 + 0.248338i
\(726\) 0 0
\(727\) 33.3701 + 33.3701i 1.23763 + 1.23763i 0.960968 + 0.276659i \(0.0892271\pi\)
0.276659 + 0.960968i \(0.410773\pi\)
\(728\) 0 0
\(729\) 22.5445i 0.834982i
\(730\) 0 0
\(731\) −24.0283 + 13.8727i −0.888719 + 0.513102i
\(732\) 0 0
\(733\) −2.60032 9.70454i −0.0960451 0.358445i 0.901131 0.433548i \(-0.142738\pi\)
−0.997176 + 0.0751022i \(0.976072\pi\)
\(734\) 0 0
\(735\) −4.05125 + 2.07006i −0.149432 + 0.0763553i
\(736\) 0 0
\(737\) −2.61760 9.76903i −0.0964207 0.359847i
\(738\) 0 0
\(739\) 13.2797 7.66706i 0.488503 0.282037i −0.235450 0.971886i \(-0.575656\pi\)
0.723953 + 0.689849i \(0.242323\pi\)
\(740\) 0 0
\(741\) 0.959713i 0.0352559i
\(742\) 0 0
\(743\) 22.6408 + 22.6408i 0.830610 + 0.830610i 0.987600 0.156990i \(-0.0501792\pi\)
−0.156990 + 0.987600i \(0.550179\pi\)
\(744\) 0 0
\(745\) 16.9921 + 13.5412i 0.622544 + 0.496110i
\(746\) 0 0
\(747\) −18.4028 + 4.93101i −0.673322 + 0.180416i
\(748\) 0 0
\(749\) 12.8280 10.8823i 0.468726 0.397630i
\(750\) 0 0
\(751\) 23.9970 41.5640i 0.875663 1.51669i 0.0196079 0.999808i \(-0.493758\pi\)
0.856055 0.516885i \(-0.172908\pi\)
\(752\) 0 0
\(753\) 2.05931 7.68544i 0.0750454 0.280073i
\(754\) 0 0
\(755\) 15.8450 + 40.3313i 0.576658 + 1.46781i
\(756\) 0 0
\(757\) 23.0503 23.0503i 0.837777 0.837777i −0.150789 0.988566i \(-0.548181\pi\)
0.988566 + 0.150789i \(0.0481814\pi\)
\(758\) 0 0
\(759\) 1.05523 + 1.82770i 0.0383023 + 0.0663415i
\(760\) 0 0
\(761\) 9.13419 + 5.27363i 0.331114 + 0.191169i 0.656336 0.754469i \(-0.272106\pi\)
−0.325221 + 0.945638i \(0.605439\pi\)
\(762\) 0 0
\(763\) 25.0541 + 17.3427i 0.907020 + 0.627849i
\(764\) 0 0
\(765\) −15.8249 + 11.6877i −0.572149 + 0.422571i
\(766\) 0 0
\(767\) 7.88431 + 2.11260i 0.284686 + 0.0762814i
\(768\) 0 0
\(769\) −30.8875 −1.11383 −0.556917 0.830568i \(-0.688016\pi\)
−0.556917 + 0.830568i \(0.688016\pi\)
\(770\) 0 0
\(771\) 5.02330 0.180910
\(772\) 0 0
\(773\) 12.1882 + 3.26583i 0.438380 + 0.117464i 0.471257 0.881996i \(-0.343800\pi\)
−0.0328772 + 0.999459i \(0.510467\pi\)
\(774\) 0 0
\(775\) 2.63107 0.602441i 0.0945107 0.0216403i
\(776\) 0 0
\(777\) 4.64615 2.19708i 0.166680 0.0788197i
\(778\) 0 0
\(779\) −3.28091 1.89423i −0.117551 0.0678679i
\(780\) 0 0
\(781\) 12.0522 + 20.8750i 0.431261 + 0.746966i
\(782\) 0 0
\(783\) 1.70115 1.70115i 0.0607941 0.0607941i
\(784\) 0 0
\(785\) 16.2305 37.2360i 0.579293 1.32901i
\(786\) 0 0
\(787\) −0.702207 + 2.62067i −0.0250310 + 0.0934169i −0.977311 0.211808i \(-0.932065\pi\)
0.952280 + 0.305225i \(0.0987316\pi\)
\(788\) 0 0
\(789\) −0.119749 + 0.207412i −0.00426319 + 0.00738406i
\(790\) 0 0
\(791\) −14.8369 + 41.4574i −0.527538 + 1.47405i
\(792\) 0 0
\(793\) −21.8653 + 5.85879i −0.776460 + 0.208052i
\(794\) 0 0
\(795\) 4.53166 5.68656i 0.160721 0.201682i
\(796\) 0 0
\(797\) −1.49610 1.49610i −0.0529945 0.0529945i