Properties

Label 280.2.bo.a.33.7
Level $280$
Weight $2$
Character 280.33
Analytic conductor $2.236$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 280.bo (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.23581125660\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 33.7
Character \(\chi\) \(=\) 280.33
Dual form 280.2.bo.a.17.7

$q$-expansion

\(f(q)\) \(=\) \(q+(0.120281 + 0.0322291i) q^{3} +(-2.04377 - 0.907205i) q^{5} +(-2.46167 - 0.969635i) q^{7} +(-2.58465 - 1.49225i) q^{9} +O(q^{10})\) \(q+(0.120281 + 0.0322291i) q^{3} +(-2.04377 - 0.907205i) q^{5} +(-2.46167 - 0.969635i) q^{7} +(-2.58465 - 1.49225i) q^{9} +(-1.40939 - 2.44113i) q^{11} +(3.28569 - 3.28569i) q^{13} +(-0.216587 - 0.174988i) q^{15} +(0.477081 - 1.78049i) q^{17} +(-4.01634 + 6.95650i) q^{19} +(-0.264840 - 0.195966i) q^{21} +(2.30451 - 0.617491i) q^{23} +(3.35396 + 3.70823i) q^{25} +(-0.526943 - 0.526943i) q^{27} -8.63838i q^{29} +(-2.81202 + 1.62352i) q^{31} +(-0.0908465 - 0.339044i) q^{33} +(4.15141 + 4.21495i) q^{35} +(-1.87374 - 6.99289i) q^{37} +(0.501099 - 0.289309i) q^{39} +9.45620i q^{41} +(1.04150 + 1.04150i) q^{43} +(3.92864 + 5.39461i) q^{45} +(-3.76695 + 1.00935i) q^{47} +(5.11961 + 4.77384i) q^{49} +(0.114767 - 0.198782i) q^{51} +(1.75344 - 6.54391i) q^{53} +(0.665850 + 6.26770i) q^{55} +(-0.707288 + 0.707288i) q^{57} +(-6.19733 - 10.7341i) q^{59} +(2.19428 + 1.26687i) q^{61} +(4.91561 + 6.17958i) q^{63} +(-9.69596 + 3.73438i) q^{65} +(13.8668 + 3.71560i) q^{67} +0.297088 q^{69} +2.72856 q^{71} +(3.90198 + 1.04553i) q^{73} +(0.283903 + 0.554123i) q^{75} +(1.10244 + 7.37584i) q^{77} +(-5.52096 - 3.18753i) q^{79} +(4.43034 + 7.67358i) q^{81} +(7.41399 - 7.41399i) q^{83} +(-2.59031 + 3.20609i) q^{85} +(0.278407 - 1.03903i) q^{87} +(-0.487628 + 0.844596i) q^{89} +(-11.2742 + 4.90235i) q^{91} +(-0.390556 + 0.104649i) q^{93} +(14.5194 - 10.5738i) q^{95} +(-5.12422 - 5.12422i) q^{97} +8.41261i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q - 4q^{7} + O(q^{10}) \) \( 48q - 4q^{7} + 4q^{11} + 8q^{15} - 4q^{21} - 4q^{23} - 8q^{25} - 36q^{33} + 24q^{35} + 8q^{37} - 16q^{43} + 48q^{45} + 24q^{51} + 16q^{53} - 96q^{57} - 36q^{61} - 68q^{63} + 12q^{65} - 16q^{67} - 64q^{71} - 48q^{73} - 48q^{75} + 4q^{77} - 40q^{85} - 12q^{87} - 80q^{91} + 24q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/280\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(141\) \(241\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.120281 + 0.0322291i 0.0694440 + 0.0186075i 0.293374 0.955998i \(-0.405222\pi\)
−0.223930 + 0.974605i \(0.571889\pi\)
\(4\) 0 0
\(5\) −2.04377 0.907205i −0.914000 0.405715i
\(6\) 0 0
\(7\) −2.46167 0.969635i −0.930423 0.366488i
\(8\) 0 0
\(9\) −2.58465 1.49225i −0.861549 0.497416i
\(10\) 0 0
\(11\) −1.40939 2.44113i −0.424946 0.736028i 0.571469 0.820623i \(-0.306374\pi\)
−0.996415 + 0.0845951i \(0.973040\pi\)
\(12\) 0 0
\(13\) 3.28569 3.28569i 0.911285 0.911285i −0.0850882 0.996373i \(-0.527117\pi\)
0.996373 + 0.0850882i \(0.0271172\pi\)
\(14\) 0 0
\(15\) −0.216587 0.174988i −0.0559225 0.0451817i
\(16\) 0 0
\(17\) 0.477081 1.78049i 0.115709 0.431832i −0.883630 0.468186i \(-0.844908\pi\)
0.999339 + 0.0363538i \(0.0115743\pi\)
\(18\) 0 0
\(19\) −4.01634 + 6.95650i −0.921411 + 1.59593i −0.124176 + 0.992260i \(0.539629\pi\)
−0.797235 + 0.603670i \(0.793705\pi\)
\(20\) 0 0
\(21\) −0.264840 0.195966i −0.0577929 0.0427632i
\(22\) 0 0
\(23\) 2.30451 0.617491i 0.480523 0.128756i −0.0104232 0.999946i \(-0.503318\pi\)
0.490946 + 0.871190i \(0.336651\pi\)
\(24\) 0 0
\(25\) 3.35396 + 3.70823i 0.670791 + 0.741646i
\(26\) 0 0
\(27\) −0.526943 0.526943i −0.101410 0.101410i
\(28\) 0 0
\(29\) 8.63838i 1.60411i −0.597252 0.802053i \(-0.703741\pi\)
0.597252 0.802053i \(-0.296259\pi\)
\(30\) 0 0
\(31\) −2.81202 + 1.62352i −0.505054 + 0.291593i −0.730798 0.682593i \(-0.760852\pi\)
0.225744 + 0.974187i \(0.427519\pi\)
\(32\) 0 0
\(33\) −0.0908465 0.339044i −0.0158143 0.0590199i
\(34\) 0 0
\(35\) 4.15141 + 4.21495i 0.701717 + 0.712456i
\(36\) 0 0
\(37\) −1.87374 6.99289i −0.308041 1.14962i −0.930296 0.366809i \(-0.880450\pi\)
0.622255 0.782814i \(-0.286217\pi\)
\(38\) 0 0
\(39\) 0.501099 0.289309i 0.0802400 0.0463266i
\(40\) 0 0
\(41\) 9.45620i 1.47681i 0.674357 + 0.738405i \(0.264421\pi\)
−0.674357 + 0.738405i \(0.735579\pi\)
\(42\) 0 0
\(43\) 1.04150 + 1.04150i 0.158828 + 0.158828i 0.782047 0.623219i \(-0.214176\pi\)
−0.623219 + 0.782047i \(0.714176\pi\)
\(44\) 0 0
\(45\) 3.92864 + 5.39461i 0.585647 + 0.804181i
\(46\) 0 0
\(47\) −3.76695 + 1.00935i −0.549465 + 0.147229i −0.522862 0.852417i \(-0.675136\pi\)
−0.0266033 + 0.999646i \(0.508469\pi\)
\(48\) 0 0
\(49\) 5.11961 + 4.77384i 0.731373 + 0.681977i
\(50\) 0 0
\(51\) 0.114767 0.198782i 0.0160706 0.0278351i
\(52\) 0 0
\(53\) 1.75344 6.54391i 0.240853 0.898875i −0.734570 0.678533i \(-0.762616\pi\)
0.975423 0.220342i \(-0.0707173\pi\)
\(54\) 0 0
\(55\) 0.665850 + 6.26770i 0.0897832 + 0.845137i
\(56\) 0 0
\(57\) −0.707288 + 0.707288i −0.0936826 + 0.0936826i
\(58\) 0 0
\(59\) −6.19733 10.7341i −0.806823 1.39746i −0.915053 0.403333i \(-0.867852\pi\)
0.108230 0.994126i \(-0.465482\pi\)
\(60\) 0 0
\(61\) 2.19428 + 1.26687i 0.280949 + 0.162206i 0.633853 0.773454i \(-0.281473\pi\)
−0.352904 + 0.935659i \(0.614806\pi\)
\(62\) 0 0
\(63\) 4.91561 + 6.17958i 0.619308 + 0.778554i
\(64\) 0 0
\(65\) −9.69596 + 3.73438i −1.20264 + 0.463193i
\(66\) 0 0
\(67\) 13.8668 + 3.71560i 1.69410 + 0.453932i 0.971442 0.237276i \(-0.0762545\pi\)
0.722656 + 0.691208i \(0.242921\pi\)
\(68\) 0 0
\(69\) 0.297088 0.0357652
\(70\) 0 0
\(71\) 2.72856 0.323820 0.161910 0.986805i \(-0.448235\pi\)
0.161910 + 0.986805i \(0.448235\pi\)
\(72\) 0 0
\(73\) 3.90198 + 1.04553i 0.456692 + 0.122370i 0.479829 0.877362i \(-0.340699\pi\)
−0.0231369 + 0.999732i \(0.507365\pi\)
\(74\) 0 0
\(75\) 0.283903 + 0.554123i 0.0327823 + 0.0639846i
\(76\) 0 0
\(77\) 1.10244 + 7.37584i 0.125634 + 0.840555i
\(78\) 0 0
\(79\) −5.52096 3.18753i −0.621156 0.358625i 0.156163 0.987731i \(-0.450088\pi\)
−0.777319 + 0.629107i \(0.783421\pi\)
\(80\) 0 0
\(81\) 4.43034 + 7.67358i 0.492260 + 0.852620i
\(82\) 0 0
\(83\) 7.41399 7.41399i 0.813791 0.813791i −0.171409 0.985200i \(-0.554832\pi\)
0.985200 + 0.171409i \(0.0548319\pi\)
\(84\) 0 0
\(85\) −2.59031 + 3.20609i −0.280959 + 0.347750i
\(86\) 0 0
\(87\) 0.278407 1.03903i 0.0298484 0.111396i
\(88\) 0 0
\(89\) −0.487628 + 0.844596i −0.0516885 + 0.0895270i −0.890712 0.454568i \(-0.849794\pi\)
0.839024 + 0.544095i \(0.183127\pi\)
\(90\) 0 0
\(91\) −11.2742 + 4.90235i −1.18186 + 0.513906i
\(92\) 0 0
\(93\) −0.390556 + 0.104649i −0.0404988 + 0.0108516i
\(94\) 0 0
\(95\) 14.5194 10.5738i 1.48966 1.08485i
\(96\) 0 0
\(97\) −5.12422 5.12422i −0.520286 0.520286i 0.397372 0.917658i \(-0.369922\pi\)
−0.917658 + 0.397372i \(0.869922\pi\)
\(98\) 0 0
\(99\) 8.41261i 0.845499i
\(100\) 0 0
\(101\) 5.00307 2.88852i 0.497824 0.287419i −0.229990 0.973193i \(-0.573869\pi\)
0.727815 + 0.685774i \(0.240536\pi\)
\(102\) 0 0
\(103\) 1.26130 + 4.70723i 0.124279 + 0.463817i 0.999813 0.0193403i \(-0.00615660\pi\)
−0.875534 + 0.483157i \(0.839490\pi\)
\(104\) 0 0
\(105\) 0.363490 + 0.640772i 0.0354730 + 0.0625329i
\(106\) 0 0
\(107\) −4.35059 16.2366i −0.420588 1.56965i −0.773374 0.633950i \(-0.781432\pi\)
0.352786 0.935704i \(-0.385234\pi\)
\(108\) 0 0
\(109\) −8.04799 + 4.64651i −0.770858 + 0.445055i −0.833181 0.553001i \(-0.813483\pi\)
0.0623227 + 0.998056i \(0.480149\pi\)
\(110\) 0 0
\(111\) 0.901497i 0.0855663i
\(112\) 0 0
\(113\) −5.21788 5.21788i −0.490857 0.490857i 0.417719 0.908576i \(-0.362830\pi\)
−0.908576 + 0.417719i \(0.862830\pi\)
\(114\) 0 0
\(115\) −5.27006 0.828655i −0.491436 0.0772725i
\(116\) 0 0
\(117\) −13.3954 + 3.58928i −1.23840 + 0.331829i
\(118\) 0 0
\(119\) −2.90084 + 3.92038i −0.265920 + 0.359381i
\(120\) 0 0
\(121\) 1.52726 2.64529i 0.138842 0.240481i
\(122\) 0 0
\(123\) −0.304764 + 1.13740i −0.0274797 + 0.102556i
\(124\) 0 0
\(125\) −3.49057 10.6215i −0.312206 0.950014i
\(126\) 0 0
\(127\) 7.88798 7.88798i 0.699945 0.699945i −0.264453 0.964398i \(-0.585192\pi\)
0.964398 + 0.264453i \(0.0851916\pi\)
\(128\) 0 0
\(129\) 0.0917057 + 0.158839i 0.00807424 + 0.0139850i
\(130\) 0 0
\(131\) −4.59922 2.65536i −0.401836 0.232000i 0.285440 0.958397i \(-0.407860\pi\)
−0.687276 + 0.726397i \(0.741194\pi\)
\(132\) 0 0
\(133\) 16.6321 13.2302i 1.44219 1.14720i
\(134\) 0 0
\(135\) 0.598903 + 1.55499i 0.0515454 + 0.133833i
\(136\) 0 0
\(137\) −6.16614 1.65221i −0.526809 0.141158i −0.0143944 0.999896i \(-0.504582\pi\)
−0.512414 + 0.858738i \(0.671249\pi\)
\(138\) 0 0
\(139\) −0.995838 −0.0844659 −0.0422329 0.999108i \(-0.513447\pi\)
−0.0422329 + 0.999108i \(0.513447\pi\)
\(140\) 0 0
\(141\) −0.485621 −0.0408966
\(142\) 0 0
\(143\) −12.6516 3.38998i −1.05798 0.283485i
\(144\) 0 0
\(145\) −7.83678 + 17.6548i −0.650810 + 1.46615i
\(146\) 0 0
\(147\) 0.461933 + 0.739200i 0.0380996 + 0.0609682i
\(148\) 0 0
\(149\) −2.96121 1.70965i −0.242592 0.140060i 0.373776 0.927519i \(-0.378063\pi\)
−0.616367 + 0.787459i \(0.711396\pi\)
\(150\) 0 0
\(151\) −9.79492 16.9653i −0.797099 1.38062i −0.921498 0.388383i \(-0.873034\pi\)
0.124399 0.992232i \(-0.460300\pi\)
\(152\) 0 0
\(153\) −3.89002 + 3.89002i −0.314489 + 0.314489i
\(154\) 0 0
\(155\) 7.21999 0.767017i 0.579923 0.0616083i
\(156\) 0 0
\(157\) −1.22966 + 4.58914i −0.0981373 + 0.366253i −0.997476 0.0709984i \(-0.977381\pi\)
0.899339 + 0.437252i \(0.144048\pi\)
\(158\) 0 0
\(159\) 0.421808 0.730593i 0.0334516 0.0579398i
\(160\) 0 0
\(161\) −6.27167 0.714474i −0.494277 0.0563085i
\(162\) 0 0
\(163\) 1.31013 0.351047i 0.102617 0.0274961i −0.207145 0.978310i \(-0.566417\pi\)
0.309762 + 0.950814i \(0.399751\pi\)
\(164\) 0 0
\(165\) −0.121913 + 0.775342i −0.00949094 + 0.0603603i
\(166\) 0 0
\(167\) 4.39184 + 4.39184i 0.339851 + 0.339851i 0.856311 0.516460i \(-0.172751\pi\)
−0.516460 + 0.856311i \(0.672751\pi\)
\(168\) 0 0
\(169\) 8.59146i 0.660881i
\(170\) 0 0
\(171\) 20.7616 11.9867i 1.58768 0.916648i
\(172\) 0 0
\(173\) −2.46814 9.21122i −0.187649 0.700316i −0.994048 0.108944i \(-0.965253\pi\)
0.806399 0.591372i \(-0.201414\pi\)
\(174\) 0 0
\(175\) −4.66069 12.3805i −0.352315 0.935881i
\(176\) 0 0
\(177\) −0.399468 1.49084i −0.0300259 0.112058i
\(178\) 0 0
\(179\) 11.4852 6.63101i 0.858447 0.495625i −0.00504471 0.999987i \(-0.501606\pi\)
0.863492 + 0.504362i \(0.168272\pi\)
\(180\) 0 0
\(181\) 10.8465i 0.806214i 0.915153 + 0.403107i \(0.132070\pi\)
−0.915153 + 0.403107i \(0.867930\pi\)
\(182\) 0 0
\(183\) 0.223099 + 0.223099i 0.0164920 + 0.0164920i
\(184\) 0 0
\(185\) −2.51450 + 15.9917i −0.184870 + 1.17573i
\(186\) 0 0
\(187\) −5.01880 + 1.34478i −0.367011 + 0.0983403i
\(188\) 0 0
\(189\) 0.786216 + 1.80810i 0.0571888 + 0.131520i
\(190\) 0 0
\(191\) −1.52564 + 2.64249i −0.110392 + 0.191204i −0.915928 0.401342i \(-0.868544\pi\)
0.805537 + 0.592546i \(0.201877\pi\)
\(192\) 0 0
\(193\) −6.09586 + 22.7501i −0.438790 + 1.63759i 0.293042 + 0.956100i \(0.405333\pi\)
−0.731831 + 0.681486i \(0.761334\pi\)
\(194\) 0 0
\(195\) −1.28659 + 0.136681i −0.0921347 + 0.00978795i
\(196\) 0 0
\(197\) 1.84909 1.84909i 0.131743 0.131743i −0.638161 0.769903i \(-0.720304\pi\)
0.769903 + 0.638161i \(0.220304\pi\)
\(198\) 0 0
\(199\) 0.310311 + 0.537475i 0.0219974 + 0.0381006i 0.876815 0.480829i \(-0.159664\pi\)
−0.854817 + 0.518929i \(0.826331\pi\)
\(200\) 0 0
\(201\) 1.54815 + 0.893828i 0.109198 + 0.0630457i
\(202\) 0 0
\(203\) −8.37608 + 21.2648i −0.587885 + 1.49250i
\(204\) 0 0
\(205\) 8.57871 19.3263i 0.599163 1.34980i
\(206\) 0 0
\(207\) −6.87779 1.84290i −0.478039 0.128090i
\(208\) 0 0
\(209\) 22.6423 1.56620
\(210\) 0 0
\(211\) −13.7502 −0.946601 −0.473301 0.880901i \(-0.656938\pi\)
−0.473301 + 0.880901i \(0.656938\pi\)
\(212\) 0 0
\(213\) 0.328193 + 0.0879389i 0.0224874 + 0.00602548i
\(214\) 0 0
\(215\) −1.18373 3.07344i −0.0807297 0.209607i
\(216\) 0 0
\(217\) 8.49649 1.26994i 0.576780 0.0862088i
\(218\) 0 0
\(219\) 0.435636 + 0.251514i 0.0294375 + 0.0169958i
\(220\) 0 0
\(221\) −4.28259 7.41767i −0.288078 0.498966i
\(222\) 0 0
\(223\) 0.443239 0.443239i 0.0296815 0.0296815i −0.692110 0.721792i \(-0.743319\pi\)
0.721792 + 0.692110i \(0.243319\pi\)
\(224\) 0 0
\(225\) −3.13520 14.5894i −0.209013 0.972627i
\(226\) 0 0
\(227\) −5.54585 + 20.6974i −0.368091 + 1.37373i 0.495092 + 0.868841i \(0.335135\pi\)
−0.863182 + 0.504892i \(0.831532\pi\)
\(228\) 0 0
\(229\) 3.71101 6.42766i 0.245230 0.424752i −0.716966 0.697108i \(-0.754470\pi\)
0.962196 + 0.272357i \(0.0878030\pi\)
\(230\) 0 0
\(231\) −0.105115 + 0.922701i −0.00691605 + 0.0607092i
\(232\) 0 0
\(233\) −5.25237 + 1.40737i −0.344094 + 0.0921997i −0.426727 0.904380i \(-0.640334\pi\)
0.0826334 + 0.996580i \(0.473667\pi\)
\(234\) 0 0
\(235\) 8.61444 + 1.35452i 0.561944 + 0.0883591i
\(236\) 0 0
\(237\) −0.561333 0.561333i −0.0364625 0.0364625i
\(238\) 0 0
\(239\) 10.0507i 0.650124i 0.945693 + 0.325062i \(0.105385\pi\)
−0.945693 + 0.325062i \(0.894615\pi\)
\(240\) 0 0
\(241\) 17.9706 10.3753i 1.15759 0.668333i 0.206862 0.978370i \(-0.433675\pi\)
0.950725 + 0.310037i \(0.100341\pi\)
\(242\) 0 0
\(243\) 0.864196 + 3.22522i 0.0554382 + 0.206898i
\(244\) 0 0
\(245\) −6.13244 14.4012i −0.391787 0.920056i
\(246\) 0 0
\(247\) 9.66045 + 36.0533i 0.614679 + 2.29401i
\(248\) 0 0
\(249\) 1.13070 0.652813i 0.0716555 0.0413703i
\(250\) 0 0
\(251\) 0.0396287i 0.00250134i 0.999999 + 0.00125067i \(0.000398101\pi\)
−0.999999 + 0.00125067i \(0.999602\pi\)
\(252\) 0 0
\(253\) −4.75532 4.75532i −0.298964 0.298964i
\(254\) 0 0
\(255\) −0.414894 + 0.302147i −0.0259816 + 0.0189212i
\(256\) 0 0
\(257\) 16.4339 4.40345i 1.02512 0.274679i 0.293184 0.956056i \(-0.405285\pi\)
0.731933 + 0.681376i \(0.238618\pi\)
\(258\) 0 0
\(259\) −2.16803 + 19.0310i −0.134715 + 1.18253i
\(260\) 0 0
\(261\) −12.8906 + 22.3272i −0.797908 + 1.38202i
\(262\) 0 0
\(263\) −1.89339 + 7.06624i −0.116752 + 0.435723i −0.999412 0.0342884i \(-0.989084\pi\)
0.882660 + 0.470011i \(0.155750\pi\)
\(264\) 0 0
\(265\) −9.52028 + 11.7835i −0.584826 + 0.723854i
\(266\) 0 0
\(267\) −0.0858727 + 0.0858727i −0.00525532 + 0.00525532i
\(268\) 0 0
\(269\) −3.24863 5.62679i −0.198072 0.343071i 0.749831 0.661629i \(-0.230135\pi\)
−0.947903 + 0.318558i \(0.896801\pi\)
\(270\) 0 0
\(271\) 18.0071 + 10.3964i 1.09385 + 0.631537i 0.934600 0.355701i \(-0.115758\pi\)
0.159254 + 0.987238i \(0.449091\pi\)
\(272\) 0 0
\(273\) −1.51406 + 0.226301i −0.0916352 + 0.0136963i
\(274\) 0 0
\(275\) 4.32525 13.4138i 0.260822 0.808881i
\(276\) 0 0
\(277\) 26.6010 + 7.12770i 1.59830 + 0.428262i 0.944528 0.328432i \(-0.106520\pi\)
0.653769 + 0.756694i \(0.273187\pi\)
\(278\) 0 0
\(279\) 9.69079 0.580172
\(280\) 0 0
\(281\) 23.0686 1.37616 0.688080 0.725635i \(-0.258454\pi\)
0.688080 + 0.725635i \(0.258454\pi\)
\(282\) 0 0
\(283\) −26.9506 7.22139i −1.60205 0.429267i −0.656387 0.754424i \(-0.727916\pi\)
−0.945660 + 0.325157i \(0.894583\pi\)
\(284\) 0 0
\(285\) 2.08719 0.803876i 0.123634 0.0476175i
\(286\) 0 0
\(287\) 9.16906 23.2780i 0.541233 1.37406i
\(288\) 0 0
\(289\) 11.7799 + 6.80112i 0.692935 + 0.400066i
\(290\) 0 0
\(291\) −0.451195 0.781492i −0.0264495 0.0458119i
\(292\) 0 0
\(293\) −7.37797 + 7.37797i −0.431025 + 0.431025i −0.888977 0.457952i \(-0.848583\pi\)
0.457952 + 0.888977i \(0.348583\pi\)
\(294\) 0 0
\(295\) 2.92786 + 27.5602i 0.170467 + 1.60462i
\(296\) 0 0
\(297\) −0.543670 + 2.02900i −0.0315469 + 0.117735i
\(298\) 0 0
\(299\) 5.54300 9.60076i 0.320560 0.555227i
\(300\) 0 0
\(301\) −1.55395 3.57371i −0.0895684 0.205985i
\(302\) 0 0
\(303\) 0.694867 0.186189i 0.0399190 0.0106963i
\(304\) 0 0
\(305\) −3.33528 4.57984i −0.190978 0.262241i
\(306\) 0 0
\(307\) 4.95205 + 4.95205i 0.282628 + 0.282628i 0.834156 0.551528i \(-0.185955\pi\)
−0.551528 + 0.834156i \(0.685955\pi\)
\(308\) 0 0
\(309\) 0.606838i 0.0345218i
\(310\) 0 0
\(311\) −8.08514 + 4.66796i −0.458466 + 0.264696i −0.711399 0.702788i \(-0.751938\pi\)
0.252933 + 0.967484i \(0.418605\pi\)
\(312\) 0 0
\(313\) −5.12415 19.1236i −0.289634 1.08093i −0.945386 0.325953i \(-0.894315\pi\)
0.655752 0.754976i \(-0.272352\pi\)
\(314\) 0 0
\(315\) −4.44020 17.0891i −0.250177 0.962861i
\(316\) 0 0
\(317\) 4.37369 + 16.3228i 0.245651 + 0.916782i 0.973055 + 0.230573i \(0.0740600\pi\)
−0.727404 + 0.686209i \(0.759273\pi\)
\(318\) 0 0
\(319\) −21.0874 + 12.1748i −1.18067 + 0.681659i
\(320\) 0 0
\(321\) 2.09317i 0.116829i
\(322\) 0 0
\(323\) 10.4699 + 10.4699i 0.582559 + 0.582559i
\(324\) 0 0
\(325\) 23.2041 + 1.16403i 1.28713 + 0.0645690i
\(326\) 0 0
\(327\) −1.11777 + 0.299505i −0.0618128 + 0.0165627i
\(328\) 0 0
\(329\) 10.2517 + 1.16788i 0.565193 + 0.0643873i
\(330\) 0 0
\(331\) 4.97088 8.60981i 0.273224 0.473238i −0.696461 0.717594i \(-0.745243\pi\)
0.969686 + 0.244356i \(0.0785766\pi\)
\(332\) 0 0
\(333\) −5.59216 + 20.8702i −0.306449 + 1.14368i
\(334\) 0 0
\(335\) −24.9697 20.1738i −1.36424 1.10221i
\(336\) 0 0
\(337\) −17.4904 + 17.4904i −0.952762 + 0.952762i −0.998934 0.0461714i \(-0.985298\pi\)
0.0461714 + 0.998934i \(0.485298\pi\)
\(338\) 0 0
\(339\) −0.459442 0.795777i −0.0249535 0.0432207i
\(340\) 0 0
\(341\) 7.92646 + 4.57634i 0.429242 + 0.247823i
\(342\) 0 0
\(343\) −7.97390 16.7158i −0.430550 0.902567i
\(344\) 0 0
\(345\) −0.607179 0.269520i −0.0326894 0.0145105i
\(346\) 0 0
\(347\) −3.55893 0.953611i −0.191053 0.0511925i 0.162024 0.986787i \(-0.448198\pi\)
−0.353077 + 0.935594i \(0.614865\pi\)
\(348\) 0 0
\(349\) 1.25235 0.0670367 0.0335183 0.999438i \(-0.489329\pi\)
0.0335183 + 0.999438i \(0.489329\pi\)
\(350\) 0 0
\(351\) −3.46274 −0.184827
\(352\) 0 0
\(353\) −22.5220 6.03475i −1.19872 0.321197i −0.396396 0.918080i \(-0.629739\pi\)
−0.802329 + 0.596882i \(0.796406\pi\)
\(354\) 0 0
\(355\) −5.57654 2.47536i −0.295972 0.131379i
\(356\) 0 0
\(357\) −0.475265 + 0.378054i −0.0251537 + 0.0200087i
\(358\) 0 0
\(359\) 24.7688 + 14.3003i 1.30725 + 0.754741i 0.981636 0.190762i \(-0.0610958\pi\)
0.325614 + 0.945503i \(0.394429\pi\)
\(360\) 0 0
\(361\) −22.7619 39.4248i −1.19799 2.07499i
\(362\) 0 0
\(363\) 0.268954 0.268954i 0.0141164 0.0141164i
\(364\) 0 0
\(365\) −7.02622 5.67672i −0.367769 0.297133i
\(366\) 0 0
\(367\) 3.76258 14.0422i 0.196405 0.732995i −0.795493 0.605962i \(-0.792788\pi\)
0.991899 0.127032i \(-0.0405452\pi\)
\(368\) 0 0
\(369\) 14.1110 24.4409i 0.734588 1.27234i
\(370\) 0 0
\(371\) −10.6616 + 14.4087i −0.553522 + 0.748064i
\(372\) 0 0
\(373\) −1.58716 + 0.425279i −0.0821802 + 0.0220201i −0.299675 0.954041i \(-0.596878\pi\)
0.217495 + 0.976062i \(0.430212\pi\)
\(374\) 0 0
\(375\) −0.0775275 1.39006i −0.00400350 0.0717822i
\(376\) 0 0
\(377\) −28.3830 28.3830i −1.46180 1.46180i
\(378\) 0 0
\(379\) 11.7601i 0.604077i −0.953296 0.302038i \(-0.902333\pi\)
0.953296 0.302038i \(-0.0976671\pi\)
\(380\) 0 0
\(381\) 1.20299 0.694548i 0.0616312 0.0355828i
\(382\) 0 0
\(383\) 3.70668 + 13.8335i 0.189402 + 0.706859i 0.993645 + 0.112558i \(0.0359045\pi\)
−0.804243 + 0.594301i \(0.797429\pi\)
\(384\) 0 0
\(385\) 4.43828 16.0746i 0.226196 0.819239i
\(386\) 0 0
\(387\) −1.13774 4.24609i −0.0578344 0.215841i
\(388\) 0 0
\(389\) −28.7560 + 16.6023i −1.45799 + 0.841768i −0.998912 0.0466300i \(-0.985152\pi\)
−0.459073 + 0.888398i \(0.651818\pi\)
\(390\) 0 0
\(391\) 4.39774i 0.222404i
\(392\) 0 0
\(393\) −0.467617 0.467617i −0.0235881 0.0235881i
\(394\) 0 0
\(395\) 8.39180 + 11.5232i 0.422237 + 0.579795i
\(396\) 0 0
\(397\) 31.4212 8.41928i 1.57698 0.422552i 0.638993 0.769212i \(-0.279351\pi\)
0.937991 + 0.346661i \(0.112684\pi\)
\(398\) 0 0
\(399\) 2.42692 1.05530i 0.121498 0.0528309i
\(400\) 0 0
\(401\) 5.03475 8.72044i 0.251423 0.435478i −0.712495 0.701678i \(-0.752435\pi\)
0.963918 + 0.266200i \(0.0857680\pi\)
\(402\) 0 0
\(403\) −3.90504 + 14.5738i −0.194524 + 0.725973i
\(404\) 0 0
\(405\) −2.09307 19.7022i −0.104005 0.979012i
\(406\) 0 0
\(407\) −14.4297 + 14.4297i −0.715255 + 0.715255i
\(408\) 0 0
\(409\) 11.4380 + 19.8113i 0.565575 + 0.979605i 0.996996 + 0.0774540i \(0.0246791\pi\)
−0.431421 + 0.902151i \(0.641988\pi\)
\(410\) 0 0
\(411\) −0.688417 0.397458i −0.0339571 0.0196051i
\(412\) 0 0
\(413\) 4.84761 + 32.4329i 0.238535 + 1.59592i
\(414\) 0 0
\(415\) −21.8785 + 8.42645i −1.07397 + 0.413638i
\(416\) 0 0
\(417\) −0.119780 0.0320949i −0.00586565 0.00157170i
\(418\) 0 0
\(419\) −3.51110 −0.171529 −0.0857643 0.996315i \(-0.527333\pi\)
−0.0857643 + 0.996315i \(0.527333\pi\)
\(420\) 0 0
\(421\) −0.852753 −0.0415606 −0.0207803 0.999784i \(-0.506615\pi\)
−0.0207803 + 0.999784i \(0.506615\pi\)
\(422\) 0 0
\(423\) 11.2424 + 3.01240i 0.546625 + 0.146468i
\(424\) 0 0
\(425\) 8.20258 4.20256i 0.397883 0.203854i
\(426\) 0 0
\(427\) −4.17318 5.24626i −0.201955 0.253884i
\(428\) 0 0
\(429\) −1.41248 0.815498i −0.0681953 0.0393726i
\(430\) 0 0
\(431\) −14.4142 24.9661i −0.694306 1.20257i −0.970414 0.241447i \(-0.922378\pi\)
0.276108 0.961127i \(-0.410955\pi\)
\(432\) 0 0
\(433\) 12.3865 12.3865i 0.595257 0.595257i −0.343789 0.939047i \(-0.611711\pi\)
0.939047 + 0.343789i \(0.111711\pi\)
\(434\) 0 0
\(435\) −1.51161 + 1.87096i −0.0724762 + 0.0897056i
\(436\) 0 0
\(437\) −4.96010 + 18.5113i −0.237274 + 0.885518i
\(438\) 0 0
\(439\) 17.7310 30.7110i 0.846256 1.46576i −0.0382703 0.999267i \(-0.512185\pi\)
0.884526 0.466491i \(-0.154482\pi\)
\(440\) 0 0
\(441\) −6.10865 19.9784i −0.290888 0.951353i
\(442\) 0 0
\(443\) 24.3705 6.53005i 1.15788 0.310252i 0.371759 0.928329i \(-0.378755\pi\)
0.786118 + 0.618077i \(0.212088\pi\)
\(444\) 0 0
\(445\) 1.76282 1.28378i 0.0835657 0.0608569i
\(446\) 0 0
\(447\) −0.301075 0.301075i −0.0142404 0.0142404i
\(448\) 0 0
\(449\) 26.2571i 1.23915i 0.784937 + 0.619575i \(0.212695\pi\)
−0.784937 + 0.619575i \(0.787305\pi\)
\(450\) 0 0
\(451\) 23.0838 13.3274i 1.08697 0.627565i
\(452\) 0 0
\(453\) −0.631362 2.35627i −0.0296640 0.110707i
\(454\) 0 0
\(455\) 27.4892 + 0.208749i 1.28871 + 0.00978629i
\(456\) 0 0
\(457\) −2.69818 10.0697i −0.126215 0.471042i 0.873665 0.486528i \(-0.161737\pi\)
−0.999880 + 0.0154864i \(0.995070\pi\)
\(458\) 0 0
\(459\) −1.18961 + 0.686823i −0.0555263 + 0.0320582i
\(460\) 0 0
\(461\) 29.1465i 1.35749i 0.734374 + 0.678745i \(0.237476\pi\)
−0.734374 + 0.678745i \(0.762524\pi\)
\(462\) 0 0
\(463\) −23.7580 23.7580i −1.10413 1.10413i −0.993907 0.110219i \(-0.964845\pi\)
−0.110219 0.993907i \(-0.535155\pi\)
\(464\) 0 0
\(465\) 0.893144 + 0.140436i 0.0414186 + 0.00651258i
\(466\) 0 0
\(467\) −26.3185 + 7.05201i −1.21787 + 0.326328i −0.809846 0.586642i \(-0.800450\pi\)
−0.408026 + 0.912970i \(0.633783\pi\)
\(468\) 0 0
\(469\) −30.5327 22.5923i −1.40987 1.04322i
\(470\) 0 0
\(471\) −0.295808 + 0.512354i −0.0136301 + 0.0236080i
\(472\) 0 0
\(473\) 1.07456 4.01032i 0.0494084 0.184395i
\(474\) 0 0
\(475\) −39.2669 + 8.43829i −1.80169 + 0.387175i
\(476\) 0 0
\(477\) −14.2971 + 14.2971i −0.654621 + 0.654621i
\(478\) 0 0
\(479\) −15.5080 26.8607i −0.708580 1.22730i −0.965384 0.260834i \(-0.916003\pi\)
0.256803 0.966464i \(-0.417331\pi\)
\(480\) 0 0
\(481\) −29.1330 16.8199i −1.32835 0.766922i
\(482\) 0 0
\(483\) −0.731333 0.288067i −0.0332768 0.0131075i
\(484\) 0 0
\(485\) 5.82398 + 15.1214i 0.264453 + 0.686628i
\(486\) 0 0
\(487\) −1.63160 0.437185i −0.0739347 0.0198107i 0.221662 0.975124i \(-0.428852\pi\)
−0.295597 + 0.955313i \(0.595518\pi\)
\(488\) 0 0
\(489\) 0.168897 0.00763777
\(490\) 0 0
\(491\) 21.4431 0.967712 0.483856 0.875148i \(-0.339236\pi\)
0.483856 + 0.875148i \(0.339236\pi\)
\(492\) 0 0
\(493\) −15.3806 4.12121i −0.692705 0.185610i
\(494\) 0 0
\(495\) 7.63197 17.1934i 0.343032 0.772786i
\(496\) 0 0
\(497\) −6.71681 2.64571i −0.301290 0.118676i
\(498\) 0 0
\(499\) 21.1074 + 12.1864i 0.944898 + 0.545537i 0.891492 0.453036i \(-0.149659\pi\)
0.0534054 + 0.998573i \(0.482992\pi\)
\(500\) 0 0
\(501\) 0.386708 + 0.669798i 0.0172768 + 0.0299244i
\(502\) 0 0
\(503\) 11.7774 11.7774i 0.525127 0.525127i −0.393989 0.919115i \(-0.628905\pi\)
0.919115 + 0.393989i \(0.128905\pi\)
\(504\) 0 0
\(505\) −12.8456 + 1.36465i −0.571621 + 0.0607263i
\(506\) 0 0
\(507\) 0.276895 1.03339i 0.0122973 0.0458942i
\(508\) 0 0
\(509\) −14.7893 + 25.6158i −0.655523 + 1.13540i 0.326240 + 0.945287i \(0.394218\pi\)
−0.981763 + 0.190111i \(0.939115\pi\)
\(510\) 0 0
\(511\) −8.59159 6.35725i −0.380070 0.281228i
\(512\) 0 0
\(513\) 5.78206 1.54930i 0.255284 0.0684032i
\(514\) 0 0
\(515\) 1.69263 10.7647i 0.0745860 0.474351i
\(516\) 0 0
\(517\) 7.77304 + 7.77304i 0.341858 + 0.341858i
\(518\) 0 0
\(519\) 1.18748i 0.0521244i
\(520\) 0 0
\(521\) 2.80920 1.62189i 0.123073 0.0710564i −0.437200 0.899365i \(-0.644030\pi\)
0.560273 + 0.828308i \(0.310696\pi\)
\(522\) 0 0
\(523\) −9.09811 33.9546i −0.397833 1.48473i −0.816901 0.576777i \(-0.804310\pi\)
0.419069 0.907955i \(-0.362357\pi\)
\(524\) 0 0
\(525\) −0.161577 1.63935i −0.00705181 0.0715470i
\(526\) 0 0
\(527\) 1.54910 + 5.78133i 0.0674800 + 0.251839i
\(528\) 0 0
\(529\) −14.9891 + 8.65398i −0.651701 + 0.376260i
\(530\) 0 0
\(531\) 36.9918i 1.60531i
\(532\) 0 0
\(533\) 31.0701 + 31.0701i 1.34580 + 1.34580i
\(534\) 0 0
\(535\) −5.83837 + 37.1307i −0.252415 + 1.60530i
\(536\) 0 0
\(537\) 1.59516 0.427422i 0.0688363 0.0184446i
\(538\) 0 0
\(539\) 4.43805 19.2258i 0.191160 0.828115i
\(540\) 0 0
\(541\) −6.68424 + 11.5774i −0.287378 + 0.497753i −0.973183 0.230032i \(-0.926117\pi\)
0.685805 + 0.727785i \(0.259450\pi\)
\(542\) 0 0
\(543\) −0.349573 + 1.30462i −0.0150016 + 0.0559867i
\(544\) 0 0
\(545\) 20.6635 2.19520i 0.885129 0.0940319i
\(546\) 0 0
\(547\) 27.7636 27.7636i 1.18708 1.18708i 0.209215 0.977870i \(-0.432909\pi\)
0.977870 0.209215i \(-0.0670910\pi\)
\(548\) 0 0
\(549\) −3.78096 6.54881i −0.161367 0.279496i
\(550\) 0 0
\(551\) 60.0929 + 34.6946i 2.56004 + 1.47804i
\(552\) 0 0
\(553\) 10.5000 + 13.1999i 0.446506 + 0.561319i
\(554\) 0 0
\(555\) −0.817843 + 1.84245i −0.0347155 + 0.0782076i
\(556\) 0 0
\(557\) −5.47809 1.46785i −0.232114 0.0621948i 0.140887 0.990026i \(-0.455005\pi\)
−0.373001 + 0.927831i \(0.621671\pi\)
\(558\) 0 0
\(559\) 6.84409 0.289474
\(560\) 0 0
\(561\) −0.647005 −0.0273166
\(562\) 0 0
\(563\) 8.17372 + 2.19014i 0.344481 + 0.0923034i 0.426912 0.904293i \(-0.359602\pi\)
−0.0824304 + 0.996597i \(0.526268\pi\)
\(564\) 0 0
\(565\) 5.93044 + 15.3978i 0.249495 + 0.647791i
\(566\) 0 0
\(567\) −3.46546 23.1856i −0.145536 0.973704i
\(568\) 0 0
\(569\) 33.6387 + 19.4213i 1.41021 + 0.814183i 0.995407 0.0957306i \(-0.0305187\pi\)
0.414798 + 0.909913i \(0.363852\pi\)
\(570\) 0 0
\(571\) 15.7235 + 27.2339i 0.658007 + 1.13970i 0.981131 + 0.193345i \(0.0619337\pi\)
−0.323124 + 0.946357i \(0.604733\pi\)
\(572\) 0 0
\(573\) −0.268670 + 0.268670i −0.0112238 + 0.0112238i
\(574\) 0 0
\(575\) 10.0190 + 6.47461i 0.417822 + 0.270010i
\(576\) 0 0
\(577\) 2.15216 8.03197i 0.0895956 0.334375i −0.906549 0.422100i \(-0.861293\pi\)
0.996145 + 0.0877249i \(0.0279597\pi\)
\(578\) 0 0
\(579\) −1.46643 + 2.53993i −0.0609426 + 0.105556i
\(580\) 0 0
\(581\) −25.4396 + 11.0619i −1.05541 + 0.458925i
\(582\) 0 0
\(583\) −18.4458 + 4.94254i −0.763947 + 0.204699i
\(584\) 0 0
\(585\) 30.6333 + 4.81672i 1.26653 + 0.199147i
\(586\) 0 0
\(587\) 18.1577 + 18.1577i 0.749448 + 0.749448i 0.974376 0.224927i \(-0.0722145\pi\)
−0.224927 + 0.974376i \(0.572214\pi\)
\(588\) 0 0
\(589\) 26.0824i 1.07471i
\(590\) 0 0
\(591\) 0.282005 0.162815i 0.0116001 0.00669733i
\(592\) 0 0
\(593\) 3.50935 + 13.0971i 0.144112 + 0.537833i 0.999793 + 0.0203298i \(0.00647163\pi\)
−0.855682 + 0.517503i \(0.826862\pi\)
\(594\) 0 0
\(595\) 9.48523 5.38068i 0.388857 0.220586i
\(596\) 0 0
\(597\) 0.0200021 + 0.0746488i 0.000818631 + 0.00305517i
\(598\) 0 0
\(599\) −19.0934 + 11.0236i −0.780136 + 0.450412i −0.836478 0.548000i \(-0.815389\pi\)
0.0563425 + 0.998411i \(0.482056\pi\)
\(600\) 0 0
\(601\) 8.82954i 0.360165i 0.983652 + 0.180082i \(0.0576364\pi\)
−0.983652 + 0.180082i \(0.942364\pi\)
\(602\) 0 0
\(603\) −30.2962 30.2962i −1.23376 1.23376i
\(604\) 0 0
\(605\) −5.52117 + 4.02081i −0.224468 + 0.163469i
\(606\) 0 0
\(607\) 30.4048 8.14693i 1.23409 0.330674i 0.417920 0.908484i \(-0.362759\pi\)
0.816171 + 0.577810i \(0.196092\pi\)
\(608\) 0 0
\(609\) −1.69282 + 2.28779i −0.0685967 + 0.0927059i
\(610\) 0 0
\(611\) −9.06059 + 15.6934i −0.366552 + 0.634887i
\(612\) 0 0
\(613\) 0.273366 1.02021i 0.0110411 0.0412061i −0.960186 0.279363i \(-0.909877\pi\)
0.971227 + 0.238157i \(0.0765433\pi\)
\(614\) 0 0
\(615\) 1.65472 2.04809i 0.0667247 0.0825869i
\(616\) 0 0
\(617\) 8.65940 8.65940i 0.348614 0.348614i −0.510979 0.859593i \(-0.670717\pi\)
0.859593 + 0.510979i \(0.170717\pi\)
\(618\) 0 0
\(619\) −3.65777 6.33544i −0.147018 0.254643i 0.783106 0.621888i \(-0.213634\pi\)
−0.930124 + 0.367245i \(0.880301\pi\)
\(620\) 0 0
\(621\) −1.53973 0.888962i −0.0617871 0.0356728i
\(622\) 0 0
\(623\) 2.01933 1.60629i 0.0809027 0.0643548i
\(624\) 0 0
\(625\) −2.50195 + 24.8745i −0.100078 + 0.994980i
\(626\) 0 0
\(627\) 2.72343 + 0.729740i 0.108763 + 0.0291430i
\(628\) 0 0
\(629\) −13.3447 −0.532088
\(630\) 0 0
\(631\) −23.3631 −0.930071 −0.465035 0.885292i \(-0.653958\pi\)
−0.465035 + 0.885292i \(0.653958\pi\)
\(632\) 0 0
\(633\) −1.65388 0.443155i −0.0657358 0.0176138i
\(634\) 0 0
\(635\) −23.2772 + 8.96516i −0.923727 + 0.355772i
\(636\) 0 0
\(637\) 32.5068 1.13611i 1.28797 0.0450141i
\(638\) 0 0
\(639\) −7.05236 4.07168i −0.278987 0.161073i
\(640\) 0 0
\(641\) −13.9662 24.1903i −0.551634 0.955457i −0.998157 0.0606855i \(-0.980671\pi\)
0.446523 0.894772i \(-0.352662\pi\)
\(642\) 0 0
\(643\) 30.5610 30.5610i 1.20521 1.20521i 0.232647 0.972561i \(-0.425261\pi\)
0.972561 0.232647i \(-0.0747387\pi\)
\(644\) 0 0
\(645\) −0.0433254 0.407826i −0.00170594 0.0160581i
\(646\) 0 0
\(647\) −10.9104 + 40.7181i −0.428932 + 1.60079i 0.326253 + 0.945282i \(0.394214\pi\)
−0.755185 + 0.655512i \(0.772453\pi\)
\(648\) 0 0
\(649\) −17.4689 + 30.2570i −0.685713 + 1.18769i
\(650\) 0 0
\(651\) 1.06289 + 0.121086i 0.0416580 + 0.00474572i
\(652\) 0 0
\(653\) 20.6017 5.52020i 0.806205 0.216022i 0.167898 0.985804i \(-0.446302\pi\)
0.638306 + 0.769782i \(0.279635\pi\)
\(654\) 0 0
\(655\) 6.99077 + 9.59937i 0.273152 + 0.375078i
\(656\) 0 0
\(657\) −8.52505 8.52505i −0.332594 0.332594i
\(658\) 0 0
\(659\) 5.48161i 0.213533i 0.994284 + 0.106767i \(0.0340498\pi\)
−0.994284 + 0.106767i \(0.965950\pi\)
\(660\) 0 0
\(661\) −4.01484 + 2.31797i −0.156159 + 0.0901585i −0.576043 0.817419i \(-0.695404\pi\)
0.419884 + 0.907578i \(0.362071\pi\)
\(662\) 0 0
\(663\) −0.276048 1.03023i −0.0107208 0.0400106i
\(664\) 0 0
\(665\) −45.9947 + 11.9507i −1.78360 + 0.463427i
\(666\) 0 0
\(667\) −5.33412 19.9072i −0.206538 0.770810i
\(668\) 0 0
\(669\) 0.0675982 0.0390278i 0.00261350 0.00150890i
\(670\) 0 0
\(671\) 7.14202i 0.275715i
\(672\) 0 0
\(673\) 17.1639 + 17.1639i 0.661620 + 0.661620i 0.955762 0.294142i \(-0.0950339\pi\)
−0.294142 + 0.955762i \(0.595034\pi\)
\(674\) 0 0
\(675\) 0.186683 3.72137i 0.00718542 0.143236i
\(676\) 0 0
\(677\) 8.72528 2.33793i 0.335340 0.0898540i −0.0872200 0.996189i \(-0.527798\pi\)
0.422560 + 0.906335i \(0.361132\pi\)
\(678\) 0 0
\(679\) 7.64550 + 17.5827i 0.293407 + 0.674764i
\(680\) 0 0
\(681\) −1.33411 + 2.31075i −0.0511234 + 0.0885483i
\(682\) 0 0
\(683\) −6.53495 + 24.3888i −0.250053 + 0.933211i 0.720723 + 0.693223i \(0.243810\pi\)
−0.970776 + 0.239987i \(0.922857\pi\)
\(684\) 0 0
\(685\) 11.1032 + 8.97069i 0.424233 + 0.342752i
\(686\) 0 0
\(687\) 0.653520 0.653520i 0.0249333 0.0249333i
\(688\) 0 0
\(689\) −15.7400 27.2625i −0.599646 1.03862i
\(690\) 0 0
\(691\) −19.9794 11.5351i −0.760051 0.438815i 0.0692633 0.997598i \(-0.477935\pi\)
−0.829314 + 0.558783i \(0.811268\pi\)
\(692\) 0 0
\(693\) 8.15717 20.7091i 0.309865 0.786672i
\(694\) 0 0
\(695\) 2.03526 + 0.903430i 0.0772018 + 0.0342690i
\(696\) 0 0
\(697\) 16.8367 + 4.51137i 0.637734 + 0.170880i
\(698\) 0 0
\(699\) −0.677116 −0.0256109
\(700\) 0 0
\(701\) 24.4288 0.922662 0.461331 0.887228i \(-0.347372\pi\)
0.461331 + 0.887228i \(0.347372\pi\)
\(702\) 0 0
\(703\) 56.1716 + 15.0511i 2.11855 + 0.567664i
\(704\) 0 0
\(705\) 0.992495 + 0.440558i 0.0373795 + 0.0165924i
\(706\) 0 0
\(707\) −15.1167 + 2.25943i −0.568523 + 0.0849747i
\(708\) 0 0
\(709\) −24.1321 13.9327i −0.906298 0.523252i −0.0270602 0.999634i \(-0.508615\pi\)
−0.879238 + 0.476382i \(0.841948\pi\)
\(710\) 0 0
\(711\) 9.51315 + 16.4773i 0.356771 + 0.617946i
\(712\) 0 0
\(713\) −5.47782 + 5.47782i −0.205146 + 0.205146i
\(714\) 0 0
\(715\) 22.7815 + 18.4059i 0.851979 + 0.688342i
\(716\) 0 0
\(717\) −0.323924 + 1.20890i −0.0120972 + 0.0451472i
\(718\) 0 0
\(719\) 16.7674 29.0420i 0.625318 1.08308i −0.363161 0.931726i \(-0.618303\pi\)
0.988479 0.151356i \(-0.0483641\pi\)
\(720\) 0 0
\(721\) 1.45940 12.8106i 0.0543509 0.477093i
\(722\) 0 0
\(723\) 2.49590 0.668774i 0.0928234 0.0248720i
\(724\) 0 0
\(725\) 32.0331 28.9727i 1.18968 1.07602i
\(726\) 0 0
\(727\) −27.1571 27.1571i −1.00720 1.00720i −0.999974 0.00722682i \(-0.997700\pi\)
−0.00722682 0.999974i \(-0.502300\pi\)
\(728\) 0 0
\(729\) 26.1663i 0.969121i
\(730\) 0 0
\(731\) 2.35126 1.35750i 0.0869647 0.0502091i
\(732\) 0 0
\(733\) −7.67522 28.6443i −0.283491 1.05800i −0.949935 0.312447i \(-0.898851\pi\)
0.666445 0.745555i \(-0.267815\pi\)
\(734\) 0 0
\(735\) −0.273477 1.92982i −0.0100874 0.0711825i
\(736\) 0 0
\(737\) −10.4734 39.0873i −0.385794 1.43980i
\(738\) 0 0
\(739\) −3.47223 + 2.00470i −0.127728 + 0.0737439i −0.562503 0.826795i \(-0.690161\pi\)
0.434775 + 0.900539i \(0.356828\pi\)
\(740\) 0 0
\(741\) 4.64785i 0.170743i
\(742\) 0 0
\(743\) 0.177216 + 0.177216i 0.00650141 + 0.00650141i 0.710350 0.703849i \(-0.248537\pi\)
−0.703849 + 0.710350i \(0.748537\pi\)
\(744\) 0 0
\(745\) 4.50101 + 6.18056i 0.164904 + 0.226438i
\(746\) 0 0
\(747\) −30.2261 + 8.09905i −1.10591 + 0.296329i
\(748\) 0 0
\(749\) −5.03390 + 44.1877i −0.183935 + 1.61458i
\(750\) 0 0
\(751\) −19.7200 + 34.1561i −0.719594 + 1.24637i 0.241567 + 0.970384i \(0.422339\pi\)
−0.961161 + 0.275989i \(0.910995\pi\)
\(752\) 0 0
\(753\) −0.00127720 + 0.00476656i −4.65436e−5 + 0.000173703i
\(754\) 0 0
\(755\) 4.62751 + 43.5591i 0.168412 + 1.58528i
\(756\) 0 0
\(757\) −24.2463 + 24.2463i −0.881247 + 0.881247i −0.993661 0.112414i \(-0.964142\pi\)
0.112414 + 0.993661i \(0.464142\pi\)
\(758\) 0 0
\(759\) −0.418713 0.725231i −0.0151983 0.0263242i
\(760\) 0 0
\(761\) 17.9497 + 10.3633i 0.650678 + 0.375669i 0.788716 0.614758i \(-0.210746\pi\)
−0.138038 + 0.990427i \(0.544080\pi\)
\(762\) 0 0
\(763\) 24.3169 3.63455i 0.880331 0.131579i
\(764\) 0 0
\(765\) 11.4793 4.42124i 0.415036 0.159850i
\(766\) 0 0
\(767\) −55.6313 14.9064i −2.00873 0.538237i
\(768\) 0 0
\(769\) 17.6819 0.637626 0.318813 0.947818i \(-0.396716\pi\)
0.318813 + 0.947818i \(0.396716\pi\)
\(770\) 0 0
\(771\) 2.11860 0.0762993
\(772\) 0 0
\(773\) −25.5524 6.84675i −0.919057 0.246261i −0.231875 0.972746i \(-0.574486\pi\)
−0.687182 + 0.726485i \(0.741153\pi\)
\(774\) 0 0
\(775\) −15.4518 4.98241i −0.555045 0.178973i
\(776\) 0 0
\(777\) −0.874124 + 2.21919i −0.0313590 + 0.0796129i
\(778\) 0 0
\(779\) −65.7820 37.9793i −2.35689 1.36075i
\(780\) 0 0
\(781\) −3.84560 6.66077i −0.137606 0.238341i
\(782\) 0 0
\(783\) −4.55194 + 4.55194i −0.162673 + 0.162673i
\(784\) 0 0
\(785\) 6.67643 8.26358i 0.238292 0.294940i
\(786\) 0 0
\(787\) −4.60079 + 17.1704i −0.164001 + 0.612059i 0.834165 + 0.551515i \(0.185950\pi\)
−0.998166 + 0.0605435i \(0.980717\pi\)
\(788\) 0 0
\(789\) −0.455477 + 0.788909i −0.0162154 + 0.0280859i
\(790\) 0 0
\(791\) 7.78525 + 17.9041i 0.276811 + 0.636598i
\(792\) 0 0
\(793\) 11.3722 3.04718i 0.403840 0.108209i
\(794\) 0 0
\(795\) −1.52488 + 1.11049i −0.0540818 + 0.0393852i
\(796\) 0 0