Properties

Label 280.2.bo.a.17.10
Level $280$
Weight $2$
Character 280.17
Analytic conductor $2.236$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 280.bo (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.23581125660\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.10
Character \(\chi\) \(=\) 280.17
Dual form 280.2.bo.a.33.10

$q$-expansion

\(f(q)\) \(=\) \(q+(2.19810 - 0.588978i) q^{3} +(-1.19880 - 1.88756i) q^{5} +(1.40409 + 2.24244i) q^{7} +(1.88665 - 1.08926i) q^{9} +O(q^{10})\) \(q+(2.19810 - 0.588978i) q^{3} +(-1.19880 - 1.88756i) q^{5} +(1.40409 + 2.24244i) q^{7} +(1.88665 - 1.08926i) q^{9} +(1.78866 - 3.09805i) q^{11} +(3.13432 + 3.13432i) q^{13} +(-3.74681 - 3.44296i) q^{15} +(-1.34033 - 5.00217i) q^{17} +(-0.687063 - 1.19003i) q^{19} +(4.40706 + 4.10213i) q^{21} +(-4.00784 - 1.07390i) q^{23} +(-2.12575 + 4.52561i) q^{25} +(-1.32186 + 1.32186i) q^{27} +9.39599i q^{29} +(-6.08064 - 3.51066i) q^{31} +(2.10696 - 7.86328i) q^{33} +(2.54952 - 5.33854i) q^{35} +(-1.68631 + 6.29340i) q^{37} +(8.73559 + 5.04350i) q^{39} +4.63297i q^{41} +(2.51561 - 2.51561i) q^{43} +(-4.31776 - 2.25536i) q^{45} +(8.76422 + 2.34837i) q^{47} +(-3.05709 + 6.29716i) q^{49} +(-5.89234 - 10.2058i) q^{51} +(-0.470788 - 1.75701i) q^{53} +(-7.99199 + 0.337748i) q^{55} +(-2.21113 - 2.21113i) q^{57} +(-1.42161 + 2.46230i) q^{59} +(1.91951 - 1.10823i) q^{61} +(5.09162 + 2.70129i) q^{63} +(2.15879 - 9.67365i) q^{65} +(-4.37975 + 1.17355i) q^{67} -9.44211 q^{69} -10.5787 q^{71} +(2.44309 - 0.654624i) q^{73} +(-2.00711 + 11.1998i) q^{75} +(9.45862 - 0.338961i) q^{77} +(-4.82403 + 2.78515i) q^{79} +(-5.39481 + 9.34408i) q^{81} +(0.863341 + 0.863341i) q^{83} +(-7.83510 + 8.52656i) q^{85} +(5.53403 + 20.6533i) q^{87} +(0.430347 + 0.745382i) q^{89} +(-2.62768 + 11.4294i) q^{91} +(-15.4335 - 4.13540i) q^{93} +(-1.42259 + 2.72348i) q^{95} +(12.6320 - 12.6320i) q^{97} -7.79325i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q - 4q^{7} + O(q^{10}) \) \( 48q - 4q^{7} + 4q^{11} + 8q^{15} - 4q^{21} - 4q^{23} - 8q^{25} - 36q^{33} + 24q^{35} + 8q^{37} - 16q^{43} + 48q^{45} + 24q^{51} + 16q^{53} - 96q^{57} - 36q^{61} - 68q^{63} + 12q^{65} - 16q^{67} - 64q^{71} - 48q^{73} - 48q^{75} + 4q^{77} - 40q^{85} - 12q^{87} - 80q^{91} + 24q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/280\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(141\) \(241\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.19810 0.588978i 1.26907 0.340047i 0.439396 0.898293i \(-0.355192\pi\)
0.829675 + 0.558247i \(0.188526\pi\)
\(4\) 0 0
\(5\) −1.19880 1.88756i −0.536120 0.844142i
\(6\) 0 0
\(7\) 1.40409 + 2.24244i 0.530694 + 0.847563i
\(8\) 0 0
\(9\) 1.88665 1.08926i 0.628884 0.363086i
\(10\) 0 0
\(11\) 1.78866 3.09805i 0.539301 0.934096i −0.459641 0.888105i \(-0.652022\pi\)
0.998942 0.0459913i \(-0.0146447\pi\)
\(12\) 0 0
\(13\) 3.13432 + 3.13432i 0.869305 + 0.869305i 0.992395 0.123090i \(-0.0392804\pi\)
−0.123090 + 0.992395i \(0.539280\pi\)
\(14\) 0 0
\(15\) −3.74681 3.44296i −0.967422 0.888970i
\(16\) 0 0
\(17\) −1.34033 5.00217i −0.325077 1.21320i −0.914234 0.405186i \(-0.867207\pi\)
0.589157 0.808019i \(-0.299460\pi\)
\(18\) 0 0
\(19\) −0.687063 1.19003i −0.157623 0.273011i 0.776388 0.630255i \(-0.217050\pi\)
−0.934011 + 0.357244i \(0.883716\pi\)
\(20\) 0 0
\(21\) 4.40706 + 4.10213i 0.961700 + 0.895157i
\(22\) 0 0
\(23\) −4.00784 1.07390i −0.835692 0.223923i −0.184497 0.982833i \(-0.559065\pi\)
−0.651195 + 0.758910i \(0.725732\pi\)
\(24\) 0 0
\(25\) −2.12575 + 4.52561i −0.425150 + 0.905123i
\(26\) 0 0
\(27\) −1.32186 + 1.32186i −0.254392 + 0.254392i
\(28\) 0 0
\(29\) 9.39599i 1.74479i 0.488800 + 0.872396i \(0.337435\pi\)
−0.488800 + 0.872396i \(0.662565\pi\)
\(30\) 0 0
\(31\) −6.08064 3.51066i −1.09212 0.630533i −0.157976 0.987443i \(-0.550497\pi\)
−0.934139 + 0.356910i \(0.883830\pi\)
\(32\) 0 0
\(33\) 2.10696 7.86328i 0.366775 1.36882i
\(34\) 0 0
\(35\) 2.54952 5.33854i 0.430947 0.902377i
\(36\) 0 0
\(37\) −1.68631 + 6.29340i −0.277228 + 1.03463i 0.677105 + 0.735886i \(0.263234\pi\)
−0.954334 + 0.298743i \(0.903433\pi\)
\(38\) 0 0
\(39\) 8.73559 + 5.04350i 1.39881 + 0.807606i
\(40\) 0 0
\(41\) 4.63297i 0.723549i 0.932266 + 0.361774i \(0.117829\pi\)
−0.932266 + 0.361774i \(0.882171\pi\)
\(42\) 0 0
\(43\) 2.51561 2.51561i 0.383626 0.383626i −0.488780 0.872407i \(-0.662558\pi\)
0.872407 + 0.488780i \(0.162558\pi\)
\(44\) 0 0
\(45\) −4.31776 2.25536i −0.643654 0.336209i
\(46\) 0 0
\(47\) 8.76422 + 2.34837i 1.27839 + 0.342544i 0.833241 0.552910i \(-0.186483\pi\)
0.445153 + 0.895455i \(0.353149\pi\)
\(48\) 0 0
\(49\) −3.05709 + 6.29716i −0.436727 + 0.899594i
\(50\) 0 0
\(51\) −5.89234 10.2058i −0.825092 1.42910i
\(52\) 0 0
\(53\) −0.470788 1.75701i −0.0646678 0.241343i 0.926025 0.377463i \(-0.123203\pi\)
−0.990692 + 0.136120i \(0.956537\pi\)
\(54\) 0 0
\(55\) −7.99199 + 0.337748i −1.07764 + 0.0455419i
\(56\) 0 0
\(57\) −2.21113 2.21113i −0.292871 0.292871i
\(58\) 0 0
\(59\) −1.42161 + 2.46230i −0.185078 + 0.320565i −0.943603 0.331080i \(-0.892587\pi\)
0.758525 + 0.651644i \(0.225920\pi\)
\(60\) 0 0
\(61\) 1.91951 1.10823i 0.245769 0.141895i −0.372057 0.928210i \(-0.621347\pi\)
0.617825 + 0.786315i \(0.288014\pi\)
\(62\) 0 0
\(63\) 5.09162 + 2.70129i 0.641484 + 0.340331i
\(64\) 0 0
\(65\) 2.15879 9.67365i 0.267764 1.19987i
\(66\) 0 0
\(67\) −4.37975 + 1.17355i −0.535072 + 0.143372i −0.516229 0.856450i \(-0.672665\pi\)
−0.0188425 + 0.999822i \(0.505998\pi\)
\(68\) 0 0
\(69\) −9.44211 −1.13670
\(70\) 0 0
\(71\) −10.5787 −1.25546 −0.627731 0.778430i \(-0.716016\pi\)
−0.627731 + 0.778430i \(0.716016\pi\)
\(72\) 0 0
\(73\) 2.44309 0.654624i 0.285942 0.0766179i −0.112997 0.993595i \(-0.536045\pi\)
0.398939 + 0.916977i \(0.369378\pi\)
\(74\) 0 0
\(75\) −2.00711 + 11.1998i −0.231761 + 1.29324i
\(76\) 0 0
\(77\) 9.45862 0.338961i 1.07791 0.0386282i
\(78\) 0 0
\(79\) −4.82403 + 2.78515i −0.542745 + 0.313354i −0.746191 0.665732i \(-0.768119\pi\)
0.203446 + 0.979086i \(0.434786\pi\)
\(80\) 0 0
\(81\) −5.39481 + 9.34408i −0.599423 + 1.03823i
\(82\) 0 0
\(83\) 0.863341 + 0.863341i 0.0947640 + 0.0947640i 0.752899 0.658136i \(-0.228655\pi\)
−0.658136 + 0.752899i \(0.728655\pi\)
\(84\) 0 0
\(85\) −7.83510 + 8.52656i −0.849836 + 0.924835i
\(86\) 0 0
\(87\) 5.53403 + 20.6533i 0.593311 + 2.21427i
\(88\) 0 0
\(89\) 0.430347 + 0.745382i 0.0456167 + 0.0790104i 0.887932 0.459974i \(-0.152141\pi\)
−0.842316 + 0.538985i \(0.818808\pi\)
\(90\) 0 0
\(91\) −2.62768 + 11.4294i −0.275456 + 1.19813i
\(92\) 0 0
\(93\) −15.4335 4.13540i −1.60038 0.428821i
\(94\) 0 0
\(95\) −1.42259 + 2.72348i −0.145955 + 0.279423i
\(96\) 0 0
\(97\) 12.6320 12.6320i 1.28258 1.28258i 0.343390 0.939193i \(-0.388425\pi\)
0.939193 0.343390i \(-0.111575\pi\)
\(98\) 0 0
\(99\) 7.79325i 0.783251i
\(100\) 0 0
\(101\) −10.2545 5.92042i −1.02036 0.589103i −0.106150 0.994350i \(-0.533852\pi\)
−0.914207 + 0.405247i \(0.867186\pi\)
\(102\) 0 0
\(103\) 4.95903 18.5073i 0.488627 1.82358i −0.0745114 0.997220i \(-0.523740\pi\)
0.563139 0.826362i \(-0.309594\pi\)
\(104\) 0 0
\(105\) 2.45980 13.2362i 0.240052 1.29172i
\(106\) 0 0
\(107\) 1.91825 7.15899i 0.185444 0.692086i −0.809091 0.587683i \(-0.800040\pi\)
0.994535 0.104403i \(-0.0332931\pi\)
\(108\) 0 0
\(109\) −3.66475 2.11584i −0.351019 0.202661i 0.314115 0.949385i \(-0.398292\pi\)
−0.665134 + 0.746724i \(0.731626\pi\)
\(110\) 0 0
\(111\) 14.8267i 1.40729i
\(112\) 0 0
\(113\) 8.21616 8.21616i 0.772911 0.772911i −0.205703 0.978614i \(-0.565948\pi\)
0.978614 + 0.205703i \(0.0659481\pi\)
\(114\) 0 0
\(115\) 2.77756 + 8.85242i 0.259009 + 0.825492i
\(116\) 0 0
\(117\) 9.32747 + 2.49929i 0.862325 + 0.231059i
\(118\) 0 0
\(119\) 9.33514 10.0291i 0.855751 0.919364i
\(120\) 0 0
\(121\) −0.898593 1.55641i −0.0816903 0.141492i
\(122\) 0 0
\(123\) 2.72872 + 10.1837i 0.246040 + 0.918235i
\(124\) 0 0
\(125\) 11.0907 1.41284i 0.991983 0.126368i
\(126\) 0 0
\(127\) −11.0167 11.0167i −0.977572 0.977572i 0.0221820 0.999754i \(-0.492939\pi\)
−0.999754 + 0.0221820i \(0.992939\pi\)
\(128\) 0 0
\(129\) 4.04791 7.01118i 0.356398 0.617300i
\(130\) 0 0
\(131\) 11.4510 6.61125i 1.00048 0.577628i 0.0920903 0.995751i \(-0.470645\pi\)
0.908391 + 0.418123i \(0.137312\pi\)
\(132\) 0 0
\(133\) 1.70387 3.21160i 0.147745 0.278481i
\(134\) 0 0
\(135\) 4.07974 + 0.910439i 0.351128 + 0.0783581i
\(136\) 0 0
\(137\) −18.3797 + 4.92483i −1.57028 + 0.420756i −0.935901 0.352263i \(-0.885412\pi\)
−0.634383 + 0.773019i \(0.718746\pi\)
\(138\) 0 0
\(139\) 2.17884 0.184807 0.0924034 0.995722i \(-0.470545\pi\)
0.0924034 + 0.995722i \(0.470545\pi\)
\(140\) 0 0
\(141\) 20.6477 1.73885
\(142\) 0 0
\(143\) 15.3165 4.10405i 1.28083 0.343198i
\(144\) 0 0
\(145\) 17.7355 11.2639i 1.47285 0.935419i
\(146\) 0 0
\(147\) −3.01088 + 15.6423i −0.248333 + 1.29016i
\(148\) 0 0
\(149\) 1.79894 1.03862i 0.147375 0.0850868i −0.424499 0.905428i \(-0.639550\pi\)
0.571874 + 0.820341i \(0.306217\pi\)
\(150\) 0 0
\(151\) 2.97729 5.15681i 0.242288 0.419655i −0.719078 0.694930i \(-0.755435\pi\)
0.961366 + 0.275274i \(0.0887687\pi\)
\(152\) 0 0
\(153\) −7.97739 7.97739i −0.644934 0.644934i
\(154\) 0 0
\(155\) 0.662909 + 15.6861i 0.0532462 + 1.25994i
\(156\) 0 0
\(157\) 1.58172 + 5.90304i 0.126235 + 0.471114i 0.999881 0.0154480i \(-0.00491745\pi\)
−0.873646 + 0.486562i \(0.838251\pi\)
\(158\) 0 0
\(159\) −2.06968 3.58478i −0.164136 0.284292i
\(160\) 0 0
\(161\) −3.21920 10.4952i −0.253708 0.827137i
\(162\) 0 0
\(163\) 14.9267 + 3.99960i 1.16915 + 0.313273i 0.790615 0.612313i \(-0.209761\pi\)
0.378536 + 0.925587i \(0.376428\pi\)
\(164\) 0 0
\(165\) −17.3682 + 5.44951i −1.35211 + 0.424243i
\(166\) 0 0
\(167\) 17.3840 17.3840i 1.34521 1.34521i 0.454428 0.890783i \(-0.349844\pi\)
0.890783 0.454428i \(-0.150156\pi\)
\(168\) 0 0
\(169\) 6.64798i 0.511383i
\(170\) 0 0
\(171\) −2.59250 1.49678i −0.198253 0.114462i
\(172\) 0 0
\(173\) −1.05374 + 3.93262i −0.0801146 + 0.298992i −0.994344 0.106205i \(-0.966130\pi\)
0.914230 + 0.405196i \(0.132797\pi\)
\(174\) 0 0
\(175\) −13.1332 + 1.58748i −0.992774 + 0.120002i
\(176\) 0 0
\(177\) −1.67460 + 6.24967i −0.125870 + 0.469754i
\(178\) 0 0
\(179\) 5.28417 + 3.05082i 0.394958 + 0.228029i 0.684306 0.729195i \(-0.260105\pi\)
−0.289348 + 0.957224i \(0.593439\pi\)
\(180\) 0 0
\(181\) 23.2896i 1.73110i 0.500820 + 0.865552i \(0.333032\pi\)
−0.500820 + 0.865552i \(0.666968\pi\)
\(182\) 0 0
\(183\) 3.56655 3.56655i 0.263647 0.263647i
\(184\) 0 0
\(185\) 13.9007 4.36153i 1.02200 0.320666i
\(186\) 0 0
\(187\) −17.8943 4.79477i −1.30856 0.350629i
\(188\) 0 0
\(189\) −4.82020 1.10819i −0.350618 0.0806089i
\(190\) 0 0
\(191\) −7.78800 13.4892i −0.563520 0.976045i −0.997186 0.0749713i \(-0.976113\pi\)
0.433666 0.901074i \(-0.357220\pi\)
\(192\) 0 0
\(193\) 5.61718 + 20.9636i 0.404333 + 1.50899i 0.805282 + 0.592892i \(0.202014\pi\)
−0.400949 + 0.916100i \(0.631320\pi\)
\(194\) 0 0
\(195\) −0.952351 22.5351i −0.0681993 1.61377i
\(196\) 0 0
\(197\) −3.09635 3.09635i −0.220606 0.220606i 0.588148 0.808753i \(-0.299857\pi\)
−0.808753 + 0.588148i \(0.799857\pi\)
\(198\) 0 0
\(199\) −0.426614 + 0.738916i −0.0302418 + 0.0523804i −0.880750 0.473581i \(-0.842961\pi\)
0.850508 + 0.525962i \(0.176294\pi\)
\(200\) 0 0
\(201\) −8.93592 + 5.15915i −0.630291 + 0.363899i
\(202\) 0 0
\(203\) −21.0700 + 13.1928i −1.47882 + 0.925951i
\(204\) 0 0
\(205\) 8.74501 5.55402i 0.610778 0.387909i
\(206\) 0 0
\(207\) −8.73115 + 2.33950i −0.606857 + 0.162607i
\(208\) 0 0
\(209\) −4.91568 −0.340025
\(210\) 0 0
\(211\) −5.15723 −0.355038 −0.177519 0.984117i \(-0.556807\pi\)
−0.177519 + 0.984117i \(0.556807\pi\)
\(212\) 0 0
\(213\) −23.2530 + 6.23063i −1.59327 + 0.426915i
\(214\) 0 0
\(215\) −7.76406 1.73264i −0.529505 0.118165i
\(216\) 0 0
\(217\) −0.665290 18.5647i −0.0451629 1.26026i
\(218\) 0 0
\(219\) 4.98459 2.87785i 0.336827 0.194467i
\(220\) 0 0
\(221\) 11.4774 19.8795i 0.772054 1.33724i
\(222\) 0 0
\(223\) 6.75353 + 6.75353i 0.452250 + 0.452250i 0.896101 0.443851i \(-0.146388\pi\)
−0.443851 + 0.896101i \(0.646388\pi\)
\(224\) 0 0
\(225\) 0.919019 + 10.8538i 0.0612679 + 0.723584i
\(226\) 0 0
\(227\) −1.21237 4.52464i −0.0804680 0.300311i 0.913949 0.405828i \(-0.133017\pi\)
−0.994417 + 0.105517i \(0.966350\pi\)
\(228\) 0 0
\(229\) 6.17273 + 10.6915i 0.407905 + 0.706513i 0.994655 0.103256i \(-0.0329260\pi\)
−0.586750 + 0.809768i \(0.699593\pi\)
\(230\) 0 0
\(231\) 20.5913 6.31598i 1.35481 0.415561i
\(232\) 0 0
\(233\) −20.2083 5.41480i −1.32389 0.354735i −0.473456 0.880818i \(-0.656994\pi\)
−0.850433 + 0.526083i \(0.823660\pi\)
\(234\) 0 0
\(235\) −6.07389 19.3582i −0.396217 1.26279i
\(236\) 0 0
\(237\) −8.96328 + 8.96328i −0.582227 + 0.582227i
\(238\) 0 0
\(239\) 19.5643i 1.26551i 0.774352 + 0.632755i \(0.218076\pi\)
−0.774352 + 0.632755i \(0.781924\pi\)
\(240\) 0 0
\(241\) −0.432477 0.249691i −0.0278583 0.0160840i 0.486006 0.873955i \(-0.338453\pi\)
−0.513864 + 0.857871i \(0.671787\pi\)
\(242\) 0 0
\(243\) −4.90334 + 18.2995i −0.314549 + 1.17391i
\(244\) 0 0
\(245\) 15.5511 1.77861i 0.993523 0.113632i
\(246\) 0 0
\(247\) 1.57646 5.88342i 0.100308 0.374353i
\(248\) 0 0
\(249\) 2.40619 + 1.38922i 0.152486 + 0.0880380i
\(250\) 0 0
\(251\) 7.14052i 0.450705i 0.974277 + 0.225353i \(0.0723535\pi\)
−0.974277 + 0.225353i \(0.927647\pi\)
\(252\) 0 0
\(253\) −10.4956 + 10.4956i −0.659855 + 0.659855i
\(254\) 0 0
\(255\) −12.2003 + 23.3569i −0.764015 + 1.46266i
\(256\) 0 0
\(257\) −7.94408 2.12861i −0.495538 0.132779i 0.00239046 0.999997i \(-0.499239\pi\)
−0.497928 + 0.867218i \(0.665906\pi\)
\(258\) 0 0
\(259\) −16.4803 + 5.05502i −1.02404 + 0.314104i
\(260\) 0 0
\(261\) 10.2347 + 17.7270i 0.633510 + 1.09727i
\(262\) 0 0
\(263\) −1.44967 5.41024i −0.0893905 0.333610i 0.906719 0.421736i \(-0.138579\pi\)
−0.996109 + 0.0881258i \(0.971912\pi\)
\(264\) 0 0
\(265\) −2.75207 + 2.99494i −0.169058 + 0.183978i
\(266\) 0 0
\(267\) 1.38496 + 1.38496i 0.0847580 + 0.0847580i
\(268\) 0 0
\(269\) 15.6982 27.1901i 0.957136 1.65781i 0.227732 0.973724i \(-0.426869\pi\)
0.729403 0.684084i \(-0.239798\pi\)
\(270\) 0 0
\(271\) 5.04530 2.91290i 0.306480 0.176946i −0.338870 0.940833i \(-0.610045\pi\)
0.645350 + 0.763887i \(0.276711\pi\)
\(272\) 0 0
\(273\) 0.955772 + 26.6706i 0.0578460 + 1.61418i
\(274\) 0 0
\(275\) 10.2183 + 14.6804i 0.616188 + 0.885264i
\(276\) 0 0
\(277\) 14.3005 3.83179i 0.859231 0.230230i 0.197806 0.980241i \(-0.436619\pi\)
0.661425 + 0.750011i \(0.269952\pi\)
\(278\) 0 0
\(279\) −15.2961 −0.915752
\(280\) 0 0
\(281\) 4.04511 0.241311 0.120656 0.992694i \(-0.461500\pi\)
0.120656 + 0.992694i \(0.461500\pi\)
\(282\) 0 0
\(283\) −4.67531 + 1.25275i −0.277918 + 0.0744680i −0.395086 0.918644i \(-0.629285\pi\)
0.117168 + 0.993112i \(0.462619\pi\)
\(284\) 0 0
\(285\) −1.52293 + 6.82435i −0.0902106 + 0.404239i
\(286\) 0 0
\(287\) −10.3892 + 6.50509i −0.613253 + 0.383983i
\(288\) 0 0
\(289\) −8.50280 + 4.90910i −0.500165 + 0.288770i
\(290\) 0 0
\(291\) 20.3263 35.2062i 1.19155 2.06383i
\(292\) 0 0
\(293\) −1.17671 1.17671i −0.0687440 0.0687440i 0.671899 0.740643i \(-0.265479\pi\)
−0.740643 + 0.671899i \(0.765479\pi\)
\(294\) 0 0
\(295\) 6.35197 0.268439i 0.369826 0.0156291i
\(296\) 0 0
\(297\) 1.73083 + 6.45954i 0.100433 + 0.374820i
\(298\) 0 0
\(299\) −9.19592 15.9278i −0.531814 0.921129i
\(300\) 0 0
\(301\) 9.17323 + 2.10897i 0.528736 + 0.121559i
\(302\) 0 0
\(303\) −26.0273 6.97399i −1.49523 0.400645i
\(304\) 0 0
\(305\) −4.39297 2.29464i −0.251541 0.131391i
\(306\) 0 0
\(307\) 11.9756 11.9756i 0.683485 0.683485i −0.277299 0.960784i \(-0.589439\pi\)
0.960784 + 0.277299i \(0.0894393\pi\)
\(308\) 0 0
\(309\) 43.6017i 2.48041i
\(310\) 0 0
\(311\) −4.47627 2.58438i −0.253826 0.146547i 0.367689 0.929949i \(-0.380149\pi\)
−0.621515 + 0.783402i \(0.713482\pi\)
\(312\) 0 0
\(313\) −1.64135 + 6.12562i −0.0927748 + 0.346240i −0.996673 0.0815080i \(-0.974026\pi\)
0.903898 + 0.427748i \(0.140693\pi\)
\(314\) 0 0
\(315\) −1.00499 12.8490i −0.0566250 0.723962i
\(316\) 0 0
\(317\) −5.34333 + 19.9416i −0.300112 + 1.12003i 0.636961 + 0.770896i \(0.280191\pi\)
−0.937072 + 0.349135i \(0.886475\pi\)
\(318\) 0 0
\(319\) 29.1092 + 16.8062i 1.62980 + 0.940967i
\(320\) 0 0
\(321\) 16.8659i 0.941365i
\(322\) 0 0
\(323\) −5.03184 + 5.03184i −0.279979 + 0.279979i
\(324\) 0 0
\(325\) −20.8475 + 7.52196i −1.15641 + 0.417243i
\(326\) 0 0
\(327\) −9.30165 2.49237i −0.514383 0.137828i
\(328\) 0 0
\(329\) 7.03964 + 22.9506i 0.388108 + 1.26531i
\(330\) 0 0
\(331\) 8.76860 + 15.1877i 0.481966 + 0.834790i 0.999786 0.0207000i \(-0.00658950\pi\)
−0.517820 + 0.855490i \(0.673256\pi\)
\(332\) 0 0
\(333\) 3.67366 + 13.7103i 0.201316 + 0.751320i
\(334\) 0 0
\(335\) 7.46560 + 6.86018i 0.407889 + 0.374812i
\(336\) 0 0
\(337\) −4.90571 4.90571i −0.267231 0.267231i 0.560752 0.827984i \(-0.310512\pi\)
−0.827984 + 0.560752i \(0.810512\pi\)
\(338\) 0 0
\(339\) 13.2208 22.8990i 0.718053 1.24371i
\(340\) 0 0
\(341\) −21.7524 + 12.5587i −1.17796 + 0.680094i
\(342\) 0 0
\(343\) −18.4134 + 1.98641i −0.994231 + 0.107256i
\(344\) 0 0
\(345\) 11.3192 + 17.8225i 0.609406 + 0.959533i
\(346\) 0 0
\(347\) −10.9188 + 2.92569i −0.586153 + 0.157059i −0.539694 0.841861i \(-0.681460\pi\)
−0.0464585 + 0.998920i \(0.514794\pi\)
\(348\) 0 0
\(349\) −22.2886 −1.19308 −0.596541 0.802582i \(-0.703459\pi\)
−0.596541 + 0.802582i \(0.703459\pi\)
\(350\) 0 0
\(351\) −8.28628 −0.442289
\(352\) 0 0
\(353\) 16.2032 4.34163i 0.862409 0.231082i 0.199607 0.979876i \(-0.436034\pi\)
0.662803 + 0.748794i \(0.269367\pi\)
\(354\) 0 0
\(355\) 12.6818 + 19.9679i 0.673079 + 1.05979i
\(356\) 0 0
\(357\) 14.6126 27.5431i 0.773382 1.45773i
\(358\) 0 0
\(359\) −5.77457 + 3.33395i −0.304770 + 0.175959i −0.644584 0.764534i \(-0.722969\pi\)
0.339814 + 0.940493i \(0.389636\pi\)
\(360\) 0 0
\(361\) 8.55589 14.8192i 0.450310 0.779960i
\(362\) 0 0
\(363\) −2.89188 2.89188i −0.151785 0.151785i
\(364\) 0 0
\(365\) −4.16442 3.82671i −0.217976 0.200299i
\(366\) 0 0
\(367\) −6.88053 25.6785i −0.359161 1.34041i −0.875167 0.483821i \(-0.839248\pi\)
0.516006 0.856585i \(-0.327418\pi\)
\(368\) 0 0
\(369\) 5.04651 + 8.74081i 0.262711 + 0.455028i
\(370\) 0 0
\(371\) 3.27896 3.52270i 0.170235 0.182890i
\(372\) 0 0
\(373\) 35.8758 + 9.61290i 1.85758 + 0.497737i 0.999866 0.0163896i \(-0.00521720\pi\)
0.857714 + 0.514127i \(0.171884\pi\)
\(374\) 0 0
\(375\) 23.5463 9.63774i 1.21593 0.497691i
\(376\) 0 0
\(377\) −29.4501 + 29.4501i −1.51676 + 1.51676i
\(378\) 0 0
\(379\) 26.2790i 1.34986i −0.737881 0.674931i \(-0.764173\pi\)
0.737881 0.674931i \(-0.235827\pi\)
\(380\) 0 0
\(381\) −30.7043 17.7271i −1.57303 0.908188i
\(382\) 0 0
\(383\) −3.94516 + 14.7235i −0.201588 + 0.752337i 0.788874 + 0.614554i \(0.210664\pi\)
−0.990463 + 0.137783i \(0.956002\pi\)
\(384\) 0 0
\(385\) −11.9788 17.4473i −0.610497 0.889199i
\(386\) 0 0
\(387\) 2.00593 7.48622i 0.101967 0.380546i
\(388\) 0 0
\(389\) −12.5156 7.22588i −0.634566 0.366367i 0.147952 0.988994i \(-0.452732\pi\)
−0.782518 + 0.622628i \(0.786065\pi\)
\(390\) 0 0
\(391\) 21.4873i 1.08666i
\(392\) 0 0
\(393\) 21.2766 21.2766i 1.07326 1.07326i
\(394\) 0 0
\(395\) 11.0402 + 5.76678i 0.555492 + 0.290158i
\(396\) 0 0
\(397\) −9.90897 2.65510i −0.497317 0.133256i 0.00143754 0.999999i \(-0.499542\pi\)
−0.498755 + 0.866743i \(0.666209\pi\)
\(398\) 0 0
\(399\) 1.85372 8.06295i 0.0928018 0.403652i
\(400\) 0 0
\(401\) 16.9889 + 29.4256i 0.848384 + 1.46944i 0.882650 + 0.470031i \(0.155757\pi\)
−0.0342665 + 0.999413i \(0.510910\pi\)
\(402\) 0 0
\(403\) −8.05515 30.0622i −0.401256 1.49751i
\(404\) 0 0
\(405\) 24.1048 1.01869i 1.19778 0.0506190i
\(406\) 0 0
\(407\) 16.4810 + 16.4810i 0.816934 + 0.816934i
\(408\) 0 0
\(409\) −8.14459 + 14.1068i −0.402724 + 0.697538i −0.994054 0.108892i \(-0.965270\pi\)
0.591330 + 0.806430i \(0.298603\pi\)
\(410\) 0 0
\(411\) −37.4997 + 21.6505i −1.84973 + 1.06794i
\(412\) 0 0
\(413\) −7.51763 + 0.269404i −0.369919 + 0.0132565i
\(414\) 0 0
\(415\) 0.594631 2.66458i 0.0291893 0.130799i
\(416\) 0 0
\(417\) 4.78930 1.28329i 0.234533 0.0628429i
\(418\) 0 0
\(419\) −14.3954 −0.703261 −0.351631 0.936139i \(-0.614373\pi\)
−0.351631 + 0.936139i \(0.614373\pi\)
\(420\) 0 0
\(421\) 26.0871 1.27141 0.635705 0.771932i \(-0.280710\pi\)
0.635705 + 0.771932i \(0.280710\pi\)
\(422\) 0 0
\(423\) 19.0930 5.11596i 0.928335 0.248747i
\(424\) 0 0
\(425\) 25.4871 + 4.56755i 1.23631 + 0.221559i
\(426\) 0 0
\(427\) 5.18031 + 2.74835i 0.250693 + 0.133002i
\(428\) 0 0
\(429\) 31.2500 18.0422i 1.50876 0.871085i
\(430\) 0 0
\(431\) −4.01624 + 6.95633i −0.193456 + 0.335075i −0.946393 0.323017i \(-0.895303\pi\)
0.752938 + 0.658092i \(0.228636\pi\)
\(432\) 0 0
\(433\) −18.7693 18.7693i −0.901994 0.901994i 0.0936149 0.995608i \(-0.470158\pi\)
−0.995608 + 0.0936149i \(0.970158\pi\)
\(434\) 0 0
\(435\) 32.3501 35.2050i 1.55107 1.68795i
\(436\) 0 0
\(437\) 1.47567 + 5.50728i 0.0705909 + 0.263449i
\(438\) 0 0
\(439\) −17.4436 30.2131i −0.832536 1.44199i −0.896021 0.444012i \(-0.853555\pi\)
0.0634849 0.997983i \(-0.479779\pi\)
\(440\) 0 0
\(441\) 1.09158 + 15.2105i 0.0519798 + 0.724310i
\(442\) 0 0
\(443\) 30.0869 + 8.06175i 1.42947 + 0.383025i 0.888833 0.458231i \(-0.151517\pi\)
0.540637 + 0.841256i \(0.318183\pi\)
\(444\) 0 0
\(445\) 0.891052 1.70587i 0.0422399 0.0808660i
\(446\) 0 0
\(447\) 3.34251 3.34251i 0.158095 0.158095i
\(448\) 0 0
\(449\) 21.2638i 1.00350i 0.865013 + 0.501750i \(0.167310\pi\)
−0.865013 + 0.501750i \(0.832690\pi\)
\(450\) 0 0
\(451\) 14.3532 + 8.28680i 0.675864 + 0.390210i
\(452\) 0 0
\(453\) 3.50711 13.0887i 0.164778 0.614962i
\(454\) 0 0
\(455\) 24.7237 8.74169i 1.15907 0.409817i
\(456\) 0 0
\(457\) 6.71055 25.0441i 0.313906 1.17151i −0.611097 0.791556i \(-0.709272\pi\)
0.925003 0.379959i \(-0.124062\pi\)
\(458\) 0 0
\(459\) 8.38390 + 4.84044i 0.391327 + 0.225933i
\(460\) 0 0
\(461\) 1.24276i 0.0578811i 0.999581 + 0.0289405i \(0.00921335\pi\)
−0.999581 + 0.0289405i \(0.990787\pi\)
\(462\) 0 0
\(463\) −13.6086 + 13.6086i −0.632448 + 0.632448i −0.948681 0.316234i \(-0.897582\pi\)
0.316234 + 0.948681i \(0.397582\pi\)
\(464\) 0 0
\(465\) 10.6959 + 34.0892i 0.496012 + 1.58085i
\(466\) 0 0
\(467\) 23.7974 + 6.37649i 1.10121 + 0.295069i 0.763258 0.646094i \(-0.223599\pi\)
0.337954 + 0.941163i \(0.390265\pi\)
\(468\) 0 0
\(469\) −8.78116 8.17357i −0.405476 0.377420i
\(470\) 0 0
\(471\) 6.95352 + 12.0439i 0.320401 + 0.554951i
\(472\) 0 0
\(473\) −3.29391 12.2930i −0.151454 0.565234i
\(474\) 0 0
\(475\) 6.84613 0.579682i 0.314122 0.0265976i
\(476\) 0 0
\(477\) −2.80205 2.80205i −0.128297 0.128297i
\(478\) 0 0
\(479\) 2.58135 4.47103i 0.117945 0.204287i −0.801008 0.598653i \(-0.795703\pi\)
0.918953 + 0.394367i \(0.129036\pi\)
\(480\) 0 0
\(481\) −25.0110 + 14.4401i −1.14040 + 0.658413i
\(482\) 0 0
\(483\) −13.2575 21.1734i −0.603239 0.963422i
\(484\) 0 0
\(485\) −38.9868 8.70035i −1.77030 0.395063i
\(486\) 0 0
\(487\) 7.33027 1.96414i 0.332166 0.0890037i −0.0888813 0.996042i \(-0.528329\pi\)
0.421048 + 0.907039i \(0.361663\pi\)
\(488\) 0 0
\(489\) 35.1660 1.59026
\(490\) 0 0
\(491\) −12.2484 −0.552763 −0.276382 0.961048i \(-0.589135\pi\)
−0.276382 + 0.961048i \(0.589135\pi\)
\(492\) 0 0
\(493\) 47.0004 12.5937i 2.11679 0.567192i
\(494\) 0 0
\(495\) −14.7102 + 9.34256i −0.661175 + 0.419917i
\(496\) 0 0
\(497\) −14.8534 23.7221i −0.666267 1.06408i
\(498\) 0 0
\(499\) −21.1800 + 12.2283i −0.948149 + 0.547414i −0.892505 0.451037i \(-0.851054\pi\)
−0.0556434 + 0.998451i \(0.517721\pi\)
\(500\) 0 0
\(501\) 27.9728 48.4504i 1.24973 2.16460i
\(502\) 0 0
\(503\) −15.4661 15.4661i −0.689600 0.689600i 0.272544 0.962143i \(-0.412135\pi\)
−0.962143 + 0.272544i \(0.912135\pi\)
\(504\) 0 0
\(505\) 1.11794 + 26.4533i 0.0497476 + 1.17716i
\(506\) 0 0
\(507\) 3.91552 + 14.6129i 0.173894 + 0.648982i
\(508\) 0 0
\(509\) −17.0981 29.6148i −0.757861 1.31265i −0.943940 0.330118i \(-0.892911\pi\)
0.186079 0.982535i \(-0.440422\pi\)
\(510\) 0 0
\(511\) 4.89826 + 4.55934i 0.216686 + 0.201693i
\(512\) 0 0
\(513\) 2.48125 + 0.664850i 0.109550 + 0.0293538i
\(514\) 0 0
\(515\) −40.8786 + 12.8262i −1.80132 + 0.565189i
\(516\) 0 0
\(517\) 22.9515 22.9515i 1.00941 1.00941i
\(518\) 0 0
\(519\) 9.26491i 0.406684i
\(520\) 0 0
\(521\) −23.2204 13.4063i −1.01730 0.587341i −0.103983 0.994579i \(-0.533159\pi\)
−0.913322 + 0.407238i \(0.866492\pi\)
\(522\) 0 0
\(523\) −1.52679 + 5.69806i −0.0667619 + 0.249159i −0.991239 0.132078i \(-0.957835\pi\)
0.924477 + 0.381237i \(0.124502\pi\)
\(524\) 0 0
\(525\) −27.9329 + 11.2246i −1.21909 + 0.489881i
\(526\) 0 0
\(527\) −9.41087 + 35.1218i −0.409944 + 1.52993i
\(528\) 0 0
\(529\) −5.00907 2.89199i −0.217786 0.125739i
\(530\) 0 0
\(531\) 6.19401i 0.268797i
\(532\) 0 0
\(533\) −14.5212 + 14.5212i −0.628985 + 0.628985i
\(534\) 0 0
\(535\) −15.8126 + 4.96141i −0.683638 + 0.214500i
\(536\) 0 0
\(537\) 13.4120 + 3.59373i 0.578770 + 0.155081i
\(538\) 0 0
\(539\) 14.0408 + 20.7345i 0.604780 + 0.893096i
\(540\) 0 0
\(541\) −10.7940 18.6957i −0.464069 0.803791i 0.535090 0.844795i \(-0.320278\pi\)
−0.999159 + 0.0410039i \(0.986944\pi\)
\(542\) 0 0
\(543\) 13.7171 + 51.1928i 0.588656 + 2.19689i
\(544\) 0 0
\(545\) 0.399530 + 9.45390i 0.0171140 + 0.404961i
\(546\) 0 0
\(547\) 12.1156 + 12.1156i 0.518027 + 0.518027i 0.916974 0.398947i \(-0.130624\pi\)
−0.398947 + 0.916974i \(0.630624\pi\)
\(548\) 0 0
\(549\) 2.41430 4.18170i 0.103040 0.178471i
\(550\) 0 0
\(551\) 11.1815 6.45564i 0.476348 0.275020i
\(552\) 0 0
\(553\) −13.0189 6.90700i −0.553619 0.293716i
\(554\) 0 0
\(555\) 27.9863 17.7743i 1.18795 0.754476i
\(556\) 0 0
\(557\) −6.98891 + 1.87267i −0.296130 + 0.0793477i −0.403825 0.914836i \(-0.632320\pi\)
0.107695 + 0.994184i \(0.465653\pi\)
\(558\) 0 0
\(559\) 15.7695 0.666977
\(560\) 0 0
\(561\) −42.1575 −1.77989
\(562\) 0 0
\(563\) −1.51972 + 0.407209i −0.0640487 + 0.0171618i −0.290701 0.956814i \(-0.593889\pi\)
0.226652 + 0.973976i \(0.427222\pi\)
\(564\) 0 0
\(565\) −25.3580 5.65893i −1.06682 0.238073i
\(566\) 0 0
\(567\) −28.5283 + 1.02235i −1.19808 + 0.0429346i
\(568\) 0 0
\(569\) −5.32597 + 3.07495i −0.223276 + 0.128909i −0.607466 0.794345i \(-0.707814\pi\)
0.384190 + 0.923254i \(0.374481\pi\)
\(570\) 0 0
\(571\) −7.60099 + 13.1653i −0.318092 + 0.550951i −0.980090 0.198555i \(-0.936375\pi\)
0.661998 + 0.749505i \(0.269709\pi\)
\(572\) 0 0
\(573\) −25.0636 25.0636i −1.04705 1.04705i
\(574\) 0 0
\(575\) 13.3797 15.8551i 0.557972 0.661203i
\(576\) 0 0
\(577\) 4.68885 + 17.4990i 0.195199 + 0.728494i 0.992215 + 0.124536i \(0.0397441\pi\)
−0.797016 + 0.603959i \(0.793589\pi\)
\(578\) 0 0
\(579\) 24.6942 + 42.7716i 1.02626 + 1.77753i
\(580\) 0 0
\(581\) −0.723787 + 3.14820i −0.0300277 + 0.130609i
\(582\) 0 0
\(583\) −6.28537 1.68416i −0.260313 0.0697507i
\(584\) 0 0
\(585\) −6.46424 20.6023i −0.267263 0.851800i
\(586\) 0 0
\(587\) −8.49695 + 8.49695i −0.350707 + 0.350707i −0.860373 0.509666i \(-0.829769\pi\)
0.509666 + 0.860373i \(0.329769\pi\)
\(588\) 0 0
\(589\) 9.64818i 0.397546i
\(590\) 0 0
\(591\) −8.62975 4.98239i −0.354980 0.204948i
\(592\) 0 0
\(593\) −2.57872 + 9.62390i −0.105895 + 0.395206i −0.998445 0.0557423i \(-0.982247\pi\)
0.892550 + 0.450948i \(0.148914\pi\)
\(594\) 0 0
\(595\) −30.1215 5.59774i −1.23486 0.229485i
\(596\) 0 0
\(597\) −0.502532 + 1.87547i −0.0205673 + 0.0767581i
\(598\) 0 0
\(599\) −37.5749 21.6939i −1.53527 0.886388i −0.999106 0.0422744i \(-0.986540\pi\)
−0.536164 0.844114i \(-0.680127\pi\)
\(600\) 0 0
\(601\) 46.7450i 1.90677i −0.301757 0.953385i \(-0.597573\pi\)
0.301757 0.953385i \(-0.402427\pi\)
\(602\) 0 0
\(603\) −6.98477 + 6.98477i −0.284442 + 0.284442i
\(604\) 0 0
\(605\) −1.86058 + 3.56197i −0.0756432 + 0.144815i
\(606\) 0 0
\(607\) −0.265783 0.0712163i −0.0107878 0.00289058i 0.253421 0.967356i \(-0.418444\pi\)
−0.264209 + 0.964465i \(0.585111\pi\)
\(608\) 0 0
\(609\) −38.5435 + 41.4087i −1.56186 + 1.67797i
\(610\) 0 0
\(611\) 20.1094 + 34.8305i 0.813538 + 1.40909i
\(612\) 0 0
\(613\) 7.61033 + 28.4021i 0.307378 + 1.14715i 0.930879 + 0.365328i \(0.119043\pi\)
−0.623500 + 0.781823i \(0.714290\pi\)
\(614\) 0 0
\(615\) 15.9512 17.3589i 0.643213 0.699977i
\(616\) 0 0
\(617\) 18.4708 + 18.4708i 0.743606 + 0.743606i 0.973270 0.229664i \(-0.0737626\pi\)
−0.229664 + 0.973270i \(0.573763\pi\)
\(618\) 0 0
\(619\) −17.4488 + 30.2222i −0.701325 + 1.21473i 0.266676 + 0.963786i \(0.414075\pi\)
−0.968001 + 0.250945i \(0.919259\pi\)
\(620\) 0 0
\(621\) 6.71734 3.87826i 0.269558 0.155629i
\(622\) 0 0
\(623\) −1.06723 + 2.01161i −0.0427578 + 0.0805934i
\(624\) 0 0
\(625\) −15.9624 19.2406i −0.638495 0.769626i
\(626\) 0 0
\(627\) −10.8051 + 2.89523i −0.431516 + 0.115624i
\(628\) 0 0
\(629\) 33.7409 1.34534
\(630\) 0 0
\(631\) 15.9645 0.635537 0.317768 0.948168i \(-0.397067\pi\)
0.317768 + 0.948168i \(0.397067\pi\)
\(632\) 0 0
\(633\) −11.3361 + 3.03749i −0.450569 + 0.120729i
\(634\) 0 0
\(635\) −7.58780 + 34.0014i −0.301113 + 1.34931i
\(636\) 0 0
\(637\) −29.3192 + 10.1554i −1.16167 + 0.402373i
\(638\) 0 0
\(639\) −19.9583 + 11.5230i −0.789540 + 0.455841i
\(640\) 0 0
\(641\) −14.7498 + 25.5474i −0.582581 + 1.00906i 0.412591 + 0.910916i \(0.364624\pi\)
−0.995172 + 0.0981437i \(0.968710\pi\)
\(642\) 0 0
\(643\) 7.54699 + 7.54699i 0.297624 + 0.297624i 0.840083 0.542458i \(-0.182506\pi\)
−0.542458 + 0.840083i \(0.682506\pi\)
\(644\) 0 0
\(645\) −18.0866 + 0.764356i −0.712161 + 0.0300965i
\(646\) 0 0
\(647\) −0.0666143 0.248608i −0.00261888 0.00977379i 0.964604 0.263703i \(-0.0849438\pi\)
−0.967223 + 0.253929i \(0.918277\pi\)
\(648\) 0 0
\(649\) 5.08555 + 8.80843i 0.199625 + 0.345761i
\(650\) 0 0
\(651\) −12.3966 40.4152i −0.485861 1.58400i
\(652\) 0 0
\(653\) 1.25937 + 0.337448i 0.0492830 + 0.0132054i 0.283376 0.959009i \(-0.408545\pi\)
−0.234093 + 0.972214i \(0.575212\pi\)
\(654\) 0 0
\(655\) −26.2066 13.6889i −1.02398 0.534869i
\(656\) 0 0
\(657\) 3.89621 3.89621i 0.152005 0.152005i
\(658\) 0 0
\(659\) 2.87148i 0.111857i 0.998435 + 0.0559286i \(0.0178119\pi\)
−0.998435 + 0.0559286i \(0.982188\pi\)
\(660\) 0 0
\(661\) 21.1356 + 12.2026i 0.822078 + 0.474627i 0.851132 0.524951i \(-0.175916\pi\)
−0.0290547 + 0.999578i \(0.509250\pi\)
\(662\) 0 0
\(663\) 13.5199 50.4569i 0.525069 1.95958i
\(664\) 0 0
\(665\) −8.10469 + 0.633912i −0.314286 + 0.0245821i
\(666\) 0 0
\(667\) 10.0903 37.6576i 0.390699 1.45811i
\(668\) 0 0
\(669\) 18.8226 + 10.8672i 0.727723 + 0.420151i
\(670\) 0 0
\(671\) 7.92899i 0.306095i
\(672\) 0 0
\(673\) 28.1207 28.1207i 1.08397 1.08397i 0.0878369 0.996135i \(-0.472005\pi\)
0.996135 0.0878369i \(-0.0279954\pi\)
\(674\) 0 0
\(675\) −3.17229 8.79217i −0.122101 0.338411i
\(676\) 0 0
\(677\) 20.8842 + 5.59591i 0.802646 + 0.215068i 0.636745 0.771074i \(-0.280280\pi\)
0.165901 + 0.986142i \(0.446947\pi\)
\(678\) 0 0
\(679\) 46.0628 + 10.5901i 1.76773 + 0.406410i
\(680\) 0 0
\(681\) −5.32982 9.23152i −0.204239 0.353753i
\(682\) 0 0
\(683\) −9.59848 35.8220i −0.367276 1.37069i −0.864309 0.502961i \(-0.832244\pi\)
0.497034 0.867731i \(-0.334423\pi\)
\(684\) 0 0
\(685\) 31.3295 + 28.7889i 1.19704 + 1.09997i
\(686\) 0 0
\(687\) 19.8653 + 19.8653i 0.757908 + 0.757908i
\(688\) 0 0
\(689\) 4.03142 6.98263i 0.153585 0.266017i
\(690\) 0 0
\(691\) 14.7640 8.52400i 0.561649 0.324268i −0.192158 0.981364i \(-0.561549\pi\)
0.753807 + 0.657096i \(0.228215\pi\)
\(692\) 0 0
\(693\) 17.4759 10.9424i 0.663855 0.415667i
\(694\) 0 0
\(695\) −2.61200 4.11269i −0.0990787 0.156003i
\(696\) 0 0
\(697\) 23.1749 6.20970i 0.877813 0.235209i
\(698\) 0 0
\(699\) −47.6089 −1.80074
\(700\) 0 0
\(701\) 10.9087 0.412017 0.206009 0.978550i \(-0.433953\pi\)
0.206009 + 0.978550i \(0.433953\pi\)
\(702\) 0 0
\(703\) 8.64793 2.31721i 0.326163 0.0873951i
\(704\) 0 0
\(705\) −24.7525 38.9738i −0.932235 1.46784i
\(706\) 0 0
\(707\) −1.12195 31.3078i −0.0421954 1.17745i
\(708\) 0 0
\(709\) 8.23815 4.75630i 0.309390 0.178627i −0.337263 0.941410i \(-0.609501\pi\)
0.646654 + 0.762784i \(0.276168\pi\)
\(710\) 0 0
\(711\) −6.06751 + 10.5092i −0.227549 + 0.394127i
\(712\) 0 0
\(713\) 20.6001 + 20.6001i 0.771481 + 0.771481i
\(714\) 0 0
\(715\) −26.1081 23.9909i −0.976387 0.897208i
\(716\) 0 0
\(717\) 11.5229 + 43.0042i 0.430332 + 1.60602i
\(718\) 0 0
\(719\) 1.14039 + 1.97522i 0.0425295 + 0.0736632i 0.886507 0.462716i \(-0.153125\pi\)
−0.843977 + 0.536379i \(0.819792\pi\)
\(720\) 0 0
\(721\) 48.4645 14.8656i 1.80491 0.553622i
\(722\) 0 0
\(723\) −1.09769 0.294125i −0.0408234 0.0109386i
\(724\) 0 0
\(725\) −42.5226 19.9735i −1.57925 0.741798i
\(726\) 0 0
\(727\) 6.33666 6.33666i 0.235014 0.235014i −0.579768 0.814782i \(-0.696857\pi\)
0.814782 + 0.579768i \(0.196857\pi\)
\(728\) 0 0
\(729\) 10.7432i 0.397896i
\(730\) 0 0
\(731\) −15.9552 9.21176i −0.590125 0.340709i
\(732\) 0 0
\(733\) −6.74911 + 25.1880i −0.249284 + 0.930341i 0.721897 + 0.692000i \(0.243270\pi\)
−0.971182 + 0.238341i \(0.923396\pi\)
\(734\) 0 0
\(735\) 33.1352 13.0688i 1.22221 0.482051i
\(736\) 0 0
\(737\) −4.19816 + 15.6678i −0.154641 + 0.577129i
\(738\) 0 0
\(739\) 33.9792 + 19.6179i 1.24994 + 0.721656i 0.971098 0.238680i \(-0.0767148\pi\)
0.278846 + 0.960336i \(0.410048\pi\)
\(740\) 0 0
\(741\) 13.8608i 0.509189i
\(742\) 0 0
\(743\) −9.29603 + 9.29603i −0.341038 + 0.341038i −0.856758 0.515719i \(-0.827525\pi\)
0.515719 + 0.856758i \(0.327525\pi\)
\(744\) 0 0
\(745\) −4.11702 2.15050i −0.150836 0.0787883i
\(746\) 0 0
\(747\) 2.56923 + 0.688422i 0.0940031 + 0.0251880i
\(748\) 0 0
\(749\) 18.7470 5.75028i 0.685000 0.210111i
\(750\) 0 0
\(751\) 3.74551 + 6.48742i 0.136676 + 0.236729i 0.926236 0.376943i \(-0.123025\pi\)
−0.789561 + 0.613673i \(0.789692\pi\)
\(752\) 0 0
\(753\) 4.20561 + 15.6955i 0.153261 + 0.571977i
\(754\) 0 0
\(755\) −13.3030 + 0.562194i −0.484144 + 0.0204603i
\(756\) 0 0
\(757\) −6.67005 6.67005i −0.242427 0.242427i 0.575427 0.817853i \(-0.304836\pi\)
−0.817853 + 0.575427i \(0.804836\pi\)
\(758\) 0 0
\(759\) −16.8887 + 29.2521i −0.613021 + 1.06178i
\(760\) 0 0
\(761\) −13.0745 + 7.54859i −0.473952 + 0.273636i −0.717893 0.696154i \(-0.754893\pi\)
0.243941 + 0.969790i \(0.421560\pi\)
\(762\) 0 0
\(763\) −0.400965 11.1888i −0.0145159 0.405062i
\(764\) 0 0
\(765\) −5.49448 + 24.6211i −0.198653 + 0.890178i
\(766\) 0 0
\(767\) −12.1734 + 3.26187i −0.439558 + 0.117779i
\(768\) 0 0
\(769\) −3.50495 −0.126392 −0.0631959 0.998001i \(-0.520129\pi\)
−0.0631959 + 0.998001i \(0.520129\pi\)
\(770\) 0 0
\(771\) −18.7155 −0.674024
\(772\) 0 0
\(773\) 24.6065 6.59331i 0.885036 0.237145i 0.212457 0.977170i \(-0.431853\pi\)
0.672579 + 0.740026i \(0.265187\pi\)
\(774\) 0 0
\(775\) 28.8138 20.0559i 1.03502 0.720428i
\(776\) 0 0
\(777\) −33.2480 + 20.8180i −1.19277 + 0.746840i
\(778\) 0 0
\(779\) 5.51337 3.18315i 0.197537 0.114048i
\(780\) 0 0
\(781\) −18.9217 + 32.7733i −0.677071 + 1.17272i
\(782\) 0 0
\(783\) −12.4202 12.4202i −0.443861 0.443861i
\(784\) 0 0
\(785\) 9.24617 10.0622i 0.330010 0.359134i
\(786\) 0 0
\(787\) −5.16739 19.2850i −0.184198 0.687435i −0.994801 0.101839i \(-0.967527\pi\)
0.810603 0.585596i \(-0.199139\pi\)
\(788\) 0 0
\(789\) −6.37302 11.0384i −0.226886 0.392978i
\(790\) 0 0
\(791\) 29.9604 + 6.88807i 1.06527 + 0.244911i
\(792\) 0 0
\(793\) 9.48994 + 2.54282i 0.336998 + 0.0902983i
\(794\) 0 0
\(795\) −4.28536 + 8.20408i −0.151986 + 0.290969i
\(796\) 0 0
\(797\) −26.5084 + 26.5084i −0.938977 +