Properties

Label 280.2.bj.f
Level $280$
Weight $2$
Character orbit 280.bj
Analytic conductor $2.236$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 280.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.23581125660\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24q + 3q^{2} + 12q^{3} + q^{4} - 12q^{5} - 2q^{6} + 10q^{7} - 6q^{8} + 12q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 24q + 3q^{2} + 12q^{3} + q^{4} - 12q^{5} - 2q^{6} + 10q^{7} - 6q^{8} + 12q^{9} - 3q^{10} + 8q^{11} + 10q^{12} + 20q^{13} + 5q^{14} - 3q^{16} + 6q^{17} + 3q^{18} + 18q^{19} - 2q^{20} - 26q^{21} - 16q^{22} + 18q^{23} - 18q^{24} - 12q^{25} - 37q^{26} - 41q^{28} - 8q^{30} - 6q^{31} + 3q^{32} + 12q^{33} - 20q^{34} - 8q^{35} - 22q^{36} + 15q^{38} - 18q^{39} + 3q^{40} - 12q^{42} + 32q^{43} + 35q^{44} + 12q^{45} - 49q^{46} - 14q^{48} + 8q^{49} - 22q^{51} - 41q^{52} + 30q^{53} + 104q^{54} - 16q^{55} + 44q^{56} - 44q^{57} - 54q^{58} - 18q^{59} - 8q^{60} + 22q^{61} + 8q^{62} - 12q^{63} + 58q^{64} - 10q^{65} + 8q^{66} - 8q^{67} + 18q^{68} - 12q^{69} - q^{70} - 17q^{72} + 30q^{73} + 53q^{74} - 12q^{75} + 8q^{76} - 32q^{77} - 8q^{78} + 6q^{79} - 3q^{80} - 4q^{81} - 57q^{82} + 42q^{86} + 14q^{87} - 17q^{88} - 60q^{89} + 24q^{90} + 18q^{91} - 38q^{92} - 18q^{93} + 19q^{94} - 18q^{95} - 74q^{96} + 3q^{98} - 56q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
131.1 −1.41058 + 0.101290i 0.725648 0.418953i 1.97948 0.285754i −0.500000 + 0.866025i −0.981150 + 0.664468i −2.36913 + 1.17781i −2.76328 + 0.603581i −1.14896 + 1.99005i 0.617571 1.27224i
131.2 −1.33674 0.461647i 1.90624 1.10057i 1.57376 + 1.23421i −0.500000 + 0.866025i −3.05623 + 0.591168i −0.584379 2.58041i −1.53395 2.37634i 0.922503 1.59782i 1.06817 0.926830i
131.3 −0.938224 + 1.05818i −0.219454 + 0.126702i −0.239473 1.98561i −0.500000 + 0.866025i 0.0718241 0.351096i 0.978876 2.45801i 2.32581 + 1.60954i −1.46789 + 2.54247i −0.447296 1.34161i
131.4 −0.771333 1.18535i 0.784482 0.452921i −0.810092 + 1.82859i −0.500000 + 0.866025i −1.14196 0.580530i 1.23347 + 2.34063i 2.79237 0.450214i −1.08973 + 1.88746i 1.41221 0.0753205i
131.5 −0.410069 + 1.35346i 2.26702 1.30886i −1.66369 1.11002i −0.500000 + 0.866025i 0.841856 + 3.60504i 1.72615 + 2.00510i 2.18459 1.79654i 1.92625 3.33637i −0.967093 1.03186i
131.6 0.314756 1.37874i −2.66758 + 1.54013i −1.80186 0.867935i −0.500000 + 0.866025i 1.28380 + 4.16266i 2.53597 0.754231i −1.76380 + 2.21111i 3.24397 5.61873i 1.03665 + 0.961958i
131.7 0.542272 + 1.30612i −0.908317 + 0.524417i −1.41188 + 1.41654i −0.500000 + 0.866025i −1.17750 0.901991i 2.14799 + 1.54472i −2.61579 1.07593i −0.949974 + 1.64540i −1.40227 0.183437i
131.8 0.669637 1.24563i 1.94732 1.12428i −1.10317 1.66823i −0.500000 + 0.866025i −0.0964439 3.17849i 2.47009 0.947962i −2.81672 + 0.257032i 1.02803 1.78060i 0.743926 + 1.20274i
131.9 0.959261 + 1.03914i 2.75363 1.58981i −0.159637 + 1.99362i −0.500000 + 0.866025i 4.29350 + 1.33638i −1.04250 2.43170i −2.22479 + 1.74651i 3.55500 6.15745i −1.37955 + 0.311173i
131.10 1.11603 + 0.868601i −0.502680 + 0.290223i 0.491065 + 1.93878i −0.500000 + 0.866025i −0.813096 0.112730i −2.63362 + 0.253028i −1.13598 + 2.59028i −1.33154 + 2.30630i −1.31025 + 0.532213i
131.11 1.37350 0.336893i 1.75472 1.01309i 1.77301 0.925446i −0.500000 + 0.866025i 2.06881 1.98263i −1.63843 + 2.07739i 2.12345 1.86841i 0.552704 0.957311i −0.394992 + 1.35793i
131.12 1.39149 0.252502i −1.84104 + 1.06293i 1.87249 0.702708i −0.500000 + 0.866025i −2.29340 + 1.94392i 2.17552 + 1.50569i 2.42811 1.45062i 0.759621 1.31570i −0.477071 + 1.33132i
171.1 −1.41058 0.101290i 0.725648 + 0.418953i 1.97948 + 0.285754i −0.500000 0.866025i −0.981150 0.664468i −2.36913 1.17781i −2.76328 0.603581i −1.14896 1.99005i 0.617571 + 1.27224i
171.2 −1.33674 + 0.461647i 1.90624 + 1.10057i 1.57376 1.23421i −0.500000 0.866025i −3.05623 0.591168i −0.584379 + 2.58041i −1.53395 + 2.37634i 0.922503 + 1.59782i 1.06817 + 0.926830i
171.3 −0.938224 1.05818i −0.219454 0.126702i −0.239473 + 1.98561i −0.500000 0.866025i 0.0718241 + 0.351096i 0.978876 + 2.45801i 2.32581 1.60954i −1.46789 2.54247i −0.447296 + 1.34161i
171.4 −0.771333 + 1.18535i 0.784482 + 0.452921i −0.810092 1.82859i −0.500000 0.866025i −1.14196 + 0.580530i 1.23347 2.34063i 2.79237 + 0.450214i −1.08973 1.88746i 1.41221 + 0.0753205i
171.5 −0.410069 1.35346i 2.26702 + 1.30886i −1.66369 + 1.11002i −0.500000 0.866025i 0.841856 3.60504i 1.72615 2.00510i 2.18459 + 1.79654i 1.92625 + 3.33637i −0.967093 + 1.03186i
171.6 0.314756 + 1.37874i −2.66758 1.54013i −1.80186 + 0.867935i −0.500000 0.866025i 1.28380 4.16266i 2.53597 + 0.754231i −1.76380 2.21111i 3.24397 + 5.61873i 1.03665 0.961958i
171.7 0.542272 1.30612i −0.908317 0.524417i −1.41188 1.41654i −0.500000 0.866025i −1.17750 + 0.901991i 2.14799 1.54472i −2.61579 + 1.07593i −0.949974 1.64540i −1.40227 + 0.183437i
171.8 0.669637 + 1.24563i 1.94732 + 1.12428i −1.10317 + 1.66823i −0.500000 0.866025i −0.0964439 + 3.17849i 2.47009 + 0.947962i −2.81672 0.257032i 1.02803 + 1.78060i 0.743926 1.20274i
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 171.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
56.m even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 280.2.bj.f yes 24
4.b odd 2 1 1120.2.bz.e 24
7.d odd 6 1 280.2.bj.e 24
8.b even 2 1 1120.2.bz.f 24
8.d odd 2 1 280.2.bj.e 24
28.f even 6 1 1120.2.bz.f 24
56.j odd 6 1 1120.2.bz.e 24
56.m even 6 1 inner 280.2.bj.f yes 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.bj.e 24 7.d odd 6 1
280.2.bj.e 24 8.d odd 2 1
280.2.bj.f yes 24 1.a even 1 1 trivial
280.2.bj.f yes 24 56.m even 6 1 inner
1120.2.bz.e 24 4.b odd 2 1
1120.2.bz.e 24 56.j odd 6 1
1120.2.bz.f 24 8.b even 2 1
1120.2.bz.f 24 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(280, [\chi])\):

\(T_{3}^{24} - \cdots\)
\(T_{13}^{12} - \cdots\)