Properties

Label 280.2.bf
Level $280$
Weight $2$
Character orbit 280.bf
Rep. character $\chi_{280}(109,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $88$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 280.bf (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 280 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(280, [\chi])\).

Total New Old
Modular forms 104 104 0
Cusp forms 88 88 0
Eisenstein series 16 16 0

Trace form

\( 88q - 2q^{4} - 40q^{9} + O(q^{10}) \) \( 88q - 2q^{4} - 40q^{9} + 6q^{10} - 6q^{14} + 4q^{15} + 2q^{16} - 24q^{20} - 8q^{24} - 2q^{25} - 14q^{26} + 14q^{30} - 28q^{31} + 24q^{34} + 60q^{36} - 16q^{39} - 32q^{40} - 16q^{41} - 2q^{44} - 42q^{46} - 8q^{49} - 12q^{50} + 8q^{54} - 28q^{55} + 36q^{56} + 10q^{60} + 52q^{64} - 12q^{65} - 44q^{66} - 48q^{70} + 16q^{71} - 42q^{74} - 36q^{76} - 4q^{79} - 40q^{80} - 20q^{81} + 12q^{84} - 24q^{86} + 4q^{89} - 96q^{90} - 22q^{94} - 34q^{95} + 80q^{96} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(280, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
280.2.bf.a \(88\) \(2.236\) None \(0\) \(0\) \(0\) \(0\)