Properties

Label 280.2.ba
Level $280$
Weight $2$
Character orbit 280.ba
Rep. character $\chi_{280}(19,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $88$
Newform subspaces $2$
Sturm bound $96$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 280.ba (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 280 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(96\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(280, [\chi])\).

Total New Old
Modular forms 104 104 0
Cusp forms 88 88 0
Eisenstein series 16 16 0

Trace form

\( 88q - 2q^{4} - 40q^{9} + O(q^{10}) \) \( 88q - 2q^{4} - 40q^{9} - 12q^{10} - 4q^{11} - 14q^{14} - 6q^{16} - 12q^{19} + 12q^{24} - 2q^{25} + 6q^{26} - 20q^{30} - 2q^{35} - 20q^{36} + 12q^{40} + 30q^{44} + 38q^{46} - 8q^{49} - 40q^{50} + 20q^{51} + 60q^{54} - 72q^{56} - 60q^{59} - 42q^{60} + 4q^{64} + 8q^{65} + 84q^{66} - 22q^{70} + 2q^{74} - 6q^{75} - 96q^{80} - 36q^{81} - 100q^{84} - 8q^{86} - 36q^{89} + 32q^{91} - 42q^{94} + 96q^{96} + 80q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(280, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
280.2.ba.a \(8\) \(2.236\) 8.0.3317760000.3 \(\Q(\sqrt{-10}) \) \(0\) \(0\) \(0\) \(0\) \(q+\beta _{4}q^{2}-2\beta _{3}q^{4}+\beta _{6}q^{5}+(\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\)
280.2.ba.b \(80\) \(2.236\) None \(0\) \(0\) \(0\) \(0\)