Properties

Label 280.2.a.d
Level $280$
Weight $2$
Character orbit 280.a
Self dual yes
Analytic conductor $2.236$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 280.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(2.23581125660\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Defining polynomial: \(x^{2} - x - 4\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} + q^{5} + q^{7} + ( 1 + \beta ) q^{9} +O(q^{10})\) \( q + \beta q^{3} + q^{5} + q^{7} + ( 1 + \beta ) q^{9} -\beta q^{11} + ( 2 - 3 \beta ) q^{13} + \beta q^{15} + ( 6 - \beta ) q^{17} + ( -4 + 2 \beta ) q^{19} + \beta q^{21} -2 \beta q^{23} + q^{25} + ( 4 - \beta ) q^{27} + ( 2 + \beta ) q^{29} -4 \beta q^{31} + ( -4 - \beta ) q^{33} + q^{35} + ( -2 + 4 \beta ) q^{37} + ( -12 - \beta ) q^{39} + ( 2 + 2 \beta ) q^{41} + ( -4 + 2 \beta ) q^{43} + ( 1 + \beta ) q^{45} + ( 4 + \beta ) q^{47} + q^{49} + ( -4 + 5 \beta ) q^{51} + ( -10 + 2 \beta ) q^{53} -\beta q^{55} + ( 8 - 2 \beta ) q^{57} -4 q^{59} + ( -10 - 2 \beta ) q^{61} + ( 1 + \beta ) q^{63} + ( 2 - 3 \beta ) q^{65} + ( -4 - 4 \beta ) q^{67} + ( -8 - 2 \beta ) q^{69} + ( 2 + 4 \beta ) q^{73} + \beta q^{75} -\beta q^{77} + ( -4 - 3 \beta ) q^{79} -7 q^{81} + 12 q^{83} + ( 6 - \beta ) q^{85} + ( 4 + 3 \beta ) q^{87} + ( 2 - 2 \beta ) q^{89} + ( 2 - 3 \beta ) q^{91} + ( -16 - 4 \beta ) q^{93} + ( -4 + 2 \beta ) q^{95} + ( 6 + 3 \beta ) q^{97} + ( -4 - 2 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{3} + 2q^{5} + 2q^{7} + 3q^{9} + O(q^{10}) \) \( 2q + q^{3} + 2q^{5} + 2q^{7} + 3q^{9} - q^{11} + q^{13} + q^{15} + 11q^{17} - 6q^{19} + q^{21} - 2q^{23} + 2q^{25} + 7q^{27} + 5q^{29} - 4q^{31} - 9q^{33} + 2q^{35} - 25q^{39} + 6q^{41} - 6q^{43} + 3q^{45} + 9q^{47} + 2q^{49} - 3q^{51} - 18q^{53} - q^{55} + 14q^{57} - 8q^{59} - 22q^{61} + 3q^{63} + q^{65} - 12q^{67} - 18q^{69} + 8q^{73} + q^{75} - q^{77} - 11q^{79} - 14q^{81} + 24q^{83} + 11q^{85} + 11q^{87} + 2q^{89} + q^{91} - 36q^{93} - 6q^{95} + 15q^{97} - 10q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.56155
2.56155
0 −1.56155 0 1.00000 0 1.00000 0 −0.561553 0
1.2 0 2.56155 0 1.00000 0 1.00000 0 3.56155 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(-1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 280.2.a.d 2
3.b odd 2 1 2520.2.a.w 2
4.b odd 2 1 560.2.a.g 2
5.b even 2 1 1400.2.a.p 2
5.c odd 4 2 1400.2.g.k 4
7.b odd 2 1 1960.2.a.r 2
7.c even 3 2 1960.2.q.s 4
7.d odd 6 2 1960.2.q.u 4
8.b even 2 1 2240.2.a.be 2
8.d odd 2 1 2240.2.a.bi 2
12.b even 2 1 5040.2.a.bq 2
20.d odd 2 1 2800.2.a.bn 2
20.e even 4 2 2800.2.g.u 4
28.d even 2 1 3920.2.a.bu 2
35.c odd 2 1 9800.2.a.by 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.a.d 2 1.a even 1 1 trivial
560.2.a.g 2 4.b odd 2 1
1400.2.a.p 2 5.b even 2 1
1400.2.g.k 4 5.c odd 4 2
1960.2.a.r 2 7.b odd 2 1
1960.2.q.s 4 7.c even 3 2
1960.2.q.u 4 7.d odd 6 2
2240.2.a.be 2 8.b even 2 1
2240.2.a.bi 2 8.d odd 2 1
2520.2.a.w 2 3.b odd 2 1
2800.2.a.bn 2 20.d odd 2 1
2800.2.g.u 4 20.e even 4 2
3920.2.a.bu 2 28.d even 2 1
5040.2.a.bq 2 12.b even 2 1
9800.2.a.by 2 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - T_{3} - 4 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(280))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( -4 - T + T^{2} \)
$5$ \( ( -1 + T )^{2} \)
$7$ \( ( -1 + T )^{2} \)
$11$ \( -4 + T + T^{2} \)
$13$ \( -38 - T + T^{2} \)
$17$ \( 26 - 11 T + T^{2} \)
$19$ \( -8 + 6 T + T^{2} \)
$23$ \( -16 + 2 T + T^{2} \)
$29$ \( 2 - 5 T + T^{2} \)
$31$ \( -64 + 4 T + T^{2} \)
$37$ \( -68 + T^{2} \)
$41$ \( -8 - 6 T + T^{2} \)
$43$ \( -8 + 6 T + T^{2} \)
$47$ \( 16 - 9 T + T^{2} \)
$53$ \( 64 + 18 T + T^{2} \)
$59$ \( ( 4 + T )^{2} \)
$61$ \( 104 + 22 T + T^{2} \)
$67$ \( -32 + 12 T + T^{2} \)
$71$ \( T^{2} \)
$73$ \( -52 - 8 T + T^{2} \)
$79$ \( -8 + 11 T + T^{2} \)
$83$ \( ( -12 + T )^{2} \)
$89$ \( -16 - 2 T + T^{2} \)
$97$ \( 18 - 15 T + T^{2} \)
show more
show less