# Properties

 Label 280.2.a.a Level $280$ Weight $2$ Character orbit 280.a Self dual yes Analytic conductor $2.236$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [280,2,Mod(1,280)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(280, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("280.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$280 = 2^{3} \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 280.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$2.23581125660$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - 3 q^{3} + q^{5} + q^{7} + 6 q^{9}+O(q^{10})$$ q - 3 * q^3 + q^5 + q^7 + 6 * q^9 $$q - 3 q^{3} + q^{5} + q^{7} + 6 q^{9} - 5 q^{11} - 5 q^{13} - 3 q^{15} - 7 q^{17} - 2 q^{19} - 3 q^{21} - 2 q^{23} + q^{25} - 9 q^{27} + 7 q^{29} + 4 q^{31} + 15 q^{33} + q^{35} - 6 q^{37} + 15 q^{39} - 12 q^{41} - 2 q^{43} + 6 q^{45} + q^{47} + q^{49} + 21 q^{51} - 5 q^{55} + 6 q^{57} - 4 q^{59} + 4 q^{61} + 6 q^{63} - 5 q^{65} + 8 q^{67} + 6 q^{69} + 6 q^{73} - 3 q^{75} - 5 q^{77} - 3 q^{79} + 9 q^{81} - 4 q^{83} - 7 q^{85} - 21 q^{87} - 5 q^{91} - 12 q^{93} - 2 q^{95} + 13 q^{97} - 30 q^{99}+O(q^{100})$$ q - 3 * q^3 + q^5 + q^7 + 6 * q^9 - 5 * q^11 - 5 * q^13 - 3 * q^15 - 7 * q^17 - 2 * q^19 - 3 * q^21 - 2 * q^23 + q^25 - 9 * q^27 + 7 * q^29 + 4 * q^31 + 15 * q^33 + q^35 - 6 * q^37 + 15 * q^39 - 12 * q^41 - 2 * q^43 + 6 * q^45 + q^47 + q^49 + 21 * q^51 - 5 * q^55 + 6 * q^57 - 4 * q^59 + 4 * q^61 + 6 * q^63 - 5 * q^65 + 8 * q^67 + 6 * q^69 + 6 * q^73 - 3 * q^75 - 5 * q^77 - 3 * q^79 + 9 * q^81 - 4 * q^83 - 7 * q^85 - 21 * q^87 - 5 * q^91 - 12 * q^93 - 2 * q^95 + 13 * q^97 - 30 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −3.00000 0 1.00000 0 1.00000 0 6.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$5$$ $$-1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 280.2.a.a 1
3.b odd 2 1 2520.2.a.i 1
4.b odd 2 1 560.2.a.f 1
5.b even 2 1 1400.2.a.n 1
5.c odd 4 2 1400.2.g.a 2
7.b odd 2 1 1960.2.a.o 1
7.c even 3 2 1960.2.q.o 2
7.d odd 6 2 1960.2.q.a 2
8.b even 2 1 2240.2.a.z 1
8.d odd 2 1 2240.2.a.a 1
12.b even 2 1 5040.2.a.a 1
20.d odd 2 1 2800.2.a.c 1
20.e even 4 2 2800.2.g.b 2
28.d even 2 1 3920.2.a.c 1
35.c odd 2 1 9800.2.a.a 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.a.a 1 1.a even 1 1 trivial
560.2.a.f 1 4.b odd 2 1
1400.2.a.n 1 5.b even 2 1
1400.2.g.a 2 5.c odd 4 2
1960.2.a.o 1 7.b odd 2 1
1960.2.q.a 2 7.d odd 6 2
1960.2.q.o 2 7.c even 3 2
2240.2.a.a 1 8.d odd 2 1
2240.2.a.z 1 8.b even 2 1
2520.2.a.i 1 3.b odd 2 1
2800.2.a.c 1 20.d odd 2 1
2800.2.g.b 2 20.e even 4 2
3920.2.a.c 1 28.d even 2 1
5040.2.a.a 1 12.b even 2 1
9800.2.a.a 1 35.c odd 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{3} + 3$$ acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(280))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 3$$
$5$ $$T - 1$$
$7$ $$T - 1$$
$11$ $$T + 5$$
$13$ $$T + 5$$
$17$ $$T + 7$$
$19$ $$T + 2$$
$23$ $$T + 2$$
$29$ $$T - 7$$
$31$ $$T - 4$$
$37$ $$T + 6$$
$41$ $$T + 12$$
$43$ $$T + 2$$
$47$ $$T - 1$$
$53$ $$T$$
$59$ $$T + 4$$
$61$ $$T - 4$$
$67$ $$T - 8$$
$71$ $$T$$
$73$ $$T - 6$$
$79$ $$T + 3$$
$83$ $$T + 4$$
$89$ $$T$$
$97$ $$T - 13$$