Defining parameters
Level: | \( N \) | \(=\) | \( 280 = 2^{3} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 280.bi (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 280 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(280, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 12 | 12 | 0 |
Cusp forms | 4 | 4 | 0 |
Eisenstein series | 8 | 8 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 4 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(280, [\chi])\) into newform subspaces
Label | Dim. | \(A\) | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||||
280.1.bi.a | \(2\) | \(0.140\) | \(\Q(\sqrt{-3}) \) | \(D_{3}\) | \(\Q(\sqrt{-10}) \) | None | \(-1\) | \(0\) | \(-1\) | \(2\) | \(q+\zeta_{6}^{2}q^{2}-\zeta_{6}q^{4}+\zeta_{6}^{2}q^{5}+q^{7}+\cdots\) |
280.1.bi.b | \(2\) | \(0.140\) | \(\Q(\sqrt{-3}) \) | \(D_{3}\) | \(\Q(\sqrt{-10}) \) | None | \(1\) | \(0\) | \(1\) | \(-2\) | \(q-\zeta_{6}^{2}q^{2}-\zeta_{6}q^{4}-\zeta_{6}^{2}q^{5}-q^{7}+\cdots\) |