Properties

Label 28.8.a.b.1.1
Level $28$
Weight $8$
Character 28.1
Self dual yes
Analytic conductor $8.747$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [28,8,Mod(1,28)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("28.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 28 = 2^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 28.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.74678071356\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1009}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 252 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(16.3824\) of defining polynomial
Character \(\chi\) \(=\) 28.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-24.7648 q^{3} +202.412 q^{5} -343.000 q^{7} -1573.71 q^{9} -7527.19 q^{11} -1700.28 q^{13} -5012.69 q^{15} -2481.86 q^{17} -39816.0 q^{19} +8494.31 q^{21} +25560.1 q^{23} -37154.2 q^{25} +93133.0 q^{27} +148830. q^{29} -33538.4 q^{31} +186409. q^{33} -69427.4 q^{35} +400557. q^{37} +42107.1 q^{39} -362750. q^{41} -324652. q^{43} -318538. q^{45} -708899. q^{47} +117649. q^{49} +61462.7 q^{51} -185924. q^{53} -1.52360e6 q^{55} +986034. q^{57} -1.19372e6 q^{59} +2.51204e6 q^{61} +539781. q^{63} -344158. q^{65} -2.85983e6 q^{67} -632989. q^{69} +3.22083e6 q^{71} +5.01287e6 q^{73} +920116. q^{75} +2.58182e6 q^{77} +5.94208e6 q^{79} +1.13528e6 q^{81} -1.02006e7 q^{83} -502359. q^{85} -3.68573e6 q^{87} +1.85373e6 q^{89} +583197. q^{91} +830571. q^{93} -8.05925e6 q^{95} -1.52142e7 q^{97} +1.18456e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 14 q^{3} - 294 q^{5} - 686 q^{7} - 2258 q^{9} - 3492 q^{11} - 16170 q^{13} - 24256 q^{15} - 29232 q^{17} - 3206 q^{19} - 4802 q^{21} - 9360 q^{23} + 131146 q^{25} - 18172 q^{27} + 184704 q^{29} + 165060 q^{31}+ \cdots + 9084332 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −24.7648 −0.529553 −0.264777 0.964310i \(-0.585298\pi\)
−0.264777 + 0.964310i \(0.585298\pi\)
\(4\) 0 0
\(5\) 202.412 0.724172 0.362086 0.932145i \(-0.382065\pi\)
0.362086 + 0.932145i \(0.382065\pi\)
\(6\) 0 0
\(7\) −343.000 −0.377964
\(8\) 0 0
\(9\) −1573.71 −0.719573
\(10\) 0 0
\(11\) −7527.19 −1.70513 −0.852567 0.522619i \(-0.824955\pi\)
−0.852567 + 0.522619i \(0.824955\pi\)
\(12\) 0 0
\(13\) −1700.28 −0.214644 −0.107322 0.994224i \(-0.534228\pi\)
−0.107322 + 0.994224i \(0.534228\pi\)
\(14\) 0 0
\(15\) −5012.69 −0.383488
\(16\) 0 0
\(17\) −2481.86 −0.122520 −0.0612599 0.998122i \(-0.519512\pi\)
−0.0612599 + 0.998122i \(0.519512\pi\)
\(18\) 0 0
\(19\) −39816.0 −1.33174 −0.665871 0.746067i \(-0.731940\pi\)
−0.665871 + 0.746067i \(0.731940\pi\)
\(20\) 0 0
\(21\) 8494.31 0.200152
\(22\) 0 0
\(23\) 25560.1 0.438041 0.219020 0.975720i \(-0.429714\pi\)
0.219020 + 0.975720i \(0.429714\pi\)
\(24\) 0 0
\(25\) −37154.2 −0.475574
\(26\) 0 0
\(27\) 93133.0 0.910606
\(28\) 0 0
\(29\) 148830. 1.13317 0.566587 0.824002i \(-0.308263\pi\)
0.566587 + 0.824002i \(0.308263\pi\)
\(30\) 0 0
\(31\) −33538.4 −0.202198 −0.101099 0.994876i \(-0.532236\pi\)
−0.101099 + 0.994876i \(0.532236\pi\)
\(32\) 0 0
\(33\) 186409. 0.902959
\(34\) 0 0
\(35\) −69427.4 −0.273711
\(36\) 0 0
\(37\) 400557. 1.30005 0.650023 0.759915i \(-0.274759\pi\)
0.650023 + 0.759915i \(0.274759\pi\)
\(38\) 0 0
\(39\) 42107.1 0.113666
\(40\) 0 0
\(41\) −362750. −0.821985 −0.410992 0.911639i \(-0.634818\pi\)
−0.410992 + 0.911639i \(0.634818\pi\)
\(42\) 0 0
\(43\) −324652. −0.622699 −0.311350 0.950295i \(-0.600781\pi\)
−0.311350 + 0.950295i \(0.600781\pi\)
\(44\) 0 0
\(45\) −318538. −0.521095
\(46\) 0 0
\(47\) −708899. −0.995960 −0.497980 0.867188i \(-0.665925\pi\)
−0.497980 + 0.867188i \(0.665925\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) 0 0
\(51\) 61462.7 0.0648808
\(52\) 0 0
\(53\) −185924. −0.171542 −0.0857709 0.996315i \(-0.527335\pi\)
−0.0857709 + 0.996315i \(0.527335\pi\)
\(54\) 0 0
\(55\) −1.52360e6 −1.23481
\(56\) 0 0
\(57\) 986034. 0.705228
\(58\) 0 0
\(59\) −1.19372e6 −0.756692 −0.378346 0.925664i \(-0.623507\pi\)
−0.378346 + 0.925664i \(0.623507\pi\)
\(60\) 0 0
\(61\) 2.51204e6 1.41701 0.708504 0.705707i \(-0.249370\pi\)
0.708504 + 0.705707i \(0.249370\pi\)
\(62\) 0 0
\(63\) 539781. 0.271973
\(64\) 0 0
\(65\) −344158. −0.155440
\(66\) 0 0
\(67\) −2.85983e6 −1.16166 −0.580829 0.814025i \(-0.697272\pi\)
−0.580829 + 0.814025i \(0.697272\pi\)
\(68\) 0 0
\(69\) −632989. −0.231966
\(70\) 0 0
\(71\) 3.22083e6 1.06798 0.533990 0.845491i \(-0.320692\pi\)
0.533990 + 0.845491i \(0.320692\pi\)
\(72\) 0 0
\(73\) 5.01287e6 1.50819 0.754095 0.656765i \(-0.228076\pi\)
0.754095 + 0.656765i \(0.228076\pi\)
\(74\) 0 0
\(75\) 920116. 0.251842
\(76\) 0 0
\(77\) 2.58182e6 0.644480
\(78\) 0 0
\(79\) 5.94208e6 1.35595 0.677975 0.735085i \(-0.262858\pi\)
0.677975 + 0.735085i \(0.262858\pi\)
\(80\) 0 0
\(81\) 1.13528e6 0.237359
\(82\) 0 0
\(83\) −1.02006e7 −1.95819 −0.979094 0.203407i \(-0.934799\pi\)
−0.979094 + 0.203407i \(0.934799\pi\)
\(84\) 0 0
\(85\) −502359. −0.0887255
\(86\) 0 0
\(87\) −3.68573e6 −0.600076
\(88\) 0 0
\(89\) 1.85373e6 0.278729 0.139365 0.990241i \(-0.455494\pi\)
0.139365 + 0.990241i \(0.455494\pi\)
\(90\) 0 0
\(91\) 583197. 0.0811280
\(92\) 0 0
\(93\) 830571. 0.107075
\(94\) 0 0
\(95\) −8.05925e6 −0.964411
\(96\) 0 0
\(97\) −1.52142e7 −1.69257 −0.846287 0.532727i \(-0.821167\pi\)
−0.846287 + 0.532727i \(0.821167\pi\)
\(98\) 0 0
\(99\) 1.18456e7 1.22697
\(100\) 0 0
\(101\) −2.02298e7 −1.95374 −0.976869 0.213838i \(-0.931404\pi\)
−0.976869 + 0.213838i \(0.931404\pi\)
\(102\) 0 0
\(103\) 9.23180e6 0.832446 0.416223 0.909263i \(-0.363354\pi\)
0.416223 + 0.909263i \(0.363354\pi\)
\(104\) 0 0
\(105\) 1.71935e6 0.144945
\(106\) 0 0
\(107\) 9.59273e6 0.757005 0.378503 0.925600i \(-0.376439\pi\)
0.378503 + 0.925600i \(0.376439\pi\)
\(108\) 0 0
\(109\) −1.01709e7 −0.752256 −0.376128 0.926568i \(-0.622745\pi\)
−0.376128 + 0.926568i \(0.622745\pi\)
\(110\) 0 0
\(111\) −9.91970e6 −0.688443
\(112\) 0 0
\(113\) 1.09461e6 0.0713649 0.0356825 0.999363i \(-0.488640\pi\)
0.0356825 + 0.999363i \(0.488640\pi\)
\(114\) 0 0
\(115\) 5.17367e6 0.317217
\(116\) 0 0
\(117\) 2.67575e6 0.154452
\(118\) 0 0
\(119\) 851279. 0.0463081
\(120\) 0 0
\(121\) 3.71714e7 1.90748
\(122\) 0 0
\(123\) 8.98342e6 0.435285
\(124\) 0 0
\(125\) −2.33339e7 −1.06857
\(126\) 0 0
\(127\) 2.13370e7 0.924317 0.462158 0.886797i \(-0.347075\pi\)
0.462158 + 0.886797i \(0.347075\pi\)
\(128\) 0 0
\(129\) 8.03993e6 0.329753
\(130\) 0 0
\(131\) −1.28333e7 −0.498758 −0.249379 0.968406i \(-0.580226\pi\)
−0.249379 + 0.968406i \(0.580226\pi\)
\(132\) 0 0
\(133\) 1.36569e7 0.503351
\(134\) 0 0
\(135\) 1.88513e7 0.659436
\(136\) 0 0
\(137\) −4.08059e7 −1.35582 −0.677908 0.735146i \(-0.737113\pi\)
−0.677908 + 0.735146i \(0.737113\pi\)
\(138\) 0 0
\(139\) 1.52006e7 0.480074 0.240037 0.970764i \(-0.422840\pi\)
0.240037 + 0.970764i \(0.422840\pi\)
\(140\) 0 0
\(141\) 1.75557e7 0.527414
\(142\) 0 0
\(143\) 1.27983e7 0.365997
\(144\) 0 0
\(145\) 3.01250e7 0.820614
\(146\) 0 0
\(147\) −2.91355e6 −0.0756505
\(148\) 0 0
\(149\) −4.76985e7 −1.18128 −0.590640 0.806935i \(-0.701125\pi\)
−0.590640 + 0.806935i \(0.701125\pi\)
\(150\) 0 0
\(151\) −7.67985e6 −0.181524 −0.0907619 0.995873i \(-0.528930\pi\)
−0.0907619 + 0.995873i \(0.528930\pi\)
\(152\) 0 0
\(153\) 3.90572e6 0.0881620
\(154\) 0 0
\(155\) −6.78859e6 −0.146426
\(156\) 0 0
\(157\) −7.37198e7 −1.52032 −0.760161 0.649735i \(-0.774880\pi\)
−0.760161 + 0.649735i \(0.774880\pi\)
\(158\) 0 0
\(159\) 4.60436e6 0.0908405
\(160\) 0 0
\(161\) −8.76710e6 −0.165564
\(162\) 0 0
\(163\) −5.42300e7 −0.980805 −0.490402 0.871496i \(-0.663150\pi\)
−0.490402 + 0.871496i \(0.663150\pi\)
\(164\) 0 0
\(165\) 3.77315e7 0.653898
\(166\) 0 0
\(167\) −8.26795e7 −1.37369 −0.686847 0.726802i \(-0.741006\pi\)
−0.686847 + 0.726802i \(0.741006\pi\)
\(168\) 0 0
\(169\) −5.98576e7 −0.953928
\(170\) 0 0
\(171\) 6.26587e7 0.958286
\(172\) 0 0
\(173\) −6.21094e7 −0.912003 −0.456001 0.889979i \(-0.650719\pi\)
−0.456001 + 0.889979i \(0.650719\pi\)
\(174\) 0 0
\(175\) 1.27439e7 0.179750
\(176\) 0 0
\(177\) 2.95621e7 0.400709
\(178\) 0 0
\(179\) 4.74032e7 0.617763 0.308881 0.951101i \(-0.400045\pi\)
0.308881 + 0.951101i \(0.400045\pi\)
\(180\) 0 0
\(181\) 1.30477e8 1.63553 0.817767 0.575549i \(-0.195212\pi\)
0.817767 + 0.575549i \(0.195212\pi\)
\(182\) 0 0
\(183\) −6.22101e7 −0.750381
\(184\) 0 0
\(185\) 8.10777e7 0.941457
\(186\) 0 0
\(187\) 1.86814e7 0.208913
\(188\) 0 0
\(189\) −3.19446e7 −0.344177
\(190\) 0 0
\(191\) −3.89381e7 −0.404351 −0.202175 0.979349i \(-0.564801\pi\)
−0.202175 + 0.979349i \(0.564801\pi\)
\(192\) 0 0
\(193\) 1.31913e8 1.32080 0.660401 0.750913i \(-0.270386\pi\)
0.660401 + 0.750913i \(0.270386\pi\)
\(194\) 0 0
\(195\) 8.52300e6 0.0823135
\(196\) 0 0
\(197\) 2.26076e7 0.210680 0.105340 0.994436i \(-0.466407\pi\)
0.105340 + 0.994436i \(0.466407\pi\)
\(198\) 0 0
\(199\) 9.24230e6 0.0831370 0.0415685 0.999136i \(-0.486765\pi\)
0.0415685 + 0.999136i \(0.486765\pi\)
\(200\) 0 0
\(201\) 7.08230e7 0.615160
\(202\) 0 0
\(203\) −5.10486e7 −0.428300
\(204\) 0 0
\(205\) −7.34251e7 −0.595259
\(206\) 0 0
\(207\) −4.02240e7 −0.315202
\(208\) 0 0
\(209\) 2.99703e8 2.27080
\(210\) 0 0
\(211\) −5.91116e7 −0.433196 −0.216598 0.976261i \(-0.569496\pi\)
−0.216598 + 0.976261i \(0.569496\pi\)
\(212\) 0 0
\(213\) −7.97630e7 −0.565552
\(214\) 0 0
\(215\) −6.57136e7 −0.450942
\(216\) 0 0
\(217\) 1.15037e7 0.0764237
\(218\) 0 0
\(219\) −1.24142e8 −0.798668
\(220\) 0 0
\(221\) 4.21987e6 0.0262982
\(222\) 0 0
\(223\) 2.50841e8 1.51472 0.757358 0.652999i \(-0.226490\pi\)
0.757358 + 0.652999i \(0.226490\pi\)
\(224\) 0 0
\(225\) 5.84699e7 0.342210
\(226\) 0 0
\(227\) 8.10085e7 0.459664 0.229832 0.973230i \(-0.426182\pi\)
0.229832 + 0.973230i \(0.426182\pi\)
\(228\) 0 0
\(229\) −3.13422e8 −1.72467 −0.862333 0.506342i \(-0.830998\pi\)
−0.862333 + 0.506342i \(0.830998\pi\)
\(230\) 0 0
\(231\) −6.39383e7 −0.341286
\(232\) 0 0
\(233\) −2.36331e7 −0.122398 −0.0611992 0.998126i \(-0.519492\pi\)
−0.0611992 + 0.998126i \(0.519492\pi\)
\(234\) 0 0
\(235\) −1.43490e8 −0.721247
\(236\) 0 0
\(237\) −1.47154e8 −0.718048
\(238\) 0 0
\(239\) −2.65137e8 −1.25626 −0.628128 0.778110i \(-0.716178\pi\)
−0.628128 + 0.778110i \(0.716178\pi\)
\(240\) 0 0
\(241\) 4.76463e6 0.0219265 0.0109632 0.999940i \(-0.496510\pi\)
0.0109632 + 0.999940i \(0.496510\pi\)
\(242\) 0 0
\(243\) −2.31797e8 −1.03630
\(244\) 0 0
\(245\) 2.38136e7 0.103453
\(246\) 0 0
\(247\) 6.76985e7 0.285851
\(248\) 0 0
\(249\) 2.52617e8 1.03697
\(250\) 0 0
\(251\) 2.80773e8 1.12072 0.560360 0.828249i \(-0.310663\pi\)
0.560360 + 0.828249i \(0.310663\pi\)
\(252\) 0 0
\(253\) −1.92395e8 −0.746917
\(254\) 0 0
\(255\) 1.24408e7 0.0469849
\(256\) 0 0
\(257\) 5.85988e7 0.215339 0.107669 0.994187i \(-0.465661\pi\)
0.107669 + 0.994187i \(0.465661\pi\)
\(258\) 0 0
\(259\) −1.37391e8 −0.491371
\(260\) 0 0
\(261\) −2.34214e8 −0.815402
\(262\) 0 0
\(263\) 1.23092e8 0.417238 0.208619 0.977997i \(-0.433103\pi\)
0.208619 + 0.977997i \(0.433103\pi\)
\(264\) 0 0
\(265\) −3.76333e7 −0.124226
\(266\) 0 0
\(267\) −4.59073e7 −0.147602
\(268\) 0 0
\(269\) −4.82404e7 −0.151105 −0.0755524 0.997142i \(-0.524072\pi\)
−0.0755524 + 0.997142i \(0.524072\pi\)
\(270\) 0 0
\(271\) 5.43236e8 1.65804 0.829021 0.559217i \(-0.188898\pi\)
0.829021 + 0.559217i \(0.188898\pi\)
\(272\) 0 0
\(273\) −1.44427e7 −0.0429616
\(274\) 0 0
\(275\) 2.79667e8 0.810917
\(276\) 0 0
\(277\) −2.02874e8 −0.573519 −0.286760 0.958003i \(-0.592578\pi\)
−0.286760 + 0.958003i \(0.592578\pi\)
\(278\) 0 0
\(279\) 5.27797e7 0.145496
\(280\) 0 0
\(281\) 6.91877e8 1.86019 0.930094 0.367321i \(-0.119725\pi\)
0.930094 + 0.367321i \(0.119725\pi\)
\(282\) 0 0
\(283\) 3.80825e8 0.998788 0.499394 0.866375i \(-0.333556\pi\)
0.499394 + 0.866375i \(0.333556\pi\)
\(284\) 0 0
\(285\) 1.99585e8 0.510707
\(286\) 0 0
\(287\) 1.24423e8 0.310681
\(288\) 0 0
\(289\) −4.04179e8 −0.984989
\(290\) 0 0
\(291\) 3.76776e8 0.896308
\(292\) 0 0
\(293\) −9.72201e7 −0.225798 −0.112899 0.993606i \(-0.536014\pi\)
−0.112899 + 0.993606i \(0.536014\pi\)
\(294\) 0 0
\(295\) −2.41623e8 −0.547976
\(296\) 0 0
\(297\) −7.01029e8 −1.55270
\(298\) 0 0
\(299\) −4.34593e7 −0.0940229
\(300\) 0 0
\(301\) 1.11356e8 0.235358
\(302\) 0 0
\(303\) 5.00986e8 1.03461
\(304\) 0 0
\(305\) 5.08468e8 1.02616
\(306\) 0 0
\(307\) −8.60584e8 −1.69750 −0.848749 0.528797i \(-0.822643\pi\)
−0.848749 + 0.528797i \(0.822643\pi\)
\(308\) 0 0
\(309\) −2.28623e8 −0.440825
\(310\) 0 0
\(311\) 4.68830e8 0.883800 0.441900 0.897064i \(-0.354305\pi\)
0.441900 + 0.897064i \(0.354305\pi\)
\(312\) 0 0
\(313\) −5.34360e8 −0.984984 −0.492492 0.870317i \(-0.663914\pi\)
−0.492492 + 0.870317i \(0.663914\pi\)
\(314\) 0 0
\(315\) 1.09258e8 0.196955
\(316\) 0 0
\(317\) −3.36916e8 −0.594038 −0.297019 0.954872i \(-0.595993\pi\)
−0.297019 + 0.954872i \(0.595993\pi\)
\(318\) 0 0
\(319\) −1.12027e9 −1.93221
\(320\) 0 0
\(321\) −2.37562e8 −0.400875
\(322\) 0 0
\(323\) 9.88178e7 0.163165
\(324\) 0 0
\(325\) 6.31727e7 0.102079
\(326\) 0 0
\(327\) 2.51879e8 0.398359
\(328\) 0 0
\(329\) 2.43152e8 0.376438
\(330\) 0 0
\(331\) 5.55287e8 0.841626 0.420813 0.907147i \(-0.361745\pi\)
0.420813 + 0.907147i \(0.361745\pi\)
\(332\) 0 0
\(333\) −6.30359e8 −0.935478
\(334\) 0 0
\(335\) −5.78865e8 −0.841241
\(336\) 0 0
\(337\) 8.29504e8 1.18063 0.590315 0.807173i \(-0.299003\pi\)
0.590315 + 0.807173i \(0.299003\pi\)
\(338\) 0 0
\(339\) −2.71077e7 −0.0377915
\(340\) 0 0
\(341\) 2.52450e8 0.344774
\(342\) 0 0
\(343\) −4.03536e7 −0.0539949
\(344\) 0 0
\(345\) −1.28125e8 −0.167983
\(346\) 0 0
\(347\) −1.40234e9 −1.80177 −0.900887 0.434054i \(-0.857083\pi\)
−0.900887 + 0.434054i \(0.857083\pi\)
\(348\) 0 0
\(349\) −2.03183e8 −0.255857 −0.127929 0.991783i \(-0.540833\pi\)
−0.127929 + 0.991783i \(0.540833\pi\)
\(350\) 0 0
\(351\) −1.58352e8 −0.195456
\(352\) 0 0
\(353\) −8.77208e8 −1.06143 −0.530714 0.847551i \(-0.678076\pi\)
−0.530714 + 0.847551i \(0.678076\pi\)
\(354\) 0 0
\(355\) 6.51935e8 0.773402
\(356\) 0 0
\(357\) −2.10817e7 −0.0245226
\(358\) 0 0
\(359\) 9.36785e8 1.06859 0.534293 0.845300i \(-0.320578\pi\)
0.534293 + 0.845300i \(0.320578\pi\)
\(360\) 0 0
\(361\) 6.91443e8 0.773537
\(362\) 0 0
\(363\) −9.20540e8 −1.01011
\(364\) 0 0
\(365\) 1.01467e9 1.09219
\(366\) 0 0
\(367\) −1.14703e8 −0.121127 −0.0605637 0.998164i \(-0.519290\pi\)
−0.0605637 + 0.998164i \(0.519290\pi\)
\(368\) 0 0
\(369\) 5.70862e8 0.591478
\(370\) 0 0
\(371\) 6.37719e7 0.0648367
\(372\) 0 0
\(373\) 1.13809e9 1.13552 0.567761 0.823193i \(-0.307810\pi\)
0.567761 + 0.823193i \(0.307810\pi\)
\(374\) 0 0
\(375\) 5.77859e8 0.565865
\(376\) 0 0
\(377\) −2.53053e8 −0.243230
\(378\) 0 0
\(379\) 1.02843e9 0.970372 0.485186 0.874411i \(-0.338752\pi\)
0.485186 + 0.874411i \(0.338752\pi\)
\(380\) 0 0
\(381\) −5.28406e8 −0.489475
\(382\) 0 0
\(383\) −3.92102e8 −0.356618 −0.178309 0.983975i \(-0.557063\pi\)
−0.178309 + 0.983975i \(0.557063\pi\)
\(384\) 0 0
\(385\) 5.22593e8 0.466714
\(386\) 0 0
\(387\) 5.10907e8 0.448078
\(388\) 0 0
\(389\) 4.73450e8 0.407803 0.203901 0.978991i \(-0.434638\pi\)
0.203901 + 0.978991i \(0.434638\pi\)
\(390\) 0 0
\(391\) −6.34365e7 −0.0536686
\(392\) 0 0
\(393\) 3.17814e8 0.264119
\(394\) 0 0
\(395\) 1.20275e9 0.981942
\(396\) 0 0
\(397\) −1.02400e9 −0.821358 −0.410679 0.911780i \(-0.634708\pi\)
−0.410679 + 0.911780i \(0.634708\pi\)
\(398\) 0 0
\(399\) −3.38210e8 −0.266551
\(400\) 0 0
\(401\) 1.85861e9 1.43941 0.719703 0.694283i \(-0.244278\pi\)
0.719703 + 0.694283i \(0.244278\pi\)
\(402\) 0 0
\(403\) 5.70248e7 0.0434007
\(404\) 0 0
\(405\) 2.29795e8 0.171889
\(406\) 0 0
\(407\) −3.01507e9 −2.21675
\(408\) 0 0
\(409\) −2.18677e9 −1.58042 −0.790209 0.612838i \(-0.790028\pi\)
−0.790209 + 0.612838i \(0.790028\pi\)
\(410\) 0 0
\(411\) 1.01055e9 0.717977
\(412\) 0 0
\(413\) 4.09445e8 0.286003
\(414\) 0 0
\(415\) −2.06474e9 −1.41807
\(416\) 0 0
\(417\) −3.76439e8 −0.254225
\(418\) 0 0
\(419\) −2.05243e9 −1.36307 −0.681535 0.731785i \(-0.738687\pi\)
−0.681535 + 0.731785i \(0.738687\pi\)
\(420\) 0 0
\(421\) 2.64104e9 1.72499 0.862497 0.506062i \(-0.168899\pi\)
0.862497 + 0.506062i \(0.168899\pi\)
\(422\) 0 0
\(423\) 1.11560e9 0.716666
\(424\) 0 0
\(425\) 9.22117e7 0.0582673
\(426\) 0 0
\(427\) −8.61630e8 −0.535579
\(428\) 0 0
\(429\) −3.16948e8 −0.193815
\(430\) 0 0
\(431\) −1.96735e9 −1.18362 −0.591810 0.806078i \(-0.701586\pi\)
−0.591810 + 0.806078i \(0.701586\pi\)
\(432\) 0 0
\(433\) 2.06071e7 0.0121986 0.00609930 0.999981i \(-0.498059\pi\)
0.00609930 + 0.999981i \(0.498059\pi\)
\(434\) 0 0
\(435\) −7.46038e8 −0.434559
\(436\) 0 0
\(437\) −1.01770e9 −0.583357
\(438\) 0 0
\(439\) 8.42596e8 0.475328 0.237664 0.971347i \(-0.423618\pi\)
0.237664 + 0.971347i \(0.423618\pi\)
\(440\) 0 0
\(441\) −1.85145e8 −0.102796
\(442\) 0 0
\(443\) −1.61074e9 −0.880261 −0.440130 0.897934i \(-0.645068\pi\)
−0.440130 + 0.897934i \(0.645068\pi\)
\(444\) 0 0
\(445\) 3.75219e8 0.201848
\(446\) 0 0
\(447\) 1.18124e9 0.625551
\(448\) 0 0
\(449\) −2.53247e9 −1.32033 −0.660164 0.751121i \(-0.729513\pi\)
−0.660164 + 0.751121i \(0.729513\pi\)
\(450\) 0 0
\(451\) 2.73049e9 1.40159
\(452\) 0 0
\(453\) 1.90190e8 0.0961265
\(454\) 0 0
\(455\) 1.18046e8 0.0587506
\(456\) 0 0
\(457\) −2.99719e9 −1.46895 −0.734476 0.678634i \(-0.762572\pi\)
−0.734476 + 0.678634i \(0.762572\pi\)
\(458\) 0 0
\(459\) −2.31143e8 −0.111567
\(460\) 0 0
\(461\) 3.49092e9 1.65954 0.829768 0.558108i \(-0.188472\pi\)
0.829768 + 0.558108i \(0.188472\pi\)
\(462\) 0 0
\(463\) 1.06382e9 0.498122 0.249061 0.968488i \(-0.419878\pi\)
0.249061 + 0.968488i \(0.419878\pi\)
\(464\) 0 0
\(465\) 1.68118e8 0.0775405
\(466\) 0 0
\(467\) −4.06159e9 −1.84539 −0.922694 0.385534i \(-0.874017\pi\)
−0.922694 + 0.385534i \(0.874017\pi\)
\(468\) 0 0
\(469\) 9.80922e8 0.439066
\(470\) 0 0
\(471\) 1.82565e9 0.805091
\(472\) 0 0
\(473\) 2.44372e9 1.06179
\(474\) 0 0
\(475\) 1.47933e9 0.633342
\(476\) 0 0
\(477\) 2.92590e8 0.123437
\(478\) 0 0
\(479\) 1.65959e9 0.689964 0.344982 0.938609i \(-0.387885\pi\)
0.344982 + 0.938609i \(0.387885\pi\)
\(480\) 0 0
\(481\) −6.81061e8 −0.279047
\(482\) 0 0
\(483\) 2.17115e8 0.0876748
\(484\) 0 0
\(485\) −3.07954e9 −1.22572
\(486\) 0 0
\(487\) 2.58745e9 1.01513 0.507563 0.861615i \(-0.330547\pi\)
0.507563 + 0.861615i \(0.330547\pi\)
\(488\) 0 0
\(489\) 1.34299e9 0.519389
\(490\) 0 0
\(491\) −8.22361e8 −0.313529 −0.156764 0.987636i \(-0.550106\pi\)
−0.156764 + 0.987636i \(0.550106\pi\)
\(492\) 0 0
\(493\) −3.69375e8 −0.138836
\(494\) 0 0
\(495\) 2.39769e9 0.888537
\(496\) 0 0
\(497\) −1.10474e9 −0.403658
\(498\) 0 0
\(499\) 2.97850e9 1.07311 0.536557 0.843864i \(-0.319725\pi\)
0.536557 + 0.843864i \(0.319725\pi\)
\(500\) 0 0
\(501\) 2.04754e9 0.727444
\(502\) 0 0
\(503\) −3.64779e7 −0.0127803 −0.00639016 0.999980i \(-0.502034\pi\)
−0.00639016 + 0.999980i \(0.502034\pi\)
\(504\) 0 0
\(505\) −4.09476e9 −1.41484
\(506\) 0 0
\(507\) 1.48236e9 0.505156
\(508\) 0 0
\(509\) −1.14995e9 −0.386516 −0.193258 0.981148i \(-0.561905\pi\)
−0.193258 + 0.981148i \(0.561905\pi\)
\(510\) 0 0
\(511\) −1.71941e9 −0.570043
\(512\) 0 0
\(513\) −3.70818e9 −1.21269
\(514\) 0 0
\(515\) 1.86863e9 0.602834
\(516\) 0 0
\(517\) 5.33602e9 1.69824
\(518\) 0 0
\(519\) 1.53812e9 0.482954
\(520\) 0 0
\(521\) −1.90283e9 −0.589478 −0.294739 0.955578i \(-0.595233\pi\)
−0.294739 + 0.955578i \(0.595233\pi\)
\(522\) 0 0
\(523\) 2.53692e9 0.775445 0.387723 0.921776i \(-0.373262\pi\)
0.387723 + 0.921776i \(0.373262\pi\)
\(524\) 0 0
\(525\) −3.15600e8 −0.0951873
\(526\) 0 0
\(527\) 8.32378e7 0.0247733
\(528\) 0 0
\(529\) −2.75151e9 −0.808120
\(530\) 0 0
\(531\) 1.87856e9 0.544495
\(532\) 0 0
\(533\) 6.16778e8 0.176434
\(534\) 0 0
\(535\) 1.94169e9 0.548202
\(536\) 0 0
\(537\) −1.17393e9 −0.327138
\(538\) 0 0
\(539\) −8.85566e8 −0.243590
\(540\) 0 0
\(541\) −2.06525e9 −0.560766 −0.280383 0.959888i \(-0.590462\pi\)
−0.280383 + 0.959888i \(0.590462\pi\)
\(542\) 0 0
\(543\) −3.23124e9 −0.866103
\(544\) 0 0
\(545\) −2.05871e9 −0.544763
\(546\) 0 0
\(547\) −5.74689e9 −1.50133 −0.750667 0.660680i \(-0.770268\pi\)
−0.750667 + 0.660680i \(0.770268\pi\)
\(548\) 0 0
\(549\) −3.95321e9 −1.01964
\(550\) 0 0
\(551\) −5.92581e9 −1.50910
\(552\) 0 0
\(553\) −2.03813e9 −0.512501
\(554\) 0 0
\(555\) −2.00787e9 −0.498552
\(556\) 0 0
\(557\) 4.98174e9 1.22148 0.610742 0.791829i \(-0.290871\pi\)
0.610742 + 0.791829i \(0.290871\pi\)
\(558\) 0 0
\(559\) 5.52000e8 0.133659
\(560\) 0 0
\(561\) −4.62641e8 −0.110630
\(562\) 0 0
\(563\) −6.24012e8 −0.147372 −0.0736858 0.997282i \(-0.523476\pi\)
−0.0736858 + 0.997282i \(0.523476\pi\)
\(564\) 0 0
\(565\) 2.21563e8 0.0516805
\(566\) 0 0
\(567\) −3.89401e8 −0.0897132
\(568\) 0 0
\(569\) 4.25825e9 0.969032 0.484516 0.874782i \(-0.338996\pi\)
0.484516 + 0.874782i \(0.338996\pi\)
\(570\) 0 0
\(571\) 4.51572e8 0.101508 0.0507541 0.998711i \(-0.483838\pi\)
0.0507541 + 0.998711i \(0.483838\pi\)
\(572\) 0 0
\(573\) 9.64294e8 0.214125
\(574\) 0 0
\(575\) −9.49664e8 −0.208321
\(576\) 0 0
\(577\) −1.38624e8 −0.0300415 −0.0150208 0.999887i \(-0.504781\pi\)
−0.0150208 + 0.999887i \(0.504781\pi\)
\(578\) 0 0
\(579\) −3.26680e9 −0.699435
\(580\) 0 0
\(581\) 3.49882e9 0.740126
\(582\) 0 0
\(583\) 1.39948e9 0.292501
\(584\) 0 0
\(585\) 5.41604e8 0.111850
\(586\) 0 0
\(587\) 4.56072e9 0.930680 0.465340 0.885132i \(-0.345932\pi\)
0.465340 + 0.885132i \(0.345932\pi\)
\(588\) 0 0
\(589\) 1.33537e9 0.269276
\(590\) 0 0
\(591\) −5.59873e8 −0.111566
\(592\) 0 0
\(593\) −2.47185e9 −0.486777 −0.243389 0.969929i \(-0.578259\pi\)
−0.243389 + 0.969929i \(0.578259\pi\)
\(594\) 0 0
\(595\) 1.72309e8 0.0335351
\(596\) 0 0
\(597\) −2.28883e8 −0.0440255
\(598\) 0 0
\(599\) 1.49970e9 0.285108 0.142554 0.989787i \(-0.454468\pi\)
0.142554 + 0.989787i \(0.454468\pi\)
\(600\) 0 0
\(601\) −3.00231e9 −0.564151 −0.282076 0.959392i \(-0.591023\pi\)
−0.282076 + 0.959392i \(0.591023\pi\)
\(602\) 0 0
\(603\) 4.50054e9 0.835899
\(604\) 0 0
\(605\) 7.52394e9 1.38134
\(606\) 0 0
\(607\) 6.29912e9 1.14319 0.571597 0.820535i \(-0.306324\pi\)
0.571597 + 0.820535i \(0.306324\pi\)
\(608\) 0 0
\(609\) 1.26421e9 0.226808
\(610\) 0 0
\(611\) 1.20533e9 0.213777
\(612\) 0 0
\(613\) −7.17649e9 −1.25835 −0.629174 0.777265i \(-0.716607\pi\)
−0.629174 + 0.777265i \(0.716607\pi\)
\(614\) 0 0
\(615\) 1.81835e9 0.315221
\(616\) 0 0
\(617\) 7.21636e9 1.23686 0.618430 0.785840i \(-0.287769\pi\)
0.618430 + 0.785840i \(0.287769\pi\)
\(618\) 0 0
\(619\) −2.99602e9 −0.507724 −0.253862 0.967240i \(-0.581701\pi\)
−0.253862 + 0.967240i \(0.581701\pi\)
\(620\) 0 0
\(621\) 2.38048e9 0.398882
\(622\) 0 0
\(623\) −6.35831e8 −0.105350
\(624\) 0 0
\(625\) −1.82040e9 −0.298255
\(626\) 0 0
\(627\) −7.42206e9 −1.20251
\(628\) 0 0
\(629\) −9.94127e8 −0.159281
\(630\) 0 0
\(631\) 3.74531e7 0.00593452 0.00296726 0.999996i \(-0.499055\pi\)
0.00296726 + 0.999996i \(0.499055\pi\)
\(632\) 0 0
\(633\) 1.46389e9 0.229400
\(634\) 0 0
\(635\) 4.31888e9 0.669365
\(636\) 0 0
\(637\) −2.00037e8 −0.0306635
\(638\) 0 0
\(639\) −5.06864e9 −0.768490
\(640\) 0 0
\(641\) 8.58701e9 1.28777 0.643885 0.765122i \(-0.277321\pi\)
0.643885 + 0.765122i \(0.277321\pi\)
\(642\) 0 0
\(643\) −5.15511e9 −0.764715 −0.382358 0.924014i \(-0.624888\pi\)
−0.382358 + 0.924014i \(0.624888\pi\)
\(644\) 0 0
\(645\) 1.62738e9 0.238798
\(646\) 0 0
\(647\) 2.12153e9 0.307954 0.153977 0.988074i \(-0.450792\pi\)
0.153977 + 0.988074i \(0.450792\pi\)
\(648\) 0 0
\(649\) 8.98533e9 1.29026
\(650\) 0 0
\(651\) −2.84886e8 −0.0404704
\(652\) 0 0
\(653\) 9.90394e9 1.39191 0.695956 0.718085i \(-0.254981\pi\)
0.695956 + 0.718085i \(0.254981\pi\)
\(654\) 0 0
\(655\) −2.59763e9 −0.361187
\(656\) 0 0
\(657\) −7.88878e9 −1.08525
\(658\) 0 0
\(659\) −9.80160e9 −1.33413 −0.667065 0.745000i \(-0.732450\pi\)
−0.667065 + 0.745000i \(0.732450\pi\)
\(660\) 0 0
\(661\) −3.31625e9 −0.446624 −0.223312 0.974747i \(-0.571687\pi\)
−0.223312 + 0.974747i \(0.571687\pi\)
\(662\) 0 0
\(663\) −1.04504e8 −0.0139263
\(664\) 0 0
\(665\) 2.76432e9 0.364513
\(666\) 0 0
\(667\) 3.80410e9 0.496376
\(668\) 0 0
\(669\) −6.21202e9 −0.802123
\(670\) 0 0
\(671\) −1.89086e10 −2.41619
\(672\) 0 0
\(673\) 3.23323e9 0.408869 0.204434 0.978880i \(-0.434465\pi\)
0.204434 + 0.978880i \(0.434465\pi\)
\(674\) 0 0
\(675\) −3.46029e9 −0.433061
\(676\) 0 0
\(677\) −7.81606e9 −0.968116 −0.484058 0.875036i \(-0.660838\pi\)
−0.484058 + 0.875036i \(0.660838\pi\)
\(678\) 0 0
\(679\) 5.21847e9 0.639733
\(680\) 0 0
\(681\) −2.00616e9 −0.243416
\(682\) 0 0
\(683\) 7.39597e9 0.888225 0.444112 0.895971i \(-0.353519\pi\)
0.444112 + 0.895971i \(0.353519\pi\)
\(684\) 0 0
\(685\) −8.25962e9 −0.981845
\(686\) 0 0
\(687\) 7.76182e9 0.913303
\(688\) 0 0
\(689\) 3.16123e8 0.0368205
\(690\) 0 0
\(691\) −3.91291e9 −0.451156 −0.225578 0.974225i \(-0.572427\pi\)
−0.225578 + 0.974225i \(0.572427\pi\)
\(692\) 0 0
\(693\) −4.06304e9 −0.463750
\(694\) 0 0
\(695\) 3.07679e9 0.347657
\(696\) 0 0
\(697\) 9.00295e8 0.100709
\(698\) 0 0
\(699\) 5.85269e8 0.0648165
\(700\) 0 0
\(701\) −3.78702e9 −0.415226 −0.207613 0.978211i \(-0.566570\pi\)
−0.207613 + 0.978211i \(0.566570\pi\)
\(702\) 0 0
\(703\) −1.59486e10 −1.73132
\(704\) 0 0
\(705\) 3.55349e9 0.381939
\(706\) 0 0
\(707\) 6.93882e9 0.738444
\(708\) 0 0
\(709\) −6.02193e8 −0.0634561 −0.0317281 0.999497i \(-0.510101\pi\)
−0.0317281 + 0.999497i \(0.510101\pi\)
\(710\) 0 0
\(711\) −9.35109e9 −0.975705
\(712\) 0 0
\(713\) −8.57244e8 −0.0885709
\(714\) 0 0
\(715\) 2.59054e9 0.265045
\(716\) 0 0
\(717\) 6.56606e9 0.665254
\(718\) 0 0
\(719\) 4.09602e9 0.410971 0.205485 0.978660i \(-0.434123\pi\)
0.205485 + 0.978660i \(0.434123\pi\)
\(720\) 0 0
\(721\) −3.16651e9 −0.314635
\(722\) 0 0
\(723\) −1.17995e8 −0.0116113
\(724\) 0 0
\(725\) −5.52966e9 −0.538909
\(726\) 0 0
\(727\) −5.00935e9 −0.483516 −0.241758 0.970337i \(-0.577724\pi\)
−0.241758 + 0.970337i \(0.577724\pi\)
\(728\) 0 0
\(729\) 3.25753e9 0.311417
\(730\) 0 0
\(731\) 8.05741e8 0.0762930
\(732\) 0 0
\(733\) 8.02679e9 0.752797 0.376399 0.926458i \(-0.377162\pi\)
0.376399 + 0.926458i \(0.377162\pi\)
\(734\) 0 0
\(735\) −5.89738e8 −0.0547840
\(736\) 0 0
\(737\) 2.15265e10 1.98078
\(738\) 0 0
\(739\) 5.79998e9 0.528654 0.264327 0.964433i \(-0.414850\pi\)
0.264327 + 0.964433i \(0.414850\pi\)
\(740\) 0 0
\(741\) −1.67654e9 −0.151373
\(742\) 0 0
\(743\) 1.67943e10 1.50211 0.751056 0.660239i \(-0.229545\pi\)
0.751056 + 0.660239i \(0.229545\pi\)
\(744\) 0 0
\(745\) −9.65477e9 −0.855451
\(746\) 0 0
\(747\) 1.60528e10 1.40906
\(748\) 0 0
\(749\) −3.29031e9 −0.286121
\(750\) 0 0
\(751\) −4.86529e9 −0.419150 −0.209575 0.977793i \(-0.567208\pi\)
−0.209575 + 0.977793i \(0.567208\pi\)
\(752\) 0 0
\(753\) −6.95327e9 −0.593481
\(754\) 0 0
\(755\) −1.55450e9 −0.131455
\(756\) 0 0
\(757\) 9.00246e9 0.754268 0.377134 0.926159i \(-0.376910\pi\)
0.377134 + 0.926159i \(0.376910\pi\)
\(758\) 0 0
\(759\) 4.76462e9 0.395533
\(760\) 0 0
\(761\) −1.37707e10 −1.13268 −0.566342 0.824170i \(-0.691642\pi\)
−0.566342 + 0.824170i \(0.691642\pi\)
\(762\) 0 0
\(763\) 3.48861e9 0.284326
\(764\) 0 0
\(765\) 7.90566e8 0.0638445
\(766\) 0 0
\(767\) 2.02966e9 0.162420
\(768\) 0 0
\(769\) 1.80342e10 1.43006 0.715030 0.699094i \(-0.246413\pi\)
0.715030 + 0.699094i \(0.246413\pi\)
\(770\) 0 0
\(771\) −1.45118e9 −0.114033
\(772\) 0 0
\(773\) 1.91942e10 1.49466 0.747328 0.664455i \(-0.231336\pi\)
0.747328 + 0.664455i \(0.231336\pi\)
\(774\) 0 0
\(775\) 1.24609e9 0.0961602
\(776\) 0 0
\(777\) 3.40246e9 0.260207
\(778\) 0 0
\(779\) 1.44433e10 1.09467
\(780\) 0 0
\(781\) −2.42438e10 −1.82105
\(782\) 0 0
\(783\) 1.38610e10 1.03188
\(784\) 0 0
\(785\) −1.49218e10 −1.10098
\(786\) 0 0
\(787\) −4.00491e8 −0.0292874 −0.0146437 0.999893i \(-0.504661\pi\)
−0.0146437 + 0.999893i \(0.504661\pi\)
\(788\) 0 0
\(789\) −3.04834e9 −0.220950
\(790\) 0 0
\(791\) −3.75451e8 −0.0269734
\(792\) 0 0
\(793\) −4.27118e9 −0.304153
\(794\) 0 0
\(795\) 9.31980e8 0.0657842
\(796\) 0 0
\(797\) −2.57300e10 −1.80026 −0.900129 0.435623i \(-0.856528\pi\)
−0.900129 + 0.435623i \(0.856528\pi\)
\(798\) 0 0
\(799\) 1.75939e9 0.122025
\(800\) 0 0
\(801\) −2.91723e9 −0.200566
\(802\) 0 0
\(803\) −3.77328e10 −2.57167
\(804\) 0 0
\(805\) −1.77457e9 −0.119897
\(806\) 0 0
\(807\) 1.19466e9 0.0800180
\(808\) 0 0
\(809\) 1.42308e10 0.944954 0.472477 0.881343i \(-0.343360\pi\)
0.472477 + 0.881343i \(0.343360\pi\)
\(810\) 0 0
\(811\) 7.90561e9 0.520430 0.260215 0.965551i \(-0.416207\pi\)
0.260215 + 0.965551i \(0.416207\pi\)
\(812\) 0 0
\(813\) −1.34531e10 −0.878022
\(814\) 0 0
\(815\) −1.09768e10 −0.710272
\(816\) 0 0
\(817\) 1.29263e10 0.829275
\(818\) 0 0
\(819\) −9.17781e8 −0.0583775
\(820\) 0 0
\(821\) −1.10081e10 −0.694245 −0.347122 0.937820i \(-0.612841\pi\)
−0.347122 + 0.937820i \(0.612841\pi\)
\(822\) 0 0
\(823\) 2.34709e10 1.46767 0.733837 0.679325i \(-0.237727\pi\)
0.733837 + 0.679325i \(0.237727\pi\)
\(824\) 0 0
\(825\) −6.92588e9 −0.429424
\(826\) 0 0
\(827\) −8.50710e9 −0.523013 −0.261506 0.965202i \(-0.584219\pi\)
−0.261506 + 0.965202i \(0.584219\pi\)
\(828\) 0 0
\(829\) −1.03685e9 −0.0632083 −0.0316042 0.999500i \(-0.510062\pi\)
−0.0316042 + 0.999500i \(0.510062\pi\)
\(830\) 0 0
\(831\) 5.02414e9 0.303709
\(832\) 0 0
\(833\) −2.91989e8 −0.0175028
\(834\) 0 0
\(835\) −1.67353e10 −0.994791
\(836\) 0 0
\(837\) −3.12353e9 −0.184123
\(838\) 0 0
\(839\) 3.03376e10 1.77343 0.886716 0.462315i \(-0.152981\pi\)
0.886716 + 0.462315i \(0.152981\pi\)
\(840\) 0 0
\(841\) 4.90042e9 0.284084
\(842\) 0 0
\(843\) −1.71342e10 −0.985069
\(844\) 0 0
\(845\) −1.21159e10 −0.690808
\(846\) 0 0
\(847\) −1.27498e10 −0.720959
\(848\) 0 0
\(849\) −9.43105e9 −0.528912
\(850\) 0 0
\(851\) 1.02383e10 0.569472
\(852\) 0 0
\(853\) −2.76476e9 −0.152523 −0.0762617 0.997088i \(-0.524298\pi\)
−0.0762617 + 0.997088i \(0.524298\pi\)
\(854\) 0 0
\(855\) 1.26829e10 0.693964
\(856\) 0 0
\(857\) 1.38837e10 0.753483 0.376742 0.926318i \(-0.377044\pi\)
0.376742 + 0.926318i \(0.377044\pi\)
\(858\) 0 0
\(859\) 1.45970e10 0.785758 0.392879 0.919590i \(-0.371479\pi\)
0.392879 + 0.919590i \(0.371479\pi\)
\(860\) 0 0
\(861\) −3.08131e9 −0.164522
\(862\) 0 0
\(863\) −3.56600e10 −1.88861 −0.944307 0.329065i \(-0.893266\pi\)
−0.944307 + 0.329065i \(0.893266\pi\)
\(864\) 0 0
\(865\) −1.25717e10 −0.660447
\(866\) 0 0
\(867\) 1.00094e10 0.521604
\(868\) 0 0
\(869\) −4.47271e10 −2.31208
\(870\) 0 0
\(871\) 4.86252e9 0.249344
\(872\) 0 0
\(873\) 2.39427e10 1.21793
\(874\) 0 0
\(875\) 8.00354e9 0.403882
\(876\) 0 0
\(877\) 5.28586e9 0.264616 0.132308 0.991209i \(-0.457761\pi\)
0.132308 + 0.991209i \(0.457761\pi\)
\(878\) 0 0
\(879\) 2.40763e9 0.119572
\(880\) 0 0
\(881\) 5.21604e9 0.256996 0.128498 0.991710i \(-0.458984\pi\)
0.128498 + 0.991710i \(0.458984\pi\)
\(882\) 0 0
\(883\) 1.21534e10 0.594065 0.297032 0.954867i \(-0.404003\pi\)
0.297032 + 0.954867i \(0.404003\pi\)
\(884\) 0 0
\(885\) 5.98374e9 0.290182
\(886\) 0 0
\(887\) −1.17188e10 −0.563833 −0.281916 0.959439i \(-0.590970\pi\)
−0.281916 + 0.959439i \(0.590970\pi\)
\(888\) 0 0
\(889\) −7.31860e9 −0.349359
\(890\) 0 0
\(891\) −8.54546e9 −0.404728
\(892\) 0 0
\(893\) 2.82255e10 1.32636
\(894\) 0 0
\(895\) 9.59499e9 0.447367
\(896\) 0 0
\(897\) 1.07626e9 0.0497902
\(898\) 0 0
\(899\) −4.99152e9 −0.229126
\(900\) 0 0
\(901\) 4.61437e8 0.0210173
\(902\) 0 0
\(903\) −2.75770e9 −0.124635
\(904\) 0 0
\(905\) 2.64102e10 1.18441
\(906\) 0 0
\(907\) 1.59433e10 0.709503 0.354751 0.934961i \(-0.384566\pi\)
0.354751 + 0.934961i \(0.384566\pi\)
\(908\) 0 0
\(909\) 3.18357e10 1.40586
\(910\) 0 0
\(911\) −1.93529e10 −0.848071 −0.424035 0.905646i \(-0.639387\pi\)
−0.424035 + 0.905646i \(0.639387\pi\)
\(912\) 0 0
\(913\) 7.67822e10 3.33897
\(914\) 0 0
\(915\) −1.25921e10 −0.543405
\(916\) 0 0
\(917\) 4.40183e9 0.188513
\(918\) 0 0
\(919\) −1.32527e10 −0.563248 −0.281624 0.959525i \(-0.590873\pi\)
−0.281624 + 0.959525i \(0.590873\pi\)
\(920\) 0 0
\(921\) 2.13122e10 0.898915
\(922\) 0 0
\(923\) −5.47632e9 −0.229236
\(924\) 0 0
\(925\) −1.48824e10 −0.618268
\(926\) 0 0
\(927\) −1.45281e10 −0.599006
\(928\) 0 0
\(929\) −2.41624e10 −0.988745 −0.494373 0.869250i \(-0.664602\pi\)
−0.494373 + 0.869250i \(0.664602\pi\)
\(930\) 0 0
\(931\) −4.68431e9 −0.190249
\(932\) 0 0
\(933\) −1.16105e10 −0.468019
\(934\) 0 0
\(935\) 3.78135e9 0.151289
\(936\) 0 0
\(937\) 2.73784e10 1.08723 0.543613 0.839336i \(-0.317056\pi\)
0.543613 + 0.839336i \(0.317056\pi\)
\(938\) 0 0
\(939\) 1.32333e10 0.521601
\(940\) 0 0
\(941\) −1.02226e10 −0.399944 −0.199972 0.979802i \(-0.564085\pi\)
−0.199972 + 0.979802i \(0.564085\pi\)
\(942\) 0 0
\(943\) −9.27191e9 −0.360063
\(944\) 0 0
\(945\) −6.46599e9 −0.249243
\(946\) 0 0
\(947\) 1.35222e9 0.0517397 0.0258698 0.999665i \(-0.491764\pi\)
0.0258698 + 0.999665i \(0.491764\pi\)
\(948\) 0 0
\(949\) −8.52330e9 −0.323725
\(950\) 0 0
\(951\) 8.34365e9 0.314575
\(952\) 0 0
\(953\) −2.33119e10 −0.872476 −0.436238 0.899831i \(-0.643689\pi\)
−0.436238 + 0.899831i \(0.643689\pi\)
\(954\) 0 0
\(955\) −7.88156e9 −0.292820
\(956\) 0 0
\(957\) 2.77432e10 1.02321
\(958\) 0 0
\(959\) 1.39964e10 0.512451
\(960\) 0 0
\(961\) −2.63878e10 −0.959116
\(962\) 0 0
\(963\) −1.50961e10 −0.544721
\(964\) 0 0
\(965\) 2.67009e10 0.956488
\(966\) 0 0
\(967\) 2.07860e10 0.739229 0.369615 0.929185i \(-0.379490\pi\)
0.369615 + 0.929185i \(0.379490\pi\)
\(968\) 0 0
\(969\) −2.44720e9 −0.0864045
\(970\) 0 0
\(971\) −5.56486e10 −1.95068 −0.975341 0.220702i \(-0.929165\pi\)
−0.975341 + 0.220702i \(0.929165\pi\)
\(972\) 0 0
\(973\) −5.21380e9 −0.181451
\(974\) 0 0
\(975\) −1.56446e9 −0.0540565
\(976\) 0 0
\(977\) −3.74779e10 −1.28571 −0.642857 0.765986i \(-0.722251\pi\)
−0.642857 + 0.765986i \(0.722251\pi\)
\(978\) 0 0
\(979\) −1.39534e10 −0.475270
\(980\) 0 0
\(981\) 1.60060e10 0.541303
\(982\) 0 0
\(983\) −2.07940e10 −0.698234 −0.349117 0.937079i \(-0.613518\pi\)
−0.349117 + 0.937079i \(0.613518\pi\)
\(984\) 0 0
\(985\) 4.57607e9 0.152569
\(986\) 0 0
\(987\) −6.02161e9 −0.199344
\(988\) 0 0
\(989\) −8.29812e9 −0.272768
\(990\) 0 0
\(991\) −4.17472e10 −1.36260 −0.681301 0.732003i \(-0.738586\pi\)
−0.681301 + 0.732003i \(0.738586\pi\)
\(992\) 0 0
\(993\) −1.37515e10 −0.445686
\(994\) 0 0
\(995\) 1.87076e9 0.0602055
\(996\) 0 0
\(997\) −1.18879e10 −0.379902 −0.189951 0.981794i \(-0.560833\pi\)
−0.189951 + 0.981794i \(0.560833\pi\)
\(998\) 0 0
\(999\) 3.73051e10 1.18383
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 28.8.a.b.1.1 2
3.2 odd 2 252.8.a.f.1.1 2
4.3 odd 2 112.8.a.h.1.2 2
7.2 even 3 196.8.e.b.165.2 4
7.3 odd 6 196.8.e.c.177.1 4
7.4 even 3 196.8.e.b.177.2 4
7.5 odd 6 196.8.e.c.165.1 4
7.6 odd 2 196.8.a.a.1.2 2
8.3 odd 2 448.8.a.q.1.1 2
8.5 even 2 448.8.a.o.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.8.a.b.1.1 2 1.1 even 1 trivial
112.8.a.h.1.2 2 4.3 odd 2
196.8.a.a.1.2 2 7.6 odd 2
196.8.e.b.165.2 4 7.2 even 3
196.8.e.b.177.2 4 7.4 even 3
196.8.e.c.165.1 4 7.5 odd 6
196.8.e.c.177.1 4 7.3 odd 6
252.8.a.f.1.1 2 3.2 odd 2
448.8.a.o.1.2 2 8.5 even 2
448.8.a.q.1.1 2 8.3 odd 2