Properties

Label 28.8.a.a.1.2
Level $28$
Weight $8$
Character 28.1
Self dual yes
Analytic conductor $8.747$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [28,8,Mod(1,28)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("28.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 28 = 2^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 28.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.74678071356\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3529}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 882 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-29.2027\) of defining polynomial
Character \(\chi\) \(=\) 28.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+52.4054 q^{3} +199.216 q^{5} +343.000 q^{7} +559.325 q^{9} +1218.97 q^{11} +6449.65 q^{13} +10440.0 q^{15} +26786.9 q^{17} +14910.9 q^{19} +17975.0 q^{21} -73500.9 q^{23} -38437.9 q^{25} -85299.0 q^{27} -106453. q^{29} +66816.7 q^{31} +63880.8 q^{33} +68331.1 q^{35} -479502. q^{37} +337996. q^{39} -644539. q^{41} +145165. q^{43} +111426. q^{45} +1.01085e6 q^{47} +117649. q^{49} +1.40378e6 q^{51} +34208.5 q^{53} +242839. q^{55} +781414. q^{57} -443317. q^{59} -1.14043e6 q^{61} +191848. q^{63} +1.28487e6 q^{65} -4.31928e6 q^{67} -3.85185e6 q^{69} +2.54867e6 q^{71} -3.67723e6 q^{73} -2.01435e6 q^{75} +418108. q^{77} +8.55564e6 q^{79} -5.69337e6 q^{81} -1.79721e6 q^{83} +5.33639e6 q^{85} -5.57873e6 q^{87} +5.56317e6 q^{89} +2.21223e6 q^{91} +3.50155e6 q^{93} +2.97050e6 q^{95} -1.72057e7 q^{97} +681802. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{3} + 42 q^{5} + 686 q^{7} + 2782 q^{9} + 7428 q^{11} + 11830 q^{13} + 20880 q^{15} + 15792 q^{17} + 26614 q^{19} - 4802 q^{21} + 32640 q^{23} - 91846 q^{25} - 87668 q^{27} - 158016 q^{29} - 180740 q^{31}+ \cdots + 14482452 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 52.4054 1.12060 0.560301 0.828289i \(-0.310685\pi\)
0.560301 + 0.828289i \(0.310685\pi\)
\(4\) 0 0
\(5\) 199.216 0.712737 0.356369 0.934345i \(-0.384015\pi\)
0.356369 + 0.934345i \(0.384015\pi\)
\(6\) 0 0
\(7\) 343.000 0.377964
\(8\) 0 0
\(9\) 559.325 0.255750
\(10\) 0 0
\(11\) 1218.97 0.276134 0.138067 0.990423i \(-0.455911\pi\)
0.138067 + 0.990423i \(0.455911\pi\)
\(12\) 0 0
\(13\) 6449.65 0.814206 0.407103 0.913382i \(-0.366539\pi\)
0.407103 + 0.913382i \(0.366539\pi\)
\(14\) 0 0
\(15\) 10440.0 0.798695
\(16\) 0 0
\(17\) 26786.9 1.32237 0.661183 0.750225i \(-0.270055\pi\)
0.661183 + 0.750225i \(0.270055\pi\)
\(18\) 0 0
\(19\) 14910.9 0.498732 0.249366 0.968409i \(-0.419778\pi\)
0.249366 + 0.968409i \(0.419778\pi\)
\(20\) 0 0
\(21\) 17975.0 0.423548
\(22\) 0 0
\(23\) −73500.9 −1.25964 −0.629819 0.776742i \(-0.716871\pi\)
−0.629819 + 0.776742i \(0.716871\pi\)
\(24\) 0 0
\(25\) −38437.9 −0.492005
\(26\) 0 0
\(27\) −85299.0 −0.834009
\(28\) 0 0
\(29\) −106453. −0.810524 −0.405262 0.914200i \(-0.632820\pi\)
−0.405262 + 0.914200i \(0.632820\pi\)
\(30\) 0 0
\(31\) 66816.7 0.402827 0.201414 0.979506i \(-0.435446\pi\)
0.201414 + 0.979506i \(0.435446\pi\)
\(32\) 0 0
\(33\) 63880.8 0.309436
\(34\) 0 0
\(35\) 68331.1 0.269389
\(36\) 0 0
\(37\) −479502. −1.55627 −0.778134 0.628099i \(-0.783833\pi\)
−0.778134 + 0.628099i \(0.783833\pi\)
\(38\) 0 0
\(39\) 337996. 0.912401
\(40\) 0 0
\(41\) −644539. −1.46051 −0.730257 0.683173i \(-0.760599\pi\)
−0.730257 + 0.683173i \(0.760599\pi\)
\(42\) 0 0
\(43\) 145165. 0.278434 0.139217 0.990262i \(-0.455541\pi\)
0.139217 + 0.990262i \(0.455541\pi\)
\(44\) 0 0
\(45\) 111426. 0.182282
\(46\) 0 0
\(47\) 1.01085e6 1.42018 0.710088 0.704113i \(-0.248655\pi\)
0.710088 + 0.704113i \(0.248655\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) 0 0
\(51\) 1.40378e6 1.48185
\(52\) 0 0
\(53\) 34208.5 0.0315623 0.0157812 0.999875i \(-0.494976\pi\)
0.0157812 + 0.999875i \(0.494976\pi\)
\(54\) 0 0
\(55\) 242839. 0.196811
\(56\) 0 0
\(57\) 781414. 0.558881
\(58\) 0 0
\(59\) −443317. −0.281017 −0.140508 0.990079i \(-0.544874\pi\)
−0.140508 + 0.990079i \(0.544874\pi\)
\(60\) 0 0
\(61\) −1.14043e6 −0.643300 −0.321650 0.946859i \(-0.604237\pi\)
−0.321650 + 0.946859i \(0.604237\pi\)
\(62\) 0 0
\(63\) 191848. 0.0966643
\(64\) 0 0
\(65\) 1.28487e6 0.580315
\(66\) 0 0
\(67\) −4.31928e6 −1.75448 −0.877242 0.480048i \(-0.840619\pi\)
−0.877242 + 0.480048i \(0.840619\pi\)
\(68\) 0 0
\(69\) −3.85185e6 −1.41155
\(70\) 0 0
\(71\) 2.54867e6 0.845103 0.422551 0.906339i \(-0.361135\pi\)
0.422551 + 0.906339i \(0.361135\pi\)
\(72\) 0 0
\(73\) −3.67723e6 −1.10635 −0.553173 0.833067i \(-0.686583\pi\)
−0.553173 + 0.833067i \(0.686583\pi\)
\(74\) 0 0
\(75\) −2.01435e6 −0.551342
\(76\) 0 0
\(77\) 418108. 0.104369
\(78\) 0 0
\(79\) 8.55564e6 1.95235 0.976174 0.216987i \(-0.0696230\pi\)
0.976174 + 0.216987i \(0.0696230\pi\)
\(80\) 0 0
\(81\) −5.69337e6 −1.19034
\(82\) 0 0
\(83\) −1.79721e6 −0.345006 −0.172503 0.985009i \(-0.555185\pi\)
−0.172503 + 0.985009i \(0.555185\pi\)
\(84\) 0 0
\(85\) 5.33639e6 0.942499
\(86\) 0 0
\(87\) −5.57873e6 −0.908276
\(88\) 0 0
\(89\) 5.56317e6 0.836484 0.418242 0.908336i \(-0.362646\pi\)
0.418242 + 0.908336i \(0.362646\pi\)
\(90\) 0 0
\(91\) 2.21223e6 0.307741
\(92\) 0 0
\(93\) 3.50155e6 0.451409
\(94\) 0 0
\(95\) 2.97050e6 0.355465
\(96\) 0 0
\(97\) −1.72057e7 −1.91413 −0.957064 0.289877i \(-0.906386\pi\)
−0.957064 + 0.289877i \(0.906386\pi\)
\(98\) 0 0
\(99\) 681802. 0.0706212
\(100\) 0 0
\(101\) 1.18725e7 1.14661 0.573306 0.819341i \(-0.305661\pi\)
0.573306 + 0.819341i \(0.305661\pi\)
\(102\) 0 0
\(103\) 1.60523e7 1.44746 0.723731 0.690082i \(-0.242426\pi\)
0.723731 + 0.690082i \(0.242426\pi\)
\(104\) 0 0
\(105\) 3.58092e6 0.301878
\(106\) 0 0
\(107\) 1.04274e7 0.822870 0.411435 0.911439i \(-0.365028\pi\)
0.411435 + 0.911439i \(0.365028\pi\)
\(108\) 0 0
\(109\) 7.51810e6 0.556052 0.278026 0.960574i \(-0.410320\pi\)
0.278026 + 0.960574i \(0.410320\pi\)
\(110\) 0 0
\(111\) −2.51285e7 −1.74396
\(112\) 0 0
\(113\) 2.53184e7 1.65067 0.825337 0.564640i \(-0.190985\pi\)
0.825337 + 0.564640i \(0.190985\pi\)
\(114\) 0 0
\(115\) −1.46426e7 −0.897791
\(116\) 0 0
\(117\) 3.60745e6 0.208233
\(118\) 0 0
\(119\) 9.18791e6 0.499807
\(120\) 0 0
\(121\) −1.80013e7 −0.923750
\(122\) 0 0
\(123\) −3.37773e7 −1.63665
\(124\) 0 0
\(125\) −2.32212e7 −1.06341
\(126\) 0 0
\(127\) −3.98433e7 −1.72600 −0.863002 0.505201i \(-0.831419\pi\)
−0.863002 + 0.505201i \(0.831419\pi\)
\(128\) 0 0
\(129\) 7.60744e6 0.312014
\(130\) 0 0
\(131\) 1.30645e7 0.507741 0.253870 0.967238i \(-0.418296\pi\)
0.253870 + 0.967238i \(0.418296\pi\)
\(132\) 0 0
\(133\) 5.11445e6 0.188503
\(134\) 0 0
\(135\) −1.69929e7 −0.594429
\(136\) 0 0
\(137\) 3.35662e6 0.111527 0.0557636 0.998444i \(-0.482241\pi\)
0.0557636 + 0.998444i \(0.482241\pi\)
\(138\) 0 0
\(139\) −9.65184e6 −0.304830 −0.152415 0.988317i \(-0.548705\pi\)
−0.152415 + 0.988317i \(0.548705\pi\)
\(140\) 0 0
\(141\) 5.29738e7 1.59145
\(142\) 0 0
\(143\) 7.86195e6 0.224830
\(144\) 0 0
\(145\) −2.12072e7 −0.577691
\(146\) 0 0
\(147\) 6.16544e6 0.160086
\(148\) 0 0
\(149\) 5.61846e7 1.39144 0.695722 0.718311i \(-0.255085\pi\)
0.695722 + 0.718311i \(0.255085\pi\)
\(150\) 0 0
\(151\) −2.33811e7 −0.552644 −0.276322 0.961065i \(-0.589116\pi\)
−0.276322 + 0.961065i \(0.589116\pi\)
\(152\) 0 0
\(153\) 1.49826e7 0.338195
\(154\) 0 0
\(155\) 1.33110e7 0.287110
\(156\) 0 0
\(157\) −2.10986e7 −0.435116 −0.217558 0.976047i \(-0.569809\pi\)
−0.217558 + 0.976047i \(0.569809\pi\)
\(158\) 0 0
\(159\) 1.79271e6 0.0353688
\(160\) 0 0
\(161\) −2.52108e7 −0.476098
\(162\) 0 0
\(163\) 6.03996e7 1.09239 0.546195 0.837658i \(-0.316076\pi\)
0.546195 + 0.837658i \(0.316076\pi\)
\(164\) 0 0
\(165\) 1.27261e7 0.220547
\(166\) 0 0
\(167\) 6.88696e7 1.14425 0.572124 0.820167i \(-0.306120\pi\)
0.572124 + 0.820167i \(0.306120\pi\)
\(168\) 0 0
\(169\) −2.11506e7 −0.337069
\(170\) 0 0
\(171\) 8.34006e6 0.127551
\(172\) 0 0
\(173\) −2.94427e7 −0.432331 −0.216166 0.976357i \(-0.569355\pi\)
−0.216166 + 0.976357i \(0.569355\pi\)
\(174\) 0 0
\(175\) −1.31842e7 −0.185961
\(176\) 0 0
\(177\) −2.32322e7 −0.314908
\(178\) 0 0
\(179\) 8.98500e7 1.17093 0.585467 0.810696i \(-0.300911\pi\)
0.585467 + 0.810696i \(0.300911\pi\)
\(180\) 0 0
\(181\) 4.60929e7 0.577775 0.288888 0.957363i \(-0.406715\pi\)
0.288888 + 0.957363i \(0.406715\pi\)
\(182\) 0 0
\(183\) −5.97646e7 −0.720883
\(184\) 0 0
\(185\) −9.55245e7 −1.10921
\(186\) 0 0
\(187\) 3.26525e7 0.365150
\(188\) 0 0
\(189\) −2.92575e7 −0.315226
\(190\) 0 0
\(191\) −3.90211e7 −0.405213 −0.202606 0.979260i \(-0.564941\pi\)
−0.202606 + 0.979260i \(0.564941\pi\)
\(192\) 0 0
\(193\) −1.65472e7 −0.165681 −0.0828406 0.996563i \(-0.526399\pi\)
−0.0828406 + 0.996563i \(0.526399\pi\)
\(194\) 0 0
\(195\) 6.73343e7 0.650302
\(196\) 0 0
\(197\) −2.12903e7 −0.198403 −0.0992017 0.995067i \(-0.531629\pi\)
−0.0992017 + 0.995067i \(0.531629\pi\)
\(198\) 0 0
\(199\) 2.28518e7 0.205558 0.102779 0.994704i \(-0.467227\pi\)
0.102779 + 0.994704i \(0.467227\pi\)
\(200\) 0 0
\(201\) −2.26354e8 −1.96608
\(202\) 0 0
\(203\) −3.65135e7 −0.306349
\(204\) 0 0
\(205\) −1.28403e8 −1.04096
\(206\) 0 0
\(207\) −4.11109e7 −0.322152
\(208\) 0 0
\(209\) 1.81761e7 0.137717
\(210\) 0 0
\(211\) −1.49824e8 −1.09797 −0.548987 0.835831i \(-0.684986\pi\)
−0.548987 + 0.835831i \(0.684986\pi\)
\(212\) 0 0
\(213\) 1.33564e8 0.947024
\(214\) 0 0
\(215\) 2.89192e7 0.198451
\(216\) 0 0
\(217\) 2.29181e7 0.152254
\(218\) 0 0
\(219\) −1.92707e8 −1.23977
\(220\) 0 0
\(221\) 1.72766e8 1.07668
\(222\) 0 0
\(223\) 1.85577e8 1.12062 0.560308 0.828284i \(-0.310683\pi\)
0.560308 + 0.828284i \(0.310683\pi\)
\(224\) 0 0
\(225\) −2.14993e7 −0.125830
\(226\) 0 0
\(227\) 3.17593e8 1.80211 0.901053 0.433708i \(-0.142795\pi\)
0.901053 + 0.433708i \(0.142795\pi\)
\(228\) 0 0
\(229\) 2.35342e8 1.29502 0.647509 0.762057i \(-0.275811\pi\)
0.647509 + 0.762057i \(0.275811\pi\)
\(230\) 0 0
\(231\) 2.19111e7 0.116956
\(232\) 0 0
\(233\) −3.16797e8 −1.64072 −0.820362 0.571844i \(-0.806228\pi\)
−0.820362 + 0.571844i \(0.806228\pi\)
\(234\) 0 0
\(235\) 2.01377e8 1.01221
\(236\) 0 0
\(237\) 4.48361e8 2.18781
\(238\) 0 0
\(239\) −8.35562e7 −0.395900 −0.197950 0.980212i \(-0.563428\pi\)
−0.197950 + 0.980212i \(0.563428\pi\)
\(240\) 0 0
\(241\) −1.04444e8 −0.480644 −0.240322 0.970693i \(-0.577253\pi\)
−0.240322 + 0.970693i \(0.577253\pi\)
\(242\) 0 0
\(243\) −1.11814e8 −0.499891
\(244\) 0 0
\(245\) 2.34376e7 0.101820
\(246\) 0 0
\(247\) 9.61704e7 0.406071
\(248\) 0 0
\(249\) −9.41837e7 −0.386614
\(250\) 0 0
\(251\) −2.74656e8 −1.09630 −0.548152 0.836379i \(-0.684669\pi\)
−0.548152 + 0.836379i \(0.684669\pi\)
\(252\) 0 0
\(253\) −8.95957e7 −0.347829
\(254\) 0 0
\(255\) 2.79655e8 1.05617
\(256\) 0 0
\(257\) −4.74786e7 −0.174474 −0.0872372 0.996188i \(-0.527804\pi\)
−0.0872372 + 0.996188i \(0.527804\pi\)
\(258\) 0 0
\(259\) −1.64469e8 −0.588214
\(260\) 0 0
\(261\) −5.95419e7 −0.207291
\(262\) 0 0
\(263\) −1.32034e7 −0.0447548 −0.0223774 0.999750i \(-0.507124\pi\)
−0.0223774 + 0.999750i \(0.507124\pi\)
\(264\) 0 0
\(265\) 6.81489e6 0.0224956
\(266\) 0 0
\(267\) 2.91540e8 0.937366
\(268\) 0 0
\(269\) −4.66144e8 −1.46012 −0.730058 0.683386i \(-0.760507\pi\)
−0.730058 + 0.683386i \(0.760507\pi\)
\(270\) 0 0
\(271\) −1.64684e8 −0.502642 −0.251321 0.967904i \(-0.580865\pi\)
−0.251321 + 0.967904i \(0.580865\pi\)
\(272\) 0 0
\(273\) 1.15933e8 0.344855
\(274\) 0 0
\(275\) −4.68548e7 −0.135859
\(276\) 0 0
\(277\) 6.26721e8 1.77172 0.885861 0.463952i \(-0.153569\pi\)
0.885861 + 0.463952i \(0.153569\pi\)
\(278\) 0 0
\(279\) 3.73722e7 0.103023
\(280\) 0 0
\(281\) −5.30935e8 −1.42748 −0.713739 0.700412i \(-0.753000\pi\)
−0.713739 + 0.700412i \(0.753000\pi\)
\(282\) 0 0
\(283\) −1.73440e8 −0.454880 −0.227440 0.973792i \(-0.573036\pi\)
−0.227440 + 0.973792i \(0.573036\pi\)
\(284\) 0 0
\(285\) 1.55670e8 0.398335
\(286\) 0 0
\(287\) −2.21077e8 −0.552022
\(288\) 0 0
\(289\) 3.07200e8 0.748650
\(290\) 0 0
\(291\) −9.01671e8 −2.14498
\(292\) 0 0
\(293\) −1.19128e8 −0.276680 −0.138340 0.990385i \(-0.544177\pi\)
−0.138340 + 0.990385i \(0.544177\pi\)
\(294\) 0 0
\(295\) −8.83159e7 −0.200291
\(296\) 0 0
\(297\) −1.03977e8 −0.230298
\(298\) 0 0
\(299\) −4.74055e8 −1.02560
\(300\) 0 0
\(301\) 4.97916e7 0.105238
\(302\) 0 0
\(303\) 6.22182e8 1.28490
\(304\) 0 0
\(305\) −2.27192e8 −0.458504
\(306\) 0 0
\(307\) −3.98641e8 −0.786318 −0.393159 0.919471i \(-0.628618\pi\)
−0.393159 + 0.919471i \(0.628618\pi\)
\(308\) 0 0
\(309\) 8.41227e8 1.62203
\(310\) 0 0
\(311\) −3.21786e8 −0.606606 −0.303303 0.952894i \(-0.598089\pi\)
−0.303303 + 0.952894i \(0.598089\pi\)
\(312\) 0 0
\(313\) 2.80257e8 0.516596 0.258298 0.966065i \(-0.416838\pi\)
0.258298 + 0.966065i \(0.416838\pi\)
\(314\) 0 0
\(315\) 3.82193e7 0.0688963
\(316\) 0 0
\(317\) 8.05173e8 1.41965 0.709826 0.704377i \(-0.248774\pi\)
0.709826 + 0.704377i \(0.248774\pi\)
\(318\) 0 0
\(319\) −1.29764e8 −0.223813
\(320\) 0 0
\(321\) 5.46450e8 0.922110
\(322\) 0 0
\(323\) 3.99418e8 0.659506
\(324\) 0 0
\(325\) −2.47911e8 −0.400594
\(326\) 0 0
\(327\) 3.93989e8 0.623113
\(328\) 0 0
\(329\) 3.46720e8 0.536776
\(330\) 0 0
\(331\) 2.31397e8 0.350719 0.175359 0.984504i \(-0.443891\pi\)
0.175359 + 0.984504i \(0.443891\pi\)
\(332\) 0 0
\(333\) −2.68197e8 −0.398015
\(334\) 0 0
\(335\) −8.60470e8 −1.25049
\(336\) 0 0
\(337\) 1.12688e9 1.60388 0.801940 0.597405i \(-0.203801\pi\)
0.801940 + 0.597405i \(0.203801\pi\)
\(338\) 0 0
\(339\) 1.32682e9 1.84975
\(340\) 0 0
\(341\) 8.14477e7 0.111234
\(342\) 0 0
\(343\) 4.03536e7 0.0539949
\(344\) 0 0
\(345\) −7.67350e8 −1.00607
\(346\) 0 0
\(347\) 2.75688e8 0.354213 0.177107 0.984192i \(-0.443326\pi\)
0.177107 + 0.984192i \(0.443326\pi\)
\(348\) 0 0
\(349\) −8.85168e8 −1.11465 −0.557323 0.830296i \(-0.688171\pi\)
−0.557323 + 0.830296i \(0.688171\pi\)
\(350\) 0 0
\(351\) −5.50148e8 −0.679055
\(352\) 0 0
\(353\) −9.12174e8 −1.10374 −0.551869 0.833930i \(-0.686085\pi\)
−0.551869 + 0.833930i \(0.686085\pi\)
\(354\) 0 0
\(355\) 5.07736e8 0.602336
\(356\) 0 0
\(357\) 4.81496e8 0.560085
\(358\) 0 0
\(359\) 5.87418e8 0.670065 0.335032 0.942207i \(-0.391253\pi\)
0.335032 + 0.942207i \(0.391253\pi\)
\(360\) 0 0
\(361\) −6.71535e8 −0.751266
\(362\) 0 0
\(363\) −9.43364e8 −1.03516
\(364\) 0 0
\(365\) −7.32563e8 −0.788534
\(366\) 0 0
\(367\) 7.02558e8 0.741910 0.370955 0.928651i \(-0.379030\pi\)
0.370955 + 0.928651i \(0.379030\pi\)
\(368\) 0 0
\(369\) −3.60506e8 −0.373526
\(370\) 0 0
\(371\) 1.17335e7 0.0119294
\(372\) 0 0
\(373\) −6.39508e8 −0.638065 −0.319033 0.947744i \(-0.603358\pi\)
−0.319033 + 0.947744i \(0.603358\pi\)
\(374\) 0 0
\(375\) −1.21692e9 −1.19166
\(376\) 0 0
\(377\) −6.86586e8 −0.659934
\(378\) 0 0
\(379\) 3.55496e8 0.335426 0.167713 0.985836i \(-0.446362\pi\)
0.167713 + 0.985836i \(0.446362\pi\)
\(380\) 0 0
\(381\) −2.08800e9 −1.93416
\(382\) 0 0
\(383\) 1.73345e9 1.57658 0.788290 0.615304i \(-0.210967\pi\)
0.788290 + 0.615304i \(0.210967\pi\)
\(384\) 0 0
\(385\) 8.32939e7 0.0743876
\(386\) 0 0
\(387\) 8.11944e7 0.0712095
\(388\) 0 0
\(389\) 1.70118e9 1.46530 0.732650 0.680605i \(-0.238283\pi\)
0.732650 + 0.680605i \(0.238283\pi\)
\(390\) 0 0
\(391\) −1.96886e9 −1.66570
\(392\) 0 0
\(393\) 6.84648e8 0.568975
\(394\) 0 0
\(395\) 1.70442e9 1.39151
\(396\) 0 0
\(397\) 1.44068e8 0.115558 0.0577792 0.998329i \(-0.481598\pi\)
0.0577792 + 0.998329i \(0.481598\pi\)
\(398\) 0 0
\(399\) 2.68025e8 0.211237
\(400\) 0 0
\(401\) −2.79743e8 −0.216648 −0.108324 0.994116i \(-0.534548\pi\)
−0.108324 + 0.994116i \(0.534548\pi\)
\(402\) 0 0
\(403\) 4.30944e8 0.327984
\(404\) 0 0
\(405\) −1.13421e9 −0.848401
\(406\) 0 0
\(407\) −5.84500e8 −0.429738
\(408\) 0 0
\(409\) −1.00801e8 −0.0728507 −0.0364254 0.999336i \(-0.511597\pi\)
−0.0364254 + 0.999336i \(0.511597\pi\)
\(410\) 0 0
\(411\) 1.75905e8 0.124978
\(412\) 0 0
\(413\) −1.52058e8 −0.106214
\(414\) 0 0
\(415\) −3.58034e8 −0.245899
\(416\) 0 0
\(417\) −5.05808e8 −0.341594
\(418\) 0 0
\(419\) 1.27396e9 0.846071 0.423036 0.906113i \(-0.360965\pi\)
0.423036 + 0.906113i \(0.360965\pi\)
\(420\) 0 0
\(421\) 7.46709e8 0.487713 0.243856 0.969811i \(-0.421587\pi\)
0.243856 + 0.969811i \(0.421587\pi\)
\(422\) 0 0
\(423\) 5.65391e8 0.363210
\(424\) 0 0
\(425\) −1.02963e9 −0.650611
\(426\) 0 0
\(427\) −3.91167e8 −0.243145
\(428\) 0 0
\(429\) 4.12009e8 0.251945
\(430\) 0 0
\(431\) −3.22414e7 −0.0193974 −0.00969871 0.999953i \(-0.503087\pi\)
−0.00969871 + 0.999953i \(0.503087\pi\)
\(432\) 0 0
\(433\) 2.64567e9 1.56613 0.783066 0.621938i \(-0.213655\pi\)
0.783066 + 0.621938i \(0.213655\pi\)
\(434\) 0 0
\(435\) −1.11137e9 −0.647362
\(436\) 0 0
\(437\) −1.09597e9 −0.628222
\(438\) 0 0
\(439\) 1.43248e8 0.0808095 0.0404047 0.999183i \(-0.487135\pi\)
0.0404047 + 0.999183i \(0.487135\pi\)
\(440\) 0 0
\(441\) 6.58040e7 0.0365357
\(442\) 0 0
\(443\) 3.37159e9 1.84256 0.921279 0.388903i \(-0.127146\pi\)
0.921279 + 0.388903i \(0.127146\pi\)
\(444\) 0 0
\(445\) 1.10827e9 0.596193
\(446\) 0 0
\(447\) 2.94438e9 1.55926
\(448\) 0 0
\(449\) 3.50835e9 1.82911 0.914557 0.404456i \(-0.132539\pi\)
0.914557 + 0.404456i \(0.132539\pi\)
\(450\) 0 0
\(451\) −7.85676e8 −0.403297
\(452\) 0 0
\(453\) −1.22529e9 −0.619294
\(454\) 0 0
\(455\) 4.40712e8 0.219338
\(456\) 0 0
\(457\) 2.16582e8 0.106149 0.0530745 0.998591i \(-0.483098\pi\)
0.0530745 + 0.998591i \(0.483098\pi\)
\(458\) 0 0
\(459\) −2.28490e9 −1.10286
\(460\) 0 0
\(461\) 2.47502e8 0.117659 0.0588296 0.998268i \(-0.481263\pi\)
0.0588296 + 0.998268i \(0.481263\pi\)
\(462\) 0 0
\(463\) −3.15378e9 −1.47672 −0.738359 0.674408i \(-0.764399\pi\)
−0.738359 + 0.674408i \(0.764399\pi\)
\(464\) 0 0
\(465\) 6.97566e8 0.321736
\(466\) 0 0
\(467\) −8.44807e8 −0.383838 −0.191919 0.981411i \(-0.561471\pi\)
−0.191919 + 0.981411i \(0.561471\pi\)
\(468\) 0 0
\(469\) −1.48151e9 −0.663133
\(470\) 0 0
\(471\) −1.10568e9 −0.487593
\(472\) 0 0
\(473\) 1.76952e8 0.0768852
\(474\) 0 0
\(475\) −5.73146e8 −0.245379
\(476\) 0 0
\(477\) 1.91337e7 0.00807205
\(478\) 0 0
\(479\) 1.97235e9 0.819992 0.409996 0.912087i \(-0.365530\pi\)
0.409996 + 0.912087i \(0.365530\pi\)
\(480\) 0 0
\(481\) −3.09262e9 −1.26712
\(482\) 0 0
\(483\) −1.32118e9 −0.533517
\(484\) 0 0
\(485\) −3.42765e9 −1.36427
\(486\) 0 0
\(487\) −2.22754e9 −0.873927 −0.436963 0.899479i \(-0.643946\pi\)
−0.436963 + 0.899479i \(0.643946\pi\)
\(488\) 0 0
\(489\) 3.16526e9 1.22413
\(490\) 0 0
\(491\) −4.30359e9 −1.64076 −0.820381 0.571817i \(-0.806239\pi\)
−0.820381 + 0.571817i \(0.806239\pi\)
\(492\) 0 0
\(493\) −2.85155e9 −1.07181
\(494\) 0 0
\(495\) 1.35826e8 0.0503344
\(496\) 0 0
\(497\) 8.74194e8 0.319419
\(498\) 0 0
\(499\) −1.57110e9 −0.566045 −0.283022 0.959113i \(-0.591337\pi\)
−0.283022 + 0.959113i \(0.591337\pi\)
\(500\) 0 0
\(501\) 3.60914e9 1.28225
\(502\) 0 0
\(503\) 2.77956e9 0.973842 0.486921 0.873446i \(-0.338120\pi\)
0.486921 + 0.873446i \(0.338120\pi\)
\(504\) 0 0
\(505\) 2.36519e9 0.817234
\(506\) 0 0
\(507\) −1.10840e9 −0.377720
\(508\) 0 0
\(509\) −2.74393e9 −0.922277 −0.461138 0.887328i \(-0.652559\pi\)
−0.461138 + 0.887328i \(0.652559\pi\)
\(510\) 0 0
\(511\) −1.26129e9 −0.418159
\(512\) 0 0
\(513\) −1.27189e9 −0.415947
\(514\) 0 0
\(515\) 3.19788e9 1.03166
\(516\) 0 0
\(517\) 1.23219e9 0.392159
\(518\) 0 0
\(519\) −1.54296e9 −0.484471
\(520\) 0 0
\(521\) 3.32895e9 1.03128 0.515639 0.856806i \(-0.327555\pi\)
0.515639 + 0.856806i \(0.327555\pi\)
\(522\) 0 0
\(523\) 1.70843e9 0.522205 0.261102 0.965311i \(-0.415914\pi\)
0.261102 + 0.965311i \(0.415914\pi\)
\(524\) 0 0
\(525\) −6.90923e8 −0.208388
\(526\) 0 0
\(527\) 1.78981e9 0.532685
\(528\) 0 0
\(529\) 1.99756e9 0.586686
\(530\) 0 0
\(531\) −2.47958e8 −0.0718700
\(532\) 0 0
\(533\) −4.15705e9 −1.18916
\(534\) 0 0
\(535\) 2.07730e9 0.586490
\(536\) 0 0
\(537\) 4.70863e9 1.31215
\(538\) 0 0
\(539\) 1.43411e8 0.0394477
\(540\) 0 0
\(541\) −3.29318e9 −0.894181 −0.447090 0.894489i \(-0.647540\pi\)
−0.447090 + 0.894489i \(0.647540\pi\)
\(542\) 0 0
\(543\) 2.41552e9 0.647456
\(544\) 0 0
\(545\) 1.49773e9 0.396319
\(546\) 0 0
\(547\) −2.11523e9 −0.552589 −0.276294 0.961073i \(-0.589107\pi\)
−0.276294 + 0.961073i \(0.589107\pi\)
\(548\) 0 0
\(549\) −6.37870e8 −0.164524
\(550\) 0 0
\(551\) −1.58732e9 −0.404235
\(552\) 0 0
\(553\) 2.93458e9 0.737919
\(554\) 0 0
\(555\) −5.00600e9 −1.24298
\(556\) 0 0
\(557\) 5.07633e9 1.24468 0.622339 0.782748i \(-0.286183\pi\)
0.622339 + 0.782748i \(0.286183\pi\)
\(558\) 0 0
\(559\) 9.36264e8 0.226703
\(560\) 0 0
\(561\) 1.71117e9 0.409188
\(562\) 0 0
\(563\) 3.94053e9 0.930626 0.465313 0.885146i \(-0.345942\pi\)
0.465313 + 0.885146i \(0.345942\pi\)
\(564\) 0 0
\(565\) 5.04383e9 1.17650
\(566\) 0 0
\(567\) −1.95283e9 −0.449907
\(568\) 0 0
\(569\) −4.13724e9 −0.941495 −0.470748 0.882268i \(-0.656016\pi\)
−0.470748 + 0.882268i \(0.656016\pi\)
\(570\) 0 0
\(571\) −3.29082e9 −0.739737 −0.369868 0.929084i \(-0.620597\pi\)
−0.369868 + 0.929084i \(0.620597\pi\)
\(572\) 0 0
\(573\) −2.04492e9 −0.454082
\(574\) 0 0
\(575\) 2.82522e9 0.619748
\(576\) 0 0
\(577\) 4.39404e9 0.952245 0.476122 0.879379i \(-0.342042\pi\)
0.476122 + 0.879379i \(0.342042\pi\)
\(578\) 0 0
\(579\) −8.67161e8 −0.185663
\(580\) 0 0
\(581\) −6.16445e8 −0.130400
\(582\) 0 0
\(583\) 4.16993e7 0.00871543
\(584\) 0 0
\(585\) 7.18662e8 0.148415
\(586\) 0 0
\(587\) 5.42998e8 0.110806 0.0554032 0.998464i \(-0.482356\pi\)
0.0554032 + 0.998464i \(0.482356\pi\)
\(588\) 0 0
\(589\) 9.96299e8 0.200903
\(590\) 0 0
\(591\) −1.11572e9 −0.222331
\(592\) 0 0
\(593\) −8.24702e9 −1.62407 −0.812037 0.583606i \(-0.801641\pi\)
−0.812037 + 0.583606i \(0.801641\pi\)
\(594\) 0 0
\(595\) 1.83038e9 0.356231
\(596\) 0 0
\(597\) 1.19756e9 0.230349
\(598\) 0 0
\(599\) −3.49160e9 −0.663789 −0.331895 0.943316i \(-0.607688\pi\)
−0.331895 + 0.943316i \(0.607688\pi\)
\(600\) 0 0
\(601\) 7.27920e9 1.36780 0.683900 0.729575i \(-0.260282\pi\)
0.683900 + 0.729575i \(0.260282\pi\)
\(602\) 0 0
\(603\) −2.41588e9 −0.448709
\(604\) 0 0
\(605\) −3.58614e9 −0.658391
\(606\) 0 0
\(607\) 8.02348e7 0.0145614 0.00728068 0.999973i \(-0.497682\pi\)
0.00728068 + 0.999973i \(0.497682\pi\)
\(608\) 0 0
\(609\) −1.91350e9 −0.343296
\(610\) 0 0
\(611\) 6.51960e9 1.15632
\(612\) 0 0
\(613\) −7.90903e9 −1.38679 −0.693397 0.720556i \(-0.743887\pi\)
−0.693397 + 0.720556i \(0.743887\pi\)
\(614\) 0 0
\(615\) −6.72898e9 −1.16650
\(616\) 0 0
\(617\) −5.23704e9 −0.897611 −0.448805 0.893630i \(-0.648150\pi\)
−0.448805 + 0.893630i \(0.648150\pi\)
\(618\) 0 0
\(619\) −1.14826e9 −0.194591 −0.0972953 0.995256i \(-0.531019\pi\)
−0.0972953 + 0.995256i \(0.531019\pi\)
\(620\) 0 0
\(621\) 6.26955e9 1.05055
\(622\) 0 0
\(623\) 1.90817e9 0.316161
\(624\) 0 0
\(625\) −1.62308e9 −0.265925
\(626\) 0 0
\(627\) 9.52523e8 0.154326
\(628\) 0 0
\(629\) −1.28444e10 −2.05795
\(630\) 0 0
\(631\) 6.33937e9 1.00448 0.502242 0.864727i \(-0.332509\pi\)
0.502242 + 0.864727i \(0.332509\pi\)
\(632\) 0 0
\(633\) −7.85157e9 −1.23039
\(634\) 0 0
\(635\) −7.93742e9 −1.23019
\(636\) 0 0
\(637\) 7.58795e8 0.116315
\(638\) 0 0
\(639\) 1.42553e9 0.216135
\(640\) 0 0
\(641\) −1.04479e10 −1.56684 −0.783422 0.621491i \(-0.786527\pi\)
−0.783422 + 0.621491i \(0.786527\pi\)
\(642\) 0 0
\(643\) 5.52038e9 0.818899 0.409450 0.912333i \(-0.365721\pi\)
0.409450 + 0.912333i \(0.365721\pi\)
\(644\) 0 0
\(645\) 1.51552e9 0.222384
\(646\) 0 0
\(647\) −1.08730e9 −0.157829 −0.0789143 0.996881i \(-0.525145\pi\)
−0.0789143 + 0.996881i \(0.525145\pi\)
\(648\) 0 0
\(649\) −5.40392e8 −0.0775983
\(650\) 0 0
\(651\) 1.20103e9 0.170617
\(652\) 0 0
\(653\) 1.07697e10 1.51359 0.756795 0.653652i \(-0.226764\pi\)
0.756795 + 0.653652i \(0.226764\pi\)
\(654\) 0 0
\(655\) 2.60265e9 0.361886
\(656\) 0 0
\(657\) −2.05676e9 −0.282947
\(658\) 0 0
\(659\) 1.23205e10 1.67699 0.838495 0.544910i \(-0.183436\pi\)
0.838495 + 0.544910i \(0.183436\pi\)
\(660\) 0 0
\(661\) −4.43102e9 −0.596759 −0.298379 0.954447i \(-0.596446\pi\)
−0.298379 + 0.954447i \(0.596446\pi\)
\(662\) 0 0
\(663\) 9.05388e9 1.20653
\(664\) 0 0
\(665\) 1.01888e9 0.134353
\(666\) 0 0
\(667\) 7.82442e9 1.02097
\(668\) 0 0
\(669\) 9.72523e9 1.25576
\(670\) 0 0
\(671\) −1.39015e9 −0.177637
\(672\) 0 0
\(673\) −2.00633e9 −0.253717 −0.126858 0.991921i \(-0.540489\pi\)
−0.126858 + 0.991921i \(0.540489\pi\)
\(674\) 0 0
\(675\) 3.27871e9 0.410337
\(676\) 0 0
\(677\) −7.63334e9 −0.945485 −0.472742 0.881201i \(-0.656736\pi\)
−0.472742 + 0.881201i \(0.656736\pi\)
\(678\) 0 0
\(679\) −5.90155e9 −0.723472
\(680\) 0 0
\(681\) 1.66436e10 2.01945
\(682\) 0 0
\(683\) 1.54524e9 0.185577 0.0927885 0.995686i \(-0.470422\pi\)
0.0927885 + 0.995686i \(0.470422\pi\)
\(684\) 0 0
\(685\) 6.68693e8 0.0794895
\(686\) 0 0
\(687\) 1.23332e10 1.45120
\(688\) 0 0
\(689\) 2.20633e8 0.0256982
\(690\) 0 0
\(691\) 1.22484e10 1.41223 0.706113 0.708099i \(-0.250447\pi\)
0.706113 + 0.708099i \(0.250447\pi\)
\(692\) 0 0
\(693\) 2.33858e8 0.0266923
\(694\) 0 0
\(695\) −1.92280e9 −0.217264
\(696\) 0 0
\(697\) −1.72652e10 −1.93133
\(698\) 0 0
\(699\) −1.66019e10 −1.83860
\(700\) 0 0
\(701\) −7.41592e9 −0.813115 −0.406558 0.913625i \(-0.633271\pi\)
−0.406558 + 0.913625i \(0.633271\pi\)
\(702\) 0 0
\(703\) −7.14983e9 −0.776161
\(704\) 0 0
\(705\) 1.05532e10 1.13429
\(706\) 0 0
\(707\) 4.07226e9 0.433379
\(708\) 0 0
\(709\) 3.86406e9 0.407176 0.203588 0.979057i \(-0.434740\pi\)
0.203588 + 0.979057i \(0.434740\pi\)
\(710\) 0 0
\(711\) 4.78538e9 0.499313
\(712\) 0 0
\(713\) −4.91109e9 −0.507416
\(714\) 0 0
\(715\) 1.56623e9 0.160245
\(716\) 0 0
\(717\) −4.37879e9 −0.443647
\(718\) 0 0
\(719\) −1.63270e10 −1.63816 −0.819079 0.573680i \(-0.805515\pi\)
−0.819079 + 0.573680i \(0.805515\pi\)
\(720\) 0 0
\(721\) 5.50594e9 0.547089
\(722\) 0 0
\(723\) −5.47342e9 −0.538611
\(724\) 0 0
\(725\) 4.09184e9 0.398782
\(726\) 0 0
\(727\) −1.45389e10 −1.40333 −0.701667 0.712505i \(-0.747561\pi\)
−0.701667 + 0.712505i \(0.747561\pi\)
\(728\) 0 0
\(729\) 6.59172e9 0.630163
\(730\) 0 0
\(731\) 3.88853e9 0.368192
\(732\) 0 0
\(733\) 1.84625e10 1.73152 0.865759 0.500460i \(-0.166836\pi\)
0.865759 + 0.500460i \(0.166836\pi\)
\(734\) 0 0
\(735\) 1.22826e9 0.114099
\(736\) 0 0
\(737\) −5.26509e9 −0.484473
\(738\) 0 0
\(739\) −1.54075e9 −0.140436 −0.0702178 0.997532i \(-0.522369\pi\)
−0.0702178 + 0.997532i \(0.522369\pi\)
\(740\) 0 0
\(741\) 5.03984e9 0.455044
\(742\) 0 0
\(743\) −7.42658e9 −0.664245 −0.332122 0.943236i \(-0.607765\pi\)
−0.332122 + 0.943236i \(0.607765\pi\)
\(744\) 0 0
\(745\) 1.11929e10 0.991734
\(746\) 0 0
\(747\) −1.00523e9 −0.0882352
\(748\) 0 0
\(749\) 3.57659e9 0.311016
\(750\) 0 0
\(751\) −1.23061e10 −1.06018 −0.530090 0.847941i \(-0.677842\pi\)
−0.530090 + 0.847941i \(0.677842\pi\)
\(752\) 0 0
\(753\) −1.43935e10 −1.22852
\(754\) 0 0
\(755\) −4.65789e9 −0.393890
\(756\) 0 0
\(757\) −2.23022e9 −0.186859 −0.0934293 0.995626i \(-0.529783\pi\)
−0.0934293 + 0.995626i \(0.529783\pi\)
\(758\) 0 0
\(759\) −4.69530e9 −0.389778
\(760\) 0 0
\(761\) −5.38368e9 −0.442826 −0.221413 0.975180i \(-0.571067\pi\)
−0.221413 + 0.975180i \(0.571067\pi\)
\(762\) 0 0
\(763\) 2.57871e9 0.210168
\(764\) 0 0
\(765\) 2.98477e9 0.241044
\(766\) 0 0
\(767\) −2.85924e9 −0.228806
\(768\) 0 0
\(769\) −1.17224e10 −0.929550 −0.464775 0.885429i \(-0.653865\pi\)
−0.464775 + 0.885429i \(0.653865\pi\)
\(770\) 0 0
\(771\) −2.48813e9 −0.195516
\(772\) 0 0
\(773\) 1.49447e10 1.16375 0.581875 0.813278i \(-0.302319\pi\)
0.581875 + 0.813278i \(0.302319\pi\)
\(774\) 0 0
\(775\) −2.56829e9 −0.198193
\(776\) 0 0
\(777\) −8.61907e9 −0.659154
\(778\) 0 0
\(779\) −9.61068e9 −0.728405
\(780\) 0 0
\(781\) 3.10676e9 0.233362
\(782\) 0 0
\(783\) 9.08035e9 0.675984
\(784\) 0 0
\(785\) −4.20319e9 −0.310124
\(786\) 0 0
\(787\) −1.68671e10 −1.23347 −0.616736 0.787170i \(-0.711546\pi\)
−0.616736 + 0.787170i \(0.711546\pi\)
\(788\) 0 0
\(789\) −6.91927e8 −0.0501523
\(790\) 0 0
\(791\) 8.68420e9 0.623896
\(792\) 0 0
\(793\) −7.35536e9 −0.523779
\(794\) 0 0
\(795\) 3.57137e8 0.0252087
\(796\) 0 0
\(797\) −1.57820e9 −0.110422 −0.0552112 0.998475i \(-0.517583\pi\)
−0.0552112 + 0.998475i \(0.517583\pi\)
\(798\) 0 0
\(799\) 2.70774e10 1.87799
\(800\) 0 0
\(801\) 3.11162e9 0.213930
\(802\) 0 0
\(803\) −4.48245e9 −0.305500
\(804\) 0 0
\(805\) −5.02240e9 −0.339333
\(806\) 0 0
\(807\) −2.44285e10 −1.63621
\(808\) 0 0
\(809\) 1.98655e10 1.31910 0.659552 0.751659i \(-0.270746\pi\)
0.659552 + 0.751659i \(0.270746\pi\)
\(810\) 0 0
\(811\) 1.87325e10 1.23317 0.616583 0.787290i \(-0.288516\pi\)
0.616583 + 0.787290i \(0.288516\pi\)
\(812\) 0 0
\(813\) −8.63033e9 −0.563262
\(814\) 0 0
\(815\) 1.20326e10 0.778587
\(816\) 0 0
\(817\) 2.16455e9 0.138864
\(818\) 0 0
\(819\) 1.23735e9 0.0787047
\(820\) 0 0
\(821\) 2.71441e10 1.71189 0.855943 0.517070i \(-0.172977\pi\)
0.855943 + 0.517070i \(0.172977\pi\)
\(822\) 0 0
\(823\) −4.27707e9 −0.267453 −0.133726 0.991018i \(-0.542694\pi\)
−0.133726 + 0.991018i \(0.542694\pi\)
\(824\) 0 0
\(825\) −2.45544e9 −0.152244
\(826\) 0 0
\(827\) −2.17659e10 −1.33816 −0.669078 0.743193i \(-0.733311\pi\)
−0.669078 + 0.743193i \(0.733311\pi\)
\(828\) 0 0
\(829\) 2.85448e10 1.74015 0.870073 0.492923i \(-0.164072\pi\)
0.870073 + 0.492923i \(0.164072\pi\)
\(830\) 0 0
\(831\) 3.28436e10 1.98539
\(832\) 0 0
\(833\) 3.15145e9 0.188909
\(834\) 0 0
\(835\) 1.37199e10 0.815548
\(836\) 0 0
\(837\) −5.69939e9 −0.335961
\(838\) 0 0
\(839\) 1.42629e10 0.833761 0.416881 0.908961i \(-0.363123\pi\)
0.416881 + 0.908961i \(0.363123\pi\)
\(840\) 0 0
\(841\) −5.91757e9 −0.343050
\(842\) 0 0
\(843\) −2.78239e10 −1.59963
\(844\) 0 0
\(845\) −4.21353e9 −0.240241
\(846\) 0 0
\(847\) −6.17444e9 −0.349145
\(848\) 0 0
\(849\) −9.08919e9 −0.509739
\(850\) 0 0
\(851\) 3.52438e10 1.96033
\(852\) 0 0
\(853\) 1.80907e10 0.998007 0.499004 0.866600i \(-0.333699\pi\)
0.499004 + 0.866600i \(0.333699\pi\)
\(854\) 0 0
\(855\) 1.66147e9 0.0909101
\(856\) 0 0
\(857\) 8.64155e9 0.468985 0.234492 0.972118i \(-0.424657\pi\)
0.234492 + 0.972118i \(0.424657\pi\)
\(858\) 0 0
\(859\) −3.40755e10 −1.83428 −0.917141 0.398564i \(-0.869509\pi\)
−0.917141 + 0.398564i \(0.869509\pi\)
\(860\) 0 0
\(861\) −1.15856e10 −0.618597
\(862\) 0 0
\(863\) 2.86099e10 1.51523 0.757614 0.652703i \(-0.226365\pi\)
0.757614 + 0.652703i \(0.226365\pi\)
\(864\) 0 0
\(865\) −5.86546e9 −0.308138
\(866\) 0 0
\(867\) 1.60989e10 0.838939
\(868\) 0 0
\(869\) 1.04291e10 0.539110
\(870\) 0 0
\(871\) −2.78578e10 −1.42851
\(872\) 0 0
\(873\) −9.62356e9 −0.489538
\(874\) 0 0
\(875\) −7.96488e9 −0.401930
\(876\) 0 0
\(877\) −2.50723e10 −1.25515 −0.627575 0.778556i \(-0.715953\pi\)
−0.627575 + 0.778556i \(0.715953\pi\)
\(878\) 0 0
\(879\) −6.24295e9 −0.310048
\(880\) 0 0
\(881\) 7.00965e9 0.345367 0.172683 0.984977i \(-0.444756\pi\)
0.172683 + 0.984977i \(0.444756\pi\)
\(882\) 0 0
\(883\) −1.54916e10 −0.757241 −0.378620 0.925552i \(-0.623601\pi\)
−0.378620 + 0.925552i \(0.623601\pi\)
\(884\) 0 0
\(885\) −4.62823e9 −0.224447
\(886\) 0 0
\(887\) −2.99298e10 −1.44003 −0.720015 0.693958i \(-0.755865\pi\)
−0.720015 + 0.693958i \(0.755865\pi\)
\(888\) 0 0
\(889\) −1.36662e10 −0.652368
\(890\) 0 0
\(891\) −6.94007e9 −0.328694
\(892\) 0 0
\(893\) 1.50727e10 0.708288
\(894\) 0 0
\(895\) 1.78996e10 0.834569
\(896\) 0 0
\(897\) −2.48430e10 −1.14929
\(898\) 0 0
\(899\) −7.11285e9 −0.326501
\(900\) 0 0
\(901\) 9.16341e8 0.0417369
\(902\) 0 0
\(903\) 2.60935e9 0.117930
\(904\) 0 0
\(905\) 9.18245e9 0.411802
\(906\) 0 0
\(907\) 2.76012e9 0.122830 0.0614148 0.998112i \(-0.480439\pi\)
0.0614148 + 0.998112i \(0.480439\pi\)
\(908\) 0 0
\(909\) 6.64057e9 0.293246
\(910\) 0 0
\(911\) −8.06506e9 −0.353422 −0.176711 0.984263i \(-0.556546\pi\)
−0.176711 + 0.984263i \(0.556546\pi\)
\(912\) 0 0
\(913\) −2.19076e9 −0.0952679
\(914\) 0 0
\(915\) −1.19061e10 −0.513801
\(916\) 0 0
\(917\) 4.48111e9 0.191908
\(918\) 0 0
\(919\) −3.14509e10 −1.33668 −0.668342 0.743854i \(-0.732996\pi\)
−0.668342 + 0.743854i \(0.732996\pi\)
\(920\) 0 0
\(921\) −2.08910e10 −0.881150
\(922\) 0 0
\(923\) 1.64380e10 0.688088
\(924\) 0 0
\(925\) 1.84311e10 0.765692
\(926\) 0 0
\(927\) 8.97845e9 0.370188
\(928\) 0 0
\(929\) −1.61192e10 −0.659610 −0.329805 0.944049i \(-0.606983\pi\)
−0.329805 + 0.944049i \(0.606983\pi\)
\(930\) 0 0
\(931\) 1.75426e9 0.0712475
\(932\) 0 0
\(933\) −1.68633e10 −0.679764
\(934\) 0 0
\(935\) 6.50491e9 0.260256
\(936\) 0 0
\(937\) −1.26173e10 −0.501048 −0.250524 0.968110i \(-0.580603\pi\)
−0.250524 + 0.968110i \(0.580603\pi\)
\(938\) 0 0
\(939\) 1.46870e10 0.578898
\(940\) 0 0
\(941\) 3.26441e10 1.27715 0.638574 0.769560i \(-0.279525\pi\)
0.638574 + 0.769560i \(0.279525\pi\)
\(942\) 0 0
\(943\) 4.73742e10 1.83972
\(944\) 0 0
\(945\) −5.82858e9 −0.224673
\(946\) 0 0
\(947\) 2.95307e10 1.12992 0.564961 0.825117i \(-0.308891\pi\)
0.564961 + 0.825117i \(0.308891\pi\)
\(948\) 0 0
\(949\) −2.37168e10 −0.900793
\(950\) 0 0
\(951\) 4.21954e10 1.59086
\(952\) 0 0
\(953\) −4.15195e10 −1.55391 −0.776957 0.629553i \(-0.783238\pi\)
−0.776957 + 0.629553i \(0.783238\pi\)
\(954\) 0 0
\(955\) −7.77364e9 −0.288810
\(956\) 0 0
\(957\) −6.80032e9 −0.250806
\(958\) 0 0
\(959\) 1.15132e9 0.0421533
\(960\) 0 0
\(961\) −2.30481e10 −0.837730
\(962\) 0 0
\(963\) 5.83228e9 0.210449
\(964\) 0 0
\(965\) −3.29647e9 −0.118087
\(966\) 0 0
\(967\) −8.25883e9 −0.293715 −0.146857 0.989158i \(-0.546916\pi\)
−0.146857 + 0.989158i \(0.546916\pi\)
\(968\) 0 0
\(969\) 2.09317e10 0.739044
\(970\) 0 0
\(971\) −3.17512e10 −1.11299 −0.556496 0.830850i \(-0.687855\pi\)
−0.556496 + 0.830850i \(0.687855\pi\)
\(972\) 0 0
\(973\) −3.31058e9 −0.115215
\(974\) 0 0
\(975\) −1.29919e10 −0.448906
\(976\) 0 0
\(977\) 3.97626e10 1.36409 0.682046 0.731309i \(-0.261090\pi\)
0.682046 + 0.731309i \(0.261090\pi\)
\(978\) 0 0
\(979\) 6.78136e9 0.230982
\(980\) 0 0
\(981\) 4.20506e9 0.142210
\(982\) 0 0
\(983\) −3.22059e10 −1.08143 −0.540714 0.841206i \(-0.681846\pi\)
−0.540714 + 0.841206i \(0.681846\pi\)
\(984\) 0 0
\(985\) −4.24136e9 −0.141410
\(986\) 0 0
\(987\) 1.81700e10 0.601513
\(988\) 0 0
\(989\) −1.06698e10 −0.350726
\(990\) 0 0
\(991\) 2.58333e10 0.843183 0.421592 0.906786i \(-0.361472\pi\)
0.421592 + 0.906786i \(0.361472\pi\)
\(992\) 0 0
\(993\) 1.21264e10 0.393016
\(994\) 0 0
\(995\) 4.55244e9 0.146509
\(996\) 0 0
\(997\) 3.40734e10 1.08889 0.544444 0.838797i \(-0.316741\pi\)
0.544444 + 0.838797i \(0.316741\pi\)
\(998\) 0 0
\(999\) 4.09010e10 1.29794
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 28.8.a.a.1.2 2
3.2 odd 2 252.8.a.e.1.1 2
4.3 odd 2 112.8.a.i.1.1 2
7.2 even 3 196.8.e.d.165.1 4
7.3 odd 6 196.8.e.a.177.2 4
7.4 even 3 196.8.e.d.177.1 4
7.5 odd 6 196.8.e.a.165.2 4
7.6 odd 2 196.8.a.b.1.1 2
8.3 odd 2 448.8.a.n.1.2 2
8.5 even 2 448.8.a.p.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.8.a.a.1.2 2 1.1 even 1 trivial
112.8.a.i.1.1 2 4.3 odd 2
196.8.a.b.1.1 2 7.6 odd 2
196.8.e.a.165.2 4 7.5 odd 6
196.8.e.a.177.2 4 7.3 odd 6
196.8.e.d.165.1 4 7.2 even 3
196.8.e.d.177.1 4 7.4 even 3
252.8.a.e.1.1 2 3.2 odd 2
448.8.a.n.1.2 2 8.3 odd 2
448.8.a.p.1.1 2 8.5 even 2